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Theory of the Gorsky effect for low interstitial concentrations
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Abstract. The formalism of the preceding paper is applied to work out the theory of
the Gorsky effect, or anelastic relaxation due to the long-range diffusion of interstitials
in a host lattice, for non-interacting (low-concentration) interstitials (e.g., H in
Nb). It is shown how linear response theory (LRT) provides a number of advantages
that simplify the solution of the problem and permit the handling of complications
due to specimen geometry and stress inhomogeneity. The multiple-relaxation time
creep function of Alefeld er al is first re-derived. Next, the dynamic responseand
the short-time behaviour of the creep function are deduced exactly, and the w™*/®
fall-off of the internal friction at high frequencies is exhibited. Finally, it is pointed

~ out that the true asymptotic behaviour of the dynamic response must be found by
going beyond the diffusion equation model. A two-state random walk analysis is
used to predict a cross-over to a true w~' asymptotic behaviour, and the physical
reasons for this phenomenon are elucidated.

Keywords. Gorsky effect; elastic diffusion relaxation; hydrogen in metals; internal
friction; random walk.

1. Introduction

In the preceding paper (Balakrishnan 1978; referred to as I hereafter), we have deve-
loped a general analysis of the phenomenon of anelasticity based on linear response
theory (LRT). The formalism has been worked out in further detail in the case of
anelastic behaviour caused by the stress-modulated kinetics of the elastic dipoles
associated with point defects. In the first paper of this series (Balakrishnan et al
1978 ; referred to as BDV here and in I), we have already tested the LRT method in a
simplified situation: namely, the re-orientation relaxation of {100 tetrahedral
elastic dipoles under a homogeneous uniaxial stress in the [100] direction (a special
case of the Snoek effect). In the present paper, we concentrate on the diffusion re-
laxation due to interstitial atoms that is induced by a dilation gradient in the material.

This phenomenon, called the Gorsky effect (Gorsky 1935; Zener 1948 ; Schaumann
et al 1968), has only recently become the focus of a considerable amount of experi-
mental interest, with the advent of the physics of hydrogen in metals (see Vélkl and

‘Alefeld 1976 and references therein). In a beautiful paper, Alefeld et al (1970) have

given a theory of this effect (also called elastic diffusion relaxation). One of the
purposes of the present paper is to show how the results required follow very easily
from LRT. To the other advantages of our approach (already expounded in BDV),
we may add the following important points. We do not need any ad hoc * lineariza-
tion ’* of the diffusion equation, as in other approaches. Further, since it is the equili-
brium (zero applied stress) autocorrelation that controls the linear response of the
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system (the fluctuation-dissipation relationship!), all the essential dynamics pertains
to the stress-free situation. This means that the applied stress can have any spatial
and temporal dependence, without increasing the complexity of the problem in too
serious a manner. Similarly, the application of the theory to more complicated
specimen geometries does not pose as much of a problem as in other approaches:
in the latter, the boundary condition complications are compounded by the presence
of the inhomogeneous (external stress) term in the diffusion equation, as will become
clear subsequently. Indeed, our use of LRT enables us to get away from the diffu-
sion equation model altogether if need be, and to feed in directly the results of a
random walk analysis of the diffusion of the defects, as in the final chapter. '

An outline of this paper is as follows. After deriving an (already known) expres-
sion for the creep function corresponding to the Gorsky effect in § 2.1. and 2.2, we
turn to the dynamic response and the short-time behaviour of the creep function in §
2.3. A Laplace transform method is used to deduce the above quantities exactly
(eqs (25) and (19)). Appendices A and B contain some of the mathematical details.
We obtain also the w™/2 fall-off of the internal friction in the diffusion equation model,
in contrast to the w™ behaviour corresponding to the Debye spectrum characteristic
of a single relaxation time. As already pointed out (Doremus 1971), experimental
data tend to confirm the w=/2 behaviour. The physical reason for this circumstance is
explained. Finally, in § 3, we point out that the true asymptotic behaviour of the
dynamic response (or the internal friction) must be found by going beyond the diffu-
sion equation model. Drawing upon the results of a microscopic, two-state random
walk model of the jump diffusion of interstitials (Balakrishnan and Venkataraman
1975, 1978), we deduce the short-time behaviour of the mean square displacement of
an interstitial atom; a stratagem is then presented that enables the true asymptotic
behaviour of the internal friction to be predicted (eq. (42)). This turns out to
involve a crossover back to a w™ power law, the deviations from the w™1/2 fall-off
being expected to be observable in high-frequency ultrasonic attenuation measure-
ments. Certain pertinent details of the random walk model are summarized in
appendix C.

