

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dioxidobis(2-oxo-1,2-dihydropyridin-3olato)molybdenum(VI)

Manoj Trivedi,^a* Daya Shankar Pandey^a and Nigam P. Rath^b

^aDepartment of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India, and ^bDepartment of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri-St Louis, One University Boulevard, St Louis, MO 63121-4499, USA

Correspondence e-mail: manojtri@gmail.com

Received 21 February 2008; accepted 21 March 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.025; wR factor = 0.059; data-to-parameter ratio = 18.2.

In the title compound, $[Mo(C_5H_4NO_2)_2O_2]$, the Mo^{VI} atom exhibits a distorted octahedral coordination geometry formed by two terminal oxo ligands and two monoanionic O,Obidentate pyridinone ligands. The two terminal oxo ligands lie in a cis arrangement, the ketonic O atoms of the pyridinone ligands are coordinated trans to the oxo ligands and the deprotonated hydroxyl O atoms are located trans to each other. The crystal structure contains intermolecular N- $H \cdots O$ hydrogen bonds, $C - H \cdots O$ contacts and face-to-face π - π stacking interactions with an interplanar separation of 3.25 (1) Å.

Related literature

For general background, see: Veiros et al. (2006); Tucci et al. (1998); Collison et al. (1996); Hille (1996). For related structures, see: Brown et al. (2004); Hanna et al. (2000); Thompson et al. (1999); Zhang et al. (1992). For related literature, see: Braga et al. (1997); Grasselli (1999); Hozba et al. (1997); Ranganathan et al. (1998); Schrock (1998); Schultz et al. (1993).

V = 1120.0 (4) Å³

Mo $K\alpha$ radiation

 $0.29 \times 0.16 \times 0.09 \text{ mm}$

37847 measured reflections

3123 independent reflections

2772 reflections with $I > 2\sigma(I)$

 $\mu = 1.20 \text{ mm}^{-1}$

T = 100 (2) K

 $R_{\rm int} = 0.044$

Z = 4

Experimental

Crystal data

$[Mo(C_5H_4NO_2)_2O_2]$
$M_r = 348.12$
Monoclinic, $P2_1/c$
a = 13.263 (3) Å
b = 7.2470 (14) Å
c = 13.264 (3) Å
$\beta = 118.540 \ (9)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2007) $T_{\rm min}=0.723,\;T_{\rm max}=0.899$

Refinement

172 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Mo1-O1	1.9972 (14)	Mo1-O4	2.1882 (15)
Mo1-O2	2.1886 (15)	Mo1-O5	1.7062 (15)
Mo1-O3	1.9790 (14)	Mo1-O6	1.7124 (16)

O5-Mo1-O6	103.48	(7)
-----------	--------	-----

Table 2		
Hvdrogen-bond	geometry (Å	.°).

	• • •	,		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N \cdots O5^{i}$ $N2 - H2N \cdots O6^{ii}$ $C3 - H3 \cdots O6^{iii}$ $C9 - H9 \cdots O2^{iv}$	0.88 0.88 0.95 0.95	2.16 1.91 2.51 2.38	2.900 (2) 2.776 (3) 3.428 (3) 3.235 (3)	142 167 162 150

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) x, y - 1, z; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x+1, y-\frac{1}{2}, -z+\frac{3}{2}$

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

This work was supported by the Council of Scientific and Industrial Research, New Delhi. We also thank the Head, Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi. We acknowledge funding from the National Science Foundation (CHE0420497) for the purchase of the APEXII diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2282).

References

- Braga, D., Grepioni, F. & Desiraju, G. R. (1997). J. Organomet. Chem. 548, 33–43.
- Brown, E. J., Whitwood, A. C., Walton, P. H. & Duhme-Klair, A.-K. (2004). *Dalton Trans.* pp. 2458–2462.
- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Collison, D., Garner, C. D. & Joule, J. A. (1996). Chem. Soc. Rev. 25, 25–32. Grasselli, R. K. (1999). Catal. Today, 49, 141–153.
- Hanna, T. A., Incarvito, C. D. & Rheingold, A. L. (2000). *Inorg. Chem.* **39**, 630–631.
- Hille, R. (1996). Chem. Rev. 96, 2757-2816.
- Hozba, P., Kabelac, M., Sponer, J., Mejzlik, P. & Vondrasek, J. (1997). J. Comput. Chem. 18, 1136–1150.

