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Compton profiles of atoms from electron densities via reciprocal form
factors
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Abstract. A new method to extract the Compton profile from the electron density has been
proposed. The method is based on the nonlocal density approximation (NLDA) due to
Gunnarsson et al and Alonso and Girifalco. Initially the reduced first order density matrix has
been estimated from the knowledge of the electron density alone through the use of an
averaged density distribution, 7 (r). The reduced first order density matrix thus obtained has
then been employed to extract the reciprocal form factor, B(r). The Compton profile, J (g) may
thereby be obtained by a cosine transformation of B(r). These results for the J(g) are in good
agreement with their near Hartree-Fock counterparts.
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1. Introduction

The study and measurements of Compton profiles have received a good deal of
attention in the past decade or so. The reason for such an interest is that with the advent
of intense y-ray and synchrotron radiation sources very accurate determination of the
momentum space properties of electrons in the sample has become possible. Extensive
reviews both of theoretical and experimental aspects of Compton scattering and related
techniques are available (Williams 1977a,b). The Compton profile is related to the
spherically averaged electron momentum density, y(p) via the relation:

. ©

J(g)=2n [ y(p) pdp, ‘ (1)
lal
where ¢ is the projection of an electron’s initial momentum onto the scattering vector.
Reciprocally, -

-1 ,dig
) = 5P ! i

Various other properties viz. the (p" )-values may be extracted from the Compton
profiles (Benesch and Smith 1973).

@)

q=>p

(P">=2(n+1)j J(@)q"dg, 0<n<4, : €)
: :
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the {p~' ) is related to the peak height of the Compton profile by
p~' > =2J(0) @)

However, analysis and interpretation of Compton profiles is not limited to mo-
mentum space only. The Fourier transform of the Compton profile viz. the recipro-
cal form factor, B(r) has been found (Weyrich et al 1979) to be a convenient tool to
study and interpret simple chemical concepts such as hybridization, and bonding. The
spherically averaged B(r) is given by (Thakkar et al 1983):

o

B(r) =2 J J(q)cos (gr)dr. . ' ©)
J ,

The first order reduced density matrix is related to B(r) via the relations (Thakkar et al
1983),

B(r) = J I'(s/s+r)ds, 6)

B(r)= 1/4n j-B(r)dQ. @)

Thus the B(r) function emerges as a convenient bridge between the coordinate and
momentum spaces. ; ' :

The reduced first order density matrices in configuration and momentum space are
related to each other by (Benesch and Smith 1973),

Cp/p) = [1/2n)*] J.l"(r/r’)e“'l"'e"l"" drdr’. ®)

The electron momentum density, y(p) is the diagonal component of I'(p/p’) i.e.

() = T'(p/P) ©)
and the spherically averaged momentum density is given by

y(p) = (1/4m) j y(p)dQd (10)

The electron density, p(r) may be defined in a similar manner. Unfortunately, the
transformation from p to y and the converse is not as yet available contrary to the one
between the density matrices as defined by (8). Thus it is necessary to resort to certain
approximate procedures to extract momentum density from the electron density and
vice versa. The currently available procedures are the ones due to Lam and Platzman
(1974), viz., the locally averaged method, (Lam) and Gadre and Pathak (1981), which
basically employs semiclassical considerations as those adopted by Burkhardt (1936),
Konya (1949), Coulson and March (1950) (ekcm). Later Pathak et al (1983) enforced
the constraint of the kinetic energy to the y(p) obtained from the sxcm method. Though
there is some improvement in the y(p) predicted, the results are far from acceptable.
Recently, Gadre and Chakravorty (1986) proposed leading and tail corrections to the
skcm model. This leads to drastic improvement over some of the momentum space
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properties. However, the methods proposed do not yield sufficiently accurate estimates
of all properties in momentum space.

In the present work, a new method to determine the Compton profile from the
knowledge of electron density alone, is presented. To start with, an approximate
reduced first order density matrix in coordinate space is constructed from which the

Compton profile is subsequently extracted via the reciprocal form factor.

2. Method

The first order reduced density matrix in coordinate space may be written as (Deband
Ghosh 1983; Ludefia 1983a,b):

r@r/r)=p?@®p'*(r)G, ), (11
where G(r, r') satisfies the condition,
G(r,r)= 1. (12)

Using an orbital expansion, G(r, ') may be written as

G2 r,r) = [z 5 ¢i*<r)¢,.(r')¢r(r)¢,-(r')] /

i=1j=1
[i; o¥ (r) $:(r) j; ¢,-(r’)¢,-(r')]- (13)

Substituting plane waves for ¢;’s the homogeneous electron gas pair correlation
function is obtained (Deb and Ghosh 1983; Ludena 1983a, b):

G(r,x') =351 0)/y (14)
where j, (y) is the first order spherical Bessel function:
j1 ) = [sin (y) — ycos 1)1/, v (15)

with y = k;|r—r| and k; = the Fermi momentum.