Finally, we repeat that the purpose of our exposition of the theory of the Gorsky
effect in this paper is mainly to draw attention to the power of our LRT-cum-stoch-
astic approach to defect kinetics in general and mechanical response in particular.
Partly for the sake of brevity, we have not presented here the version of theory that
is appropriate to the more interesting aspects of the effect that manifest themselves
at higher interstitial concentrations. These features of current experimental interest
include exotic isotope effects for H, D or T in various metals (see, e.g., Richter et al
1977), unconventional temperature dependence of the diffusion coefficient, sample-
shape dependence of the stability curves (spinodals) of hydrogen-metal systems, etc.,
all of which are neatly summarized in Volkl and Alefeld (1976). Extensions of our
theory to cover some of the as-yet-open aspects of these questions (for instance, a
‘non-local * theory taking into consideration coherence stresses in the host metal,
caused by the long-ranged nature of the H-H elastic interaction) will be presented
elsewhere.

In what follows, we use the notation introduced in I throughout. Equations occur-
ring in paper I will be referred to as (I. 1), etc.
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~ 2. Gorsky relaxation due to interstitial hydrogen

2.1. Interstitial H in bce metals

We shall now work out the theory of elastic diffusion relaxation due to interstitial
atoms (specifically H; see below) in bee metals such as Fe, Nb, V, etc. Although,
as in the case of the Snoek effect, it is once again the jump of impurity atoms from one
interstitial site to a neighbouring one that leads to the long-range diffusion of these
defects, there are at least two distinct time scales in the problem. The first is the reci-
procal of the mean atomic jump frequency v itself, and this controls the re-orientation
or Snoek effect. On the other hand, the long-range diffusion is characterised by a time
scale ~L2/D where L is the linear dimension of the specimen along which diffusion
takes place and D is the interstitial diffusion constant. Since D~ a% where a is
the atomic jump distance, the ratio of the diffusion relaxation time to the re-orienta-
tional relaxation time is a very large number, of the order of (L/a)?(Alefeld et al 1970).
To bring the Gorsky effect within the reach of experimental feasibility, it is therefore
necessary to use very thin samples (small L) and, more important, interstitials with
high mobility (e.g., hydrogen). Both hydrogen and deuterium molecules dissociate
and are present as H or D in interstitial sites, with extraordinarily high mobilities.

It is these systems that experiments have concentrated on (Schaumann et al 1968,

1970; Volkl et al 1970, 1971 ; Cantelli et al 1970; see also Alefeld 1975 and references
therein; Richter ez al 1977). In order to be specific, we shall restrict our attention
wherever necessary to bec host metals (e.g., Nb), considerable experimental interest
being attached to systems such as H or D in Nb. The theory to be developed is of
course quite general in its applicability.

Interstitial hydrogen in bce niobium occupies tetrahedral sites (Somenkov et al
1968; Wert et al 1970; Wagner and Horner 1974). There are twelve sites (four each
of types 1, 2 and 3) per cubic elementary cell containing two host atoms. Figure 1
shows these sites, labelled by the cube axis that site distinguishes. Each interstitial
defect forms a <100> tetragonal elastic dipole. The 4 tensor is diagonal, with
compomnents A;, Ay, Ag=27,, and principal axes along the cube axes themselves. The
direction along which the components is A, can be used to label the orientation,
and these labels are the same as those of figure 1 (thus the number of distinct orienta-

tions r=3).. The components of the deviatoric (traceless) part of the A tensor are,
in this case,