- Ranganathan, D., Haridas, V., Gilardi, R. & Karle, I. L. (1998). J. Am. Chem. Soc. 120, 10793–10800.
- Schrock, R. R. (1998). Topics in Organometallic Chemistry, Vol. 1, pp. 1–36. Berlin: Springer.
- Schultz, B. E., Gheller, S. F., Muetterties, M. C., Scott, M. J. & Holm, R. H. (1993). J. Am. Chem. Soc. 115, 2714–2722.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561-2572.
- Tucci, G. C., Donahue, J. P. & Holm, R. H. (1998). Inorg. Chem. 37, 1602–1608.
- Veiros, L. F., Prazeres, Â., Costa, P. J., Romão, C. C., Kühn, F. E. & Calhorda, M. J. (2006). *Dalton Trans.* pp. 1383–1389.
- Zhang, Z., Rettig, S. J. & Orvig, C. (1992). Can. J. Chem. 70, 763-770.

supporting information

Acta Cryst. (2008). E64, m595-m596 [doi:10.1107/S1600536808007782]

Dioxidobis(2-oxo-1,2-dihydropyridin-3-olato)molybdenum(VI)

Manoj Trivedi, Daya Shankar Pandey and Nigam P. Rath

S1. Comment

There has been growing interest in the study of Mo^{VI} complexes because of their biochemical significance (Collison *et al.*, 1996; Hille, 1996). For example, dioxomolybdenum(VI) complexes are studied as models for oxidized forms of molybdoenzymes, *e.g.* aldehyde oxidase and sulfite oxidase which are supposed to contain *cis*-MoX₂ units (X = O,S) coordinated to S, N and O donor atoms of the protein structure (Tucci *et al.*, 1998; Schultz *et al.*, 1993). The present view of these enzymes indicates that the formal oxidation state of Mo cycles between +4 and +6 in reactions with substrate and oxidant. The two electron O atom transfer seems to be the relevant mechanism in understanding the chemical role of enzymatic reactions. A large number of important chemical reactions are catalysed by Mo^{VI} complexes. Several industrial processes such as ammoxidation of propene to acrylonitrile (Grasselli, 1999), olefin epoxidation (Veiros *et al.*, 2006) and olefin metathesis (Schrock, 1998) reactions are carried out over Mo catalysts.

In the title compound, the coordination sphere about the Mo^{VI} atom consists of six O atoms arranged in a distorted octahedral geometry (Fig. 1 and Table 1). There is a *cis* arrangement of dioxo ligands, as predicted by spectroscopic and other structural data. The O=Mo=O angle is 103.48 (7) and the Mo=O distances are 1.706 (15) and 1.712 (16) Å [average 1.709 (15) Å], comparable to those found in other *cis*-dioxomolybdenum(VI) complexes (Hanna *et al.*, 2000; Brown *et al.*, 2004). The two ketonic O atoms of the pyridinone ligands are *trans* to the oxo ligands and the stronger field hydroxyl O atoms are *trans* to one another. As expected, a slight lengthening of the ketone C=O bond is observed upon complexation, with a mean distance of 1.272 (2) Å, and the Mo—O(ketone) bonds [average 2.188 (15) Å] are somewhat longer than the Mo—O(hydroxyl) distances [average 1.988 (14) Å]. A pronounced localization of the formal double bonds in the pyridinone rings is clearly indicated by the short C1—C2 and C9—C10 bonds [average 1.360 (3) Å], long C4—C5 and C6—C7 bonds [average 1.425 (3) Å], and short ketone C5—O2 and C6—O4 [average 1.272 (2) Å] bonds. Resonance forms for pyridinone ligands have been described in detail elsewhere (Thompson *et al.*, 1999; Zhang *et al.*, 1992).

The NH and CH groups of the pyridinone ligands form a hydrogen bond with an oxo ligand attached to Mo in a neighbouring molecule (Table 2) (Braga *et al.*, 1997). Repetition of this hydrogen bond generates parallel chains along the *b* axis (Fig. 2). There are face-to-face π - π stacking interactions involving the pyridinone rings of adjacent pyridinone molecules, with π - π distances of 3.295–3.389 Å (Fig. 3) (Ranganathan *et al.*, 1998; Hozba *et al.*, 1997). One potential driving force for alignment of the motifs might be the N…O interactions (N…O distance = 2.904 Å) that exists between adjacent motifs, resulting in a columnar architecture with a dimension of 7.2 × 6.7 Å (Fig. 4).

S2. Experimental

The title compound was prepared by suspension of 2,3-pyridinediol (0.111 g, 1 mmol) in methanol (30 ml), followed by addition of KOH (0.112 g, 2 mmol). Stirring at room temperature for 30 min gave a clear red solution. This solution was treated with $(NH_4)_2Mo_2O_7$ (0.170 g, 0.50 mmol) and stirred overnight. The resulting orange-red solution was filtered and

allowed to cool at room temperature. Over a couple of days, orange irregular needle-shaped diffraction-quality crystals separated, which were isolated and dried in air.