Another approach to determine an approximate relationship between p(r) and the
I'(r/r') was employed by Gunnarsson et al (1976,1977) and Alonso and Girifalco (1977,
1978). The two particle spinless density matrix, I'(r, ¥'/r, 1) is given by

T(r,r/r,r) = p(r)p(r) —1/2T@/r)T('/r), (16)
using the relation
rrr/rr)=pmpr)[1+CEr)] ' (17

C(r, 1) is the correlation factor which is known exactly for a homogeneous electron gas
(Gunnarsson et al 1976, 1977; Alonso and Girifalco 1977, 1978).

C(r,v) = (=9/2[j1 0)/¥’] | (18)

with y = k;|r—r|. Thus, comparing (11), (16), (17) and (18), the relation between
C(r,r') and G(r,r') is given by,

Gv)=[-2CE)]"? (19)
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which is the same expression as (14). In the local density approximation it is assumed
that

p(r) = p(r), _ (20a)
leading to
ky(r) = [3n?p(r)]* 3. (20b)

However, it may be noted that the assumption (20a) is a very drastic one, especially for
the atomic and molecular case. This serious defect of the LDA (local density
approximation) model necessitated an alternative definition (Gunnarsson et al 1976,
1977; Alonso and Girifalco 1977, 1978) of ky(r) resulting in the non local density
approximation (NLDA). This was achieved by rejecting the approximation (20a) and
replacing the p(r) in (20b) by an average density P (r) determined by a constraint that the

exchange charge density should be conserved (Gunnarsson et al 1976, 1977; Alonso and
Girifalco 1977, 1978). That means

Jp(r)Cp (r,r)dr = —1; (21)

the new correlation factor Cp(r,r') is
Cpr,x') = (—9/2)[ /1 (3)/5*], (22)

where § = [r—r'|[3n%3 (]! =k 7 (")|r —r'|. Thus p(r) is determined by solving (21).
Another approximation that restores the symmetry of the density matrix is
ky = [3n*p(jr—r'|)]!/3, which will also be examined.

Thus now with an approximate density matrix being constructed from the electron
density, p(r) the reciprocal form factor, B(r) may be easily obtained employing (6):

{ry /ry) = p' 2 (xy)p* 12 (r2)3jy (x)/x, (23)

where x =y = k.(r;)|r, —r;| = [3n%p(r;)]*/*|r; —r,| in the Lpa model and
x=§=ke(r;)|r; —ry| = [3n*p(r;)]*?|r, —r,| in the NLDA model. In the case of
atoms, where p(r) = p(r)is a reasonable assumption, the I'(r, /r,) then simplifies to just
a function of r1, r; and |r, —r,| = r. With this simplification the B(r) as in (6) and (7)
may be obtained by a suitable transformation to metric coordinates as utilised by
Coulson and Neilson (1961).

r r+4r;

2 3j
B(r)=—r’5{jp“2(rl)—-’;(—")rldrl j' P2 radrs +
o .

r—ry

© ro+r

+ f pl2 ("1)%@ ridr, j Pr2(r,) r,_drz} = 2Tnf(r). (24)

r L ry—r

Within the NLDA model the determination of p(r,) via (21) and (22) remains a
cumbersome three-dimensional exercise:

1=05/2) J pr)ii )/ dr,. @5

Equation (25) can be further simplified by transforming to metric coordinates (Coulson
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and Neilson 1961) viz. ry, ry, |r; —r,| = r yielding
ry re+re

9 Y~
1=;£{J‘p(r2)rzdr2 f j—lj%v—)rdr+

1
° ri—r

®© rytr;
2
+ j p(ry) 12 dr, ‘f ’ly(j') rdr}. (26)

ry rp—ry

Now consider the following indefinite integral

2 s 2 k"
3 P‘l;z@ rdr = 3 JLTZ—X(}i D ar. @7)

Employing recurrence relations (Antosiewicz 1970) and integrating (Gradshteyn and
Ryzhik 1980, p. 634) one obtains,

2 20 2 (o ; s .2
3 J‘J}(;V). rdr = 12 {Jo_;y_) i By (p)__hi}’) _Jo(?);z()’) _121(2)7)}
=g(ry,7). (28)

The above solution is an even function of r, thus (26) simplifies after substitution of (28)
in (26) to

3n
1= - f pr)ra[g(r,n) ]2 dr,, (29)
1
[+]

where 7 = [3n2p(r)]*/*r. Equation (29) offers a direct method for determination of
p. The above simplification has not been utilised (Deb and Ghosh 1983; Ludeiia
1983a, b; Gunnarsson et al 1976, 1977; Alonso and Girifalco 1977, 1978) nor pointed
out earlier in the literature.