S3. Refinement

All H atoms were added in calculated positions and were refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure with displacement ellipsoids drawn at the 50% probability level for non-H atoms

Figure 2

Parallel chains made through intermolecular N—H…O and C—H…O hydrogen-bond interactions (dashed lines)

Face-to-face π - π interactions

(a)

(b)

Figure 4 Views along the *a* axis

Dioxidobis(2-oxo-1,2-dihydropyridin-3-olato)molybdenum(VI)

Crystal data

[Mo(C₅H₄NO₂)₂O₂] $M_r = 348.12$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.263 (3) Å b = 7.2470 (14) Å c = 13.264 (3) Å $\beta = 118.540$ (9)° V = 1120.0 (4) Å³ Z = 4F(000) = 688 $D_{\rm x} = 2.065 \text{ Mg m}^{-3}$ $D_{\rm m} = \text{no Mg m}^{-3}$ $D_{\rm m} \text{ measured by not measured}$ Mo K\alpha radiation, \lambda = 0.71073 \rangle A Cell parameters from 9899 reflections \theta = 1.8-29.6° \mu = 1.20 mm^{-1} T = 100 K Needle, orange 0.29 \times 0.16 \times 0.09 mm Data collection

Bruker APEXII CCD	37847 measured reflections
diffractometer	3123 independent reflections
Radiation source: fine-focus sealed tube	2772 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.045$
φ and ω scans	$\theta_{\rm max} = 29.6^\circ, \ \theta_{\rm min} = 1.8^\circ$
Absorption correction: multi-scan	$h = -18 \rightarrow 18$
(SADABS; Sheldrick, 2007)	$k = -10 \rightarrow 10$
$T_{\min} = 0.723, \ T_{\max} = 0.899$	$l = -18 \rightarrow 18$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from
$wR(F^2) = 0.058$	neighbouring sites
S = 1.08	H-atom parameters constrained
3123 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0224P)^2 + 1.1984P]$
172 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.70 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	<i>y</i>	Z	$U_{\rm iso}^*/U_{\rm eq}$
0.248605 (14)	0.91497 (2)	0.414412 (14)	0.01513 (6)
0.08144 (11)	0.8541 (2)	0.33241 (11)	0.0172 (3)
0.20602 (12)	0.8648 (2)	0.55242 (12)	0.0176 (3)
0.40951 (12)	0.8995 (2)	0.53830 (12)	0.0173 (3)
0.27660 (12)	0.6185 (2)	0.44705 (12)	0.0177 (3)
0.25461 (12)	0.8903 (2)	0.28946 (12)	0.0196 (3)
0.25285 (12)	1.1491 (2)	0.43339 (12)	0.0204 (3)
0.06163 (14)	0.7521 (2)	0.58314 (14)	0.0166 (3)
0.1075	0.7516	0.6578	0.020*
0.41302 (15)	0.4130 (2)	0.56670 (15)	0.0181 (3)
0.3655	0.3201	0.5347	0.022*
-0.04904 (17)	0.6950 (3)	0.54263 (18)	0.0185 (4)
-0.0754	0.6548	0.5942	0.022*
-0.12129 (17)	0.6964 (3)	0.42750 (18)	0.0206 (4)
-0.1989	0.6594	0.3987	0.025*
-0.08198 (17)	0.7519 (3)	0.35098 (17)	0.0189 (4)
	x $0.248605 (14)$ $0.08144 (11)$ $0.20602 (12)$ $0.40951 (12)$ $0.27660 (12)$ $0.25461 (12)$ $0.25285 (12)$ $0.06163 (14)$ 0.1075 $0.41302 (15)$ 0.3655 $-0.04904 (17)$ -0.0754 $-0.12129 (17)$ -0.1989 $-0.08198 (17)$	xy $0.248605 (14)$ $0.91497 (2)$ $0.08144 (11)$ $0.8541 (2)$ $0.20602 (12)$ $0.8648 (2)$ $0.40951 (12)$ $0.8995 (2)$ $0.27660 (12)$ $0.6185 (2)$ $0.25461 (12)$ $0.6185 (2)$ $0.25285 (12)$ $1.1491 (2)$ $0.06163 (14)$ $0.7521 (2)$ 0.1075 0.7516 $0.41302 (15)$ $0.4130 (2)$ 0.3655 0.3201 $-0.04904 (17)$ $0.6950 (3)$ -0.0754 0.6548 $-0.12129 (17)$ $0.6964 (3)$ -0.1989 0.6594 $-0.08198 (17)$ $0.7519 (3)$	xyz $0.248605 (14)$ $0.91497 (2)$ $0.414412 (14)$ $0.08144 (11)$ $0.8541 (2)$ $0.33241 (11)$ $0.20602 (12)$ $0.8648 (2)$ $0.55242 (12)$ $0.40951 (12)$ $0.8995 (2)$ $0.53830 (12)$ $0.27660 (12)$ $0.6185 (2)$ $0.44705 (12)$ $0.25461 (12)$ $0.8903 (2)$ $0.28946 (12)$ $0.25285 (12)$ $1.1491 (2)$ $0.43339 (12)$ $0.06163 (14)$ $0.7521 (2)$ $0.58314 (14)$ 0.1075 0.7516 0.6578 $0.41302 (15)$ $0.4130 (2)$ $0.56670 (15)$ 0.3655 0.3201 0.5347 $-0.04904 (17)$ $0.6950 (3)$ $0.54263 (18)$ -0.0754 0.6548 0.5942 $-0.12129 (17)$ $0.6964 (3)$ $0.42750 (18)$ -0.1989 0.6594 0.3987 $-0.08198 (17)$ $0.7519 (3)$ $0.35098 (17)$

H3	-0.1325	0.7526	0.2706	0.023*	
C4	0.02965 (17)	0.8049 (3)	0.39344 (16)	0.0160 (4)	
C5	0.10352 (16)	0.8086 (3)	0.51457 (16)	0.0148 (4)	
C6	0.37661 (17)	0.5850 (3)	0.52910 (16)	0.0157 (4)	
C7	0.45352 (17)	0.7346 (3)	0.58207 (16)	0.0166 (4)	
C8	0.56213 (17)	0.7023 (3)	0.66842 (17)	0.0203 (4)	
H8	0.6140	0.8016	0.7037	0.024*	
C9	0.59590 (18)	0.5190 (3)	0.70425 (18)	0.0231 (5)	
H9	0.6710	0.4941	0.7645	0.028*	
C10	0.52126 (18)	0.3776 (3)	0.65289 (18)	0.0218 (4)	
H10	0.5444	0.2542	0.6770	0.026*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.01552 (9)	0.01402 (9)	0.01085 (9)	0.00111 (6)	0.00226 (6)	0.00057 (6)
01	0.0157 (6)	0.0197 (7)	0.0102 (6)	0.0007 (6)	0.0014 (5)	0.0007 (5)
O2	0.0159 (6)	0.0189 (7)	0.0120 (6)	-0.0009 (6)	0.0019 (5)	-0.0005 (5)
O3	0.0148 (6)	0.0167 (7)	0.0146 (7)	-0.0010 (5)	0.0023 (5)	0.0004 (5)
O4	0.0166 (6)	0.0152 (7)	0.0150 (7)	0.0016 (5)	0.0025 (5)	0.0001 (5)
05	0.0200 (7)	0.0226 (8)	0.0122 (7)	0.0020 (6)	0.0045 (6)	0.0012 (6)
O6	0.0233 (7)	0.0158 (7)	0.0198 (7)	0.0012 (6)	0.0084 (6)	0.0010 (6)
N1	0.0181 (8)	0.0156 (8)	0.0113 (7)	0.0011 (7)	0.0031 (6)	-0.0005 (7)
N2	0.0213 (8)	0.0172 (8)	0.0168 (8)	0.0037 (7)	0.0099 (7)	0.0026 (7)
C1	0.0205 (10)	0.0137 (9)	0.0201 (10)	0.0017 (8)	0.0086 (8)	-0.0009 (8)
C2	0.0162 (9)	0.0193 (10)	0.0217 (10)	0.0000 (8)	0.0053 (8)	-0.0043 (8)
C3	0.0155 (9)	0.0184 (10)	0.0143 (9)	0.0021 (8)	0.0003 (7)	-0.0031 (8)
C4	0.0183 (9)	0.0122 (9)	0.0120 (9)	0.0028 (7)	0.0028 (7)	-0.0011 (7)
C5	0.0166 (9)	0.0089 (8)	0.0131 (9)	0.0017 (7)	0.0025 (7)	-0.0016 (7)
C6	0.0168 (9)	0.0183 (10)	0.0117 (9)	0.0024 (8)	0.0066 (7)	0.0016 (7)
C7	0.0172 (9)	0.0209 (10)	0.0112 (9)	0.0016 (8)	0.0065 (7)	0.0003 (8)
C8	0.0168 (9)	0.0312 (12)	0.0114 (9)	0.0001 (8)	0.0055 (8)	0.0001 (8)
С9	0.0178 (9)	0.0384 (13)	0.0115 (9)	0.0088 (9)	0.0057 (8)	0.0072 (9)
C10	0.0236 (10)	0.0270 (11)	0.0158 (10)	0.0114 (9)	0.0103 (8)	0.0091 (8)

Geometric parameters (Å, °)