3. Relationships

The B(r) obtained from (24) satisfies certain important conditions. For instance,
B(0) = N, the number of electrons. This can be verified for (24) employing the
differentiation formula for a definite integral [pp. 1098, equation (12:211) of
(Gradshteyn and Ryzhik 1980)] and L'Hospital’s rule. B(0) is given by

B(O) = 21f' () =0 = J o200 L 1 dr [t 41y 1)+

+p2(r =1 (ri—1)] (30)
Thus,

B(0) = 4=n J pridr = N. 31
0
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Recently Thakkar et al (1983) have pointed out that the various momentum space
properties could be extracted from the knowledge of B(r) alone. For example, the
second moment of the electron momentum density which is twice the kinetic energy is
given by
d2B(r)

2 = __3____
p*> 32

(32)

r= 0.
The {p? >-value for the present transformation can be easily determined employing
(24) and (32):

(PP = _6n[f”r(r) _¥m ?-f(r)]

+
r2 rd

(33)

=0
Employing L’'Hospital’s rule one obtains:

2 " 3 2 2 1 p/Z(r) 2
P> ==2nf"@),=0 ~3 k,p(rl)-4nr1dr1+z ~p(r—)—4nr1dr1. (34)

In the LbA model, (34) with k, = [3np(r)]'/ simplifies to
<p*> = ATo[p]+ T P]). (35)

The above solution (35) is identical to the full Thomas-Fermi and Weizsacker
components (Murphy 1979). This result is in conformity with the functional forms for
kinetic energy for the Lba model (Gunnarsson et al 1976, 1977; Alonso and Girifalco
1977, 1978; - Deb and Ghosh 1983; Ludeni 1983a,b). The NLpA model, where
k = [3n*p(r;)]*"* for which the {p? d-value is: ~ '

(P2 = Z{Tw[p] -i-%(37r2)2’3 Jpzm (ryp(ry)anr? dr}. ‘ (36)

Another approximation, viz., k s = [37%p(|ry — r,|)] was also tried out which leads to a
gross overestimate of the {p? >-value

P> = H{T,[p]+153n32 >3 O)N). 67

In the LpA model, the full Thomas-Fermi and Weizsacker contributions to kinetic
energy are unacceptable features. As is known from numerous numerical and
theoretical studies (Murphy 1979), the total kinetic energy may be represented fully by
one term (e.g. T) and a fraction of the other one (e.g. 1/9T,,) as the correction term.
However, from these analyses, the NLDA model seems to yield a much more reasonable
value for the kinetic energy (Gunnarsson et al 1976, 1977; Alonso and Girifalco 1977,
1978; Deb and Ghosh 1983; Ludena 1983a, b). :

In the next section the results for the Compton profile, J(g) for the nitrogen and
argon atoms employing the NLDA model are presented.

4. Results and discussion

- The p(r) for nitrogen and argon atoms were evaluated via (28) by a Regula-Falsi
method. It may be noted that p(0)is not zero for any atom with more than two electrons
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~cohtrary to Deb and Ghosh (1983), where p(r)/ (p(r) was determined to be zero
numerically at r = 0. This can be easily verified from (25). For atoms with two electrons,
- p(r) = 0 for all r is a particular solution in which case

L(r/r) = p'2 (r)p'2 (1), (38)
and employing (8)
y(p) = (FTp'/*)™ (39)

The B(r) was computed from (24) and then the Compton profile was extracted via
the relation

J(g) = % jB(r) cos (gr)dr. (40)

The results for J(g) for nitrogen and argon atoms are presented in table 1. It may be
seen that the overall prediction of J(g) is indeed a good one. The J (0) value which is
numerically equal to half the { p~*>-value seems to be estimated extremely well, the
typical relative percent error being less than one percent.

5. Concluding remarks
The present work reports for the first time a reasonably accurate method for extracting

atomic Compton profiles exclusively from the knowledge of electron density. This vital
link is established via the reciprocal form factor. Also, a better and a more direct

Table 1. A comparison of Compton profiles for nitrogen and argon atoms employing the
NLDA model and the NHF wavefunctions (all values are in Hartree atomic units).

Nitrogen Argon
q NLDA™? NHF* NLDA®? NHF*
0 27560 27986 50468 5-0635

005486 27471 27910 50325 50563
0-13960 26990 2-7498 49557 50156
021672 26223 2:6819 4-8336 4:9438
0-57765 2:0169 2:0615 3-8758 41092
092748 1-3949 1-3372 28809 2-8925

1-4672 0-7847 06430 1-9015 15935
22768 0-3236 0-2953 1-0751 0-9516
60657 0-0261 0-0450 0-2390 0-2433

2 The electron density p(r) was computed from Near Hartree
Fock wavefunctions (NHF ) of Clementi E and Roetti C (1974}
At. Data and Nucl. Data Tables 14 177,

b The present work employing the non local density approxi-
mation. See text for details.

“The .J(g) for the NHF framework was extracted via direct
Fourier transformation of NHF wavefunctions.
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method for determination of p(r) is made possible with an assumption of spherical
symmetry of p(r) for atoms.

The present procedure is unsurpassed in accuracy in estimation of the Compton
profiles by all currently known methods viz. the BkcM, Lam and Platzman 1974, and
Gadre and Chakravorty (1986) procedures. The present work is particularly relevant in
the light of recent developments in the density functional theory (see for example,
Bamzai and Deb 1981; Parr 1983) since an explicit transformation between pandyisas

yet unknown. An extension to molecules (Pathak et al 1984) would be interesting
though far from straightforward.

Thus, the reciprocal form factor provides an useful connection between electron
density and Compton profile for atoms.
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