Mo1—O1	1.9972 (14)	N2—H2N	0.880
Mo1-02	2.1886 (15)	C1—C2	1.361 (3)
Mo1-03	1.9790 (14)	C1—H1	0.950
Mo1—O4	2.1882 (15)	C2—C3	1.403 (3)
Mo1—O5	1.7062 (15)	C2—H2	0.950
Mo1—O6	1.7124 (16)	C3—C4	1.364 (3)
O1—C4	1.336 (3)	С3—Н3	0.950
O2—C5	1.270 (2)	C4—C5	1.427 (3)
O3—C7	1.335 (2)	C6—C7	1.423 (3)
O4—C6	1.274 (2)	C7—C8	1.366 (3)
N1—C5	1.337 (3)	С8—С9	1.410 (3)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N1—C1	1.364 (3)	C8—H8	0.950
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—H1N	0.880	C9—C10	1.360 (3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N2—C6	1.344 (3)	С9—Н9	0.950
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2-C10	1 366 (3)	C10—H10	0.950
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.500 (5)		0.900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Mo1—O6	103.48 (7)	C1—C2—C3	120.52 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Mo1—O3	105.57 (7)	C1—C2—H2	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—Mo1—O3	89.27 (6)	С3—С2—Н2	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Mo1—O1	90.16 (6)	C4—C3—C2	119.16 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—Mo1—O1	104.40 (6)	С4—С3—Н3	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—Mo1—O1	156.33 (6)	С2—С3—Н3	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Mo1—O4	90.40 (6)	01-C4-C3	126.57 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06—Mo1—O4	162.43 (6)	01-C4-C5	113.69 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—Mo1—O4	76.49 (6)	C3—C4—C5	119.74 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01—Mo1—O4	86.00 (6)	02—C5—N1	122.93 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Mo1—O2	161.00 (6)	O2—C5—C4	118.70 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06—Mo1—02	92.59 (6)	N1—C5—C4	118.37 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—Mo1—O2	84.43 (6)	04—C6—N2	122.44 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01—Mo1—O2	75.87 (6)	O4—C6—C7	119.02 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—Mo1—O2	76.04 (5)	N2—C6—C7	118.53 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-01-Mo1	119.16 (12)	03	125.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—O2—Mo1	112.20 (12)	O3—C7—C6	113.95 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—O3—Mo1	119.05 (12)	C8—C7—C6	120.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—O4—Mo1	111.40 (13)	C7—C8—C9	118.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—N1—C1	122.94 (17)	С7—С8—Н8	120.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—N1—H1N	118.5	С9—С8—Н8	120.6
C6—N2—C10 122.19 (19) C10—C9—H9 119.9 C6—N2—H2N 118.9 C8—C9—H9 119.9 C10—N2—H2N 118.9 C9—C10—N2 120.0 (2) C2—C1—N1 119.2 (2) C9—C10—H10 120.0 C2—C1—H1 120.4 N2—C10—H10 120.0 N1—C1—H1 120.4 N2—C10—H10 120.0 O5—Mo1—O1—C4 162.99 (15) C2—C3—C4—O1 177.13 (19) O6—Mo1—O1—C4 -93.04 (15) C2—C3—C4—C5 -1.9 (3) O3—Mo1—O1—C4 30.6 (2) Mo1—O2—C5—N1 173.36 (15) O4—Mo1—O1—C4 72.60 (14) Mo1—O2—C5—C4 -6.4 (2) O2—Mo1—O1—C4 -3.99 (13) C1—N1—C5—O2 178.72 (18) O5—Mo1—O2—C5 -38.2 (3) C1—N1—C5—O2 178.72 (18) O5—Mo1—O2—C5 -161.22 (14) C3—C4—C5—O2 -1.5 (3) O6—Mo1—O2—C5 -161.22 (14) C3—C4—C5—N1 -176.45 (17) O4—Mo1—O2—C5 -83.79 (13) C3—C4—C5—N1 -176.45 (17) O4—Mo1—O2—C5 -88.95 (15) Mo1—O4—C6—N2 178.53 (15) O5—Mo1—O3—C7 -88.95 (15) Mo1—O4—C	C1—N1—H1N	118.5	С10—С9—С8	120.20 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N2—C10	122.19 (19)	С10—С9—Н9	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N2—H2N	118.9	С8—С9—Н9	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—N2—H2N	118.9	C9—C10—N2	120.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-N1	119.2 (2)	С9—С10—Н10	120.0
$\begin{split} \text{N1} &\text{C1} &\text{H1} & 120.4 \\ \hline \text{O5} &\text{Mo1} &\text{O1} &\text{C4} & 162.99(15) & \text{C2} &\text{C3} &\text{C4} &\text{O1} & 177.13(19) \\ \hline \text{O6} &\text{Mo1} &\text{O1} &\text{C4} &93.04(15) & \text{C2} &\text{C3} &\text{C4} & -\text{C5} & -1.9(3) \\ \hline \text{O3} &\text{Mo1} &\text{O1} &\text{C4} & 30.6(2) & \text{Mo1} &\text{O2} &\text{C5} &\text{N1} & 173.36(15) \\ \hline \text{O4} &\text{Mo1} &\text{O1} &\text{C4} & 72.60(14) & \text{Mo1} &\text{O2} &\text{C5} &\text{C4} &6.4(2) \\ \hline \text{O2} &\text{Mo1} &\text{O1} &\text{C4} & -3.99(13) & \text{C1} &\text{N1} &\text{C5} & -\text{O2} & 178.72(18) \\ \hline \text{O5} &\text{Mo1} &\text{O2} &\text{C5} &38.2(3) & \text{C1} &\text{N1} &\text{C5} & -\text{O2} & 178.72(18) \\ \hline \text{O5} &\text{Mo1} &\text{O2} &\text{C5} &38.2(3) & \text{C1} &\text{N1} &\text{C5} & -\text{O2} &1.5(3) \\ \hline \text{O6} &\text{Mo1} &\text{O2} &\text{C5} &38.2(3) & \text{O1} &\text{C4} &5.5(-2) &177.45(18) \\ \hline \text{O3} &\text{Mo1} &\text{O2} &\text{C5} &161.22(14) & \text{C3} &\text{C4} &5.5(-17) &176.45(17) \\ \hline \text{O4} &\text{Mo1} &\text{O2} & -\text{C5} &83.79(13) & \text{C3} &\text{C4} & -\text{C5} & -\text{N1} &176.45(17) \\ \hline \text{O4} &\text{Mo1} &\text{O2} & -\text{C5} &88.95(15) & \text{Mo1} &\text{O4} & -\text{C6} & -\text{N2} & 178.53(15) \\ \hline \text{O6} &\text{Mo1} & -\text{O3} & -\text{C7} & -88.95(15) & \text{Mo1} &\text{O4} & -\text{C6} & -\text{C7} & -2.4(2) \\ \hline \text{O1} &\text{Mo1} & -\text{O3} & -\text{C7} & 41.0(2) & \text{C10} & -\text{N2} & -\text{C6} & -\text{C7} & -0.6(3) \\ \hline \end{array}$	C2—C1—H1	120.4	N2—C10—H10	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—H1	120.4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
06-Mo1-01-C4 $-93.04(15)$ $C2-C3-C4-C5$ $-1.9(3)$ $03-Mo1-01-C4$ $30.6(2)$ $Mo1-02-C5-N1$ $173.36(15)$ $04-Mo1-01-C4$ $72.60(14)$ $Mo1-02-C5-C4$ $-6.4(2)$ $02-Mo1-01-C4$ $-3.99(13)$ $C1-N1-C5-O2$ $178.72(18)$ $05-Mo1-02-C5$ $-38.2(3)$ $C1-N1-C5-C4$ $-1.5(3)$ $06-Mo1-02-C5$ $109.76(14)$ $01-C4-C5-O2$ $3.4(3)$ $03-Mo1-02-C5$ $-161.22(14)$ $C3-C4-C5-O2$ $-177.45(18)$ $01-Mo1-02-C5$ $5.55(13)$ $01-C4-C5-N1$ $-176.45(17)$ $04-Mo1-02-C5$ $-83.79(13)$ $C3-C4-C5-N1$ $2.7(3)$ $05-Mo1-O3-C7$ $-88.95(15)$ $Mo1-O4-C6-N2$ $178.53(15)$ $06-Mo1-O3-C7$ $167.25(15)$ $Mo1-O4-C6-C7$ $-2.4(2)$ $01-Mo1-O3-C7$ $41.0(2)$ $C10-N2-C6-O4$ $178.42(19)$ $04-Mo1-O3-C7$ $-2.36(14)$ $C10-N2-C6-C7$ $-0.6(3)$	O5—Mo1—O1—C4	162.99 (15)	C2—C3—C4—O1	177.13 (19)
O3-Mo1-O1-C4 30.6 (2) $Mo1-O2-C5-N1$ 173.36 (15) $O4-Mo1-O1-C4$ 72.60 (14) $Mo1-O2-C5-C4$ -6.4 (2) $O2-Mo1-O1-C4$ -3.99 (13) $C1-N1-C5-O2$ 178.72 (18) $O5-Mo1-O2-C5$ -38.2 (3) $C1-N1-C5-C4$ -1.5 (3) $O6-Mo1-O2-C5$ 109.76 (14) $O1-C4-C5-O2$ 3.4 (3) $O3-Mo1-O2-C5$ -161.22 (14) $C3-C4-C5-O2$ -177.45 (18) $O1-Mo1-O2-C5$ 5.55 (13) $O1-C4-C5-N1$ -176.45 (17) $O4-Mo1-O2-C5$ -83.79 (13) $C3-C4-C5-N1$ 2.7 (3) $O5-Mo1-O3-C7$ -88.95 (15) $Mo1-O4-C6-N2$ 178.53 (15) $O6-Mo1-O3-C7$ 167.25 (15) $Mo1-O4-C6-C7$ -2.4 (2) $O1-Mo1-O3-C7$ 41.0 (2) $C10-N2-C6-O4$ 178.42 (19) $O4-Mo1-O3-C7$ -2.36 (14) $C10-N2-C6-C7$ -0.6 (3)	O6—Mo1—O1—C4	-93.04 (15)	C2—C3—C4—C5	-1.9 (3)
04-Mo1-01-C4 $72.60(14)$ $Mo1-02-C5-C4$ $-6.4(2)$ $02-Mo1-01-C4$ $-3.99(13)$ $C1-N1-C5-02$ $178.72(18)$ $05-Mo1-02-C5$ $-38.2(3)$ $C1-N1-C5-C4$ $-1.5(3)$ $06-Mo1-02-C5$ $109.76(14)$ $01-C4-C5-02$ $3.4(3)$ $03-Mo1-02-C5$ $-161.22(14)$ $C3-C4-C5-02$ $-177.45(18)$ $01-Mo1-02-C5$ $5.55(13)$ $01-C4-C5-N1$ $-176.45(17)$ $04-Mo1-02-C5$ $-83.79(13)$ $C3-C4-C5-N1$ $2.7(3)$ $05-Mo1-03-C7$ $-88.95(15)$ $Mo1-04-C6-N2$ $178.53(15)$ $06-Mo1-03-C7$ $167.25(15)$ $Mo1-04-C6-C7$ $-2.4(2)$ $01-Mo1-03-C7$ $41.0(2)$ $C10-N2-C6-O4$ $178.42(19)$ $04-Mo1-03-C7$ $-2.36(14)$ $C10-N2-C6-C7$ $-0.6(3)$	O3—Mo1—O1—C4	30.6 (2)	Mo1-O2-C5-N1	173.36 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—Mo1—O1—C4	72.60 (14)	Mo1-O2-C5-C4	-6.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—Mo1—O1—C4	-3.99 (13)	C1—N1—C5—O2	178.72 (18)
06-Mo1-02-C5 $109.76 (14)$ $01-C4-C5-O2$ $3.4 (3)$ $03-Mo1-02-C5$ $-161.22 (14)$ $C3-C4-C5-O2$ $-177.45 (18)$ $01-Mo1-02-C5$ $5.55 (13)$ $01-C4-C5-N1$ $-176.45 (17)$ $04-Mo1-02-C5$ $-83.79 (13)$ $C3-C4-C5-N1$ $2.7 (3)$ $05-Mo1-O3-C7$ $-88.95 (15)$ $Mo1-O4-C6-N2$ $178.53 (15)$ $06-Mo1-O3-C7$ $167.25 (15)$ $Mo1-O4-C6-C7$ $-2.4 (2)$ $01-Mo1-O3-C7$ $41.0 (2)$ $C10-N2-C6-O4$ $178.42 (19)$ $04-Mo1-O3-C7$ $-2.36 (14)$ $C10-N2-C6-C7$ $-0.6 (3)$	O5—Mo1—O2—C5	-38.2 (3)	C1—N1—C5—C4	-1.5 (3)
O3-Mo1-O2-C5 $-161.22 (14)$ $C3-C4-C5-O2$ $-177.45 (18)$ $O1-Mo1-O2-C5$ $5.55 (13)$ $O1-C4-C5-N1$ $-176.45 (17)$ $O4-Mo1-O2-C5$ $-83.79 (13)$ $C3-C4-C5-N1$ $2.7 (3)$ $O5-Mo1-O3-C7$ $-88.95 (15)$ $Mo1-O4-C6-N2$ $178.53 (15)$ $O6-Mo1-O3-C7$ $167.25 (15)$ $Mo1-O4-C6-C7$ $-2.4 (2)$ $O1-Mo1-O3-C7$ $41.0 (2)$ $C10-N2-C6-O4$ $178.42 (19)$ $O4-Mo1-O3-C7$ $-2.36 (14)$ $C10-N2-C6-C7$ $-0.6 (3)$	O6—Mo1—O2—C5	109.76 (14)	O1—C4—C5—O2	3.4 (3)
O1-Mo1-O2-C5 $5.55 (13)$ $O1-C4-C5-N1$ $-176.45 (17)$ $O4-Mo1-O2-C5$ $-83.79 (13)$ $C3-C4-C5-N1$ $2.7 (3)$ $O5-Mo1-O3-C7$ $-88.95 (15)$ $Mo1-O4-C6-N2$ $178.53 (15)$ $O6-Mo1-O3-C7$ $167.25 (15)$ $Mo1-O4-C6-C7$ $-2.4 (2)$ $O1-Mo1-O3-C7$ $41.0 (2)$ $C10-N2-C6-O4$ $178.42 (19)$ $O4-Mo1-O3-C7$ $-2.36 (14)$ $C10-N2-C6-C7$ $-0.6 (3)$	O3—Mo1—O2—C5	-161.22 (14)	C3—C4—C5—O2	-177.45 (18)
O4-Mo1-O2-C5 $-83.79(13)$ $C3-C4-C5-N1$ $2.7(3)$ $O5-Mo1-O3-C7$ $-88.95(15)$ $Mo1-O4-C6-N2$ $178.53(15)$ $O6-Mo1-O3-C7$ $167.25(15)$ $Mo1-O4-C6-C7$ $-2.4(2)$ $O1-Mo1-O3-C7$ $41.0(2)$ $C10-N2-C6-O4$ $178.42(19)$ $O4-Mo1-O3-C7$ $-2.36(14)$ $C10-N2-C6-C7$ $-0.6(3)$	O1—Mo1—O2—C5	5.55 (13)	O1—C4—C5—N1	-176.45 (17)
O5-Mo1-O3-C7 $-88.95(15)$ $Mo1-O4-C6-N2$ $178.53(15)$ $O6-Mo1-O3-C7$ $167.25(15)$ $Mo1-O4-C6-C7$ $-2.4(2)$ $O1-Mo1-O3-C7$ $41.0(2)$ $C10-N2-C6-O4$ $178.42(19)$ $O4-Mo1-O3-C7$ $-2.36(14)$ $C10-N2-C6-C7$ $-0.6(3)$	O4—Mo1—O2—C5	-83.79 (13)	C3—C4—C5—N1	2.7 (3)
O6—Mo1—O3—C7 167.25 (15) Mo1—O4—C6—C7 -2.4 (2) O1—Mo1—O3—C7 41.0 (2) C10—N2—C6—O4 178.42 (19) O4—Mo1—O3—C7 -2.36 (14) C10—N2—C6—C7 -0.6 (3)	O5—Mo1—O3—C7	-88.95 (15)	Mo1-04-C6-N2	178.53 (15)
O1—Mo1—O3—C7 41.0 (2) C10—N2—C6—O4 178.42 (19) O4—Mo1—O3—C7 -2.36 (14) C10—N2—C6—C7 -0.6 (3)	O6—Mo1—O3—C7	167.25 (15)	Mo1-04-C6-C7	-2.4 (2)
O4—Mo1—O3—C7 -2.36 (14) C10—N2—C6—C7 -0.6 (3)	O1—Mo1—O3—C7	41.0 (2)	C10—N2—C6—O4	178.42 (19)
	O4—Mo1—O3—C7	-2.36 (14)	C10—N2—C6—C7	-0.6 (3)

O2—Mo1—O3—C7	74.58 (14)	Mo1-03-C7-C8	-179.11 (16)
O5—Mo1—O4—C6	108.44 (14)	Mo1	1.9 (2)
O6—Mo1—O4—C6	-34.2 (3)	O4—C6—C7—O3	0.6 (3)
O3—Mo1—O4—C6	2.52 (13)	N2—C6—C7—O3	179.69 (17)
O1—Mo1—O4—C6	-161.43 (14)	O4—C6—C7—C8	-178.48 (19)
O2—Mo1—O4—C6	-85.01 (14)	N2—C6—C7—C8	0.6 (3)
C5—N1—C1—C2	-0.6 (3)	O3—C7—C8—C9	-179.41 (19)
N1—C1—C2—C3	1.4 (3)	C6—C7—C8—C9	-0.4 (3)
C1—C2—C3—C4	-0.1 (3)	C7—C8—C9—C10	0.3 (3)
Mo1-01-C4-C3	-177.08 (16)	C8—C9—C10—N2	-0.3 (3)
Mo1-01-C4-C5	2.0 (2)	C6—N2—C10—C9	0.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A	
N1—H1 <i>N</i> ···O5 ⁱ	0.88	2.16	2.900 (2)	142	
N2—H2 <i>N</i> ···O6 ⁱⁱ	0.88	1.91	2.776 (3)	167	
С3—Н3…Об ^{ііі}	0.95	2.51	3.428 (3)	162	
C9—H9…O2 ^{iv}	0.95	2.38	3.235 (3)	150	

Symmetry codes: (i) *x*, -*y*+3/2, *z*+1/2; (ii) *x*, *y*-1, *z*; (iii) -*x*, *y*-1/2, -*z*+1/2; (iv) -*x*+1, *y*-1/2, -*z*+3/2.