. { @3) Oy — A 8y (n =),
A in) —_—
a8, @,

where 7 is the orientation index as in I (in the present case, n=1, 2 3). We also use
the notation

= (1/3) Tr A = (113) (g + 2. ¥)

One can now proceed to simplify the general results of I to the case at hand. The
deviatoric part of the strain in (I. 21), produced by the re-orientation of the dipoles
and modulated by the diffusion in the presence of the stress gradient, is proportional
to the square of the anisotropy factor, namely, (A;—A;)%. This part describes the

M

P—3



392 V Balakrishnan

> (010]

Figure 1. Tetrahedral interstitial lattice for H in bec Nb, formed by six. non-equi-
valent sites per unit cell. These are situated at the maximum distance from all adja-
cent bee sites.  The tetrahedral sites are labelled 1, 17, 2, 2/, 3, 3/, where the numerals
refer also the orientation of the corresponding tetrahedral elastic dipole. The arrows
indicate possible n7 jumps from a typical site, the jump distance being a/2+/2.

Snoek effect due to the interstitial hydrogen, and the theory follows essentially along
the lines of BDV. More interesting in the present context is the dilatory part of the
strain, proportional to the square of the trace of the dipole tensor, occasioned by the
stress gradient. We shall devote our attention to this part of the strain response,
as the theoretical techniques required to handle it differ somewhat from those emp-
loyed in BDV for the orientational relaxation. Besides, it is an experimental fact*
(Bucholz ef al 1973; Alefeld 1975; Pick and Bausch 1976) that for hydrogen in metals
such as Nb, V or Ta, the strain field around the defect departs from cubic
symmetry only to the extent of 29{. It is therefore quite justifiable, as far as H in
NbD is concerned, to concentrate on the diffusion relaxation alone—both because
the re-orientational effect is very much smaller than is usually the case with
other interstitials, and because the diffusion effect is extraordinarily large (so that
it is experimentally observable) owing to the high mobility of H.

2.2, Anelastic creep due to H diffusion

The strain response to a time-independent stress applied from =0 onwards will be

*Pick and Bausch (1976) find the following values for the principal components of the force
dipole tensor P that is related to our elastic dipole tensor A, the latter being essentially the com-
pliance (of the host metal) times the former. The component A (related to A,)=2-88 eV, while
the component B (related to A,)=2:84 €V, assuming that the nearest neighbour H-H interaction is
attractive. This leads to a value 0-01 for 3(4—B)/(4+2B), a measure of the * anisotropy >. Even
if the above interaction is repulsive, this measure is only x0-05 (< 1).
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analysed first. The formal expression for this quantity is given by (1.21). Dropping
the deviatoric part of the strain for reasons already explained, we have

(ey R, 1)) =BC oy X8y [,dR Tro R) (v ] 1—P°3 () | R). @)

For ready reference, we explain the notation once again. f=1/kpT, v, is the volume
per atom of the sample under study, C is the molefraction of interstitials, and o is
the applied stress field. | R) refers to a stochastic state labelled by the position vector

R. The matrix element (R’ \P;q (®) lR) represents the conditional probability for

an interstitial to evolve from the state|R’) at ¢=0 to the state |R) at time #; it is
thus closely related to the probability for diffusion from one point to the other.
The experimental specimens generally have either a slab geometry or a cylindrical
one, and we consider the former case for the sake of definiteness: the stress field
is applied to a thin foil that may be regarded as a rectangular parallelopiped of
thickness L (in the x-direction) that is much smaller than its length and breadth
(taken to lie in the y and z directions).* We have in mind a bending of the
specimen that leads to a stress field of the form (e.g., see Alefeld et al 1970).

o (R) = oy (%) = o, (1—(2x/L)), (0 <x<L), (4)

which is dependent on the x-co-ordinate alone, and a0 is the notation we use for the
stress on the face x=0. The stress is zero at the neutral axis (or plane) x=%L, as
required, and decreases linearly with x to the value —o? at the opposite face, x=L.
While this is a convenient special case that applies in certain experimental situations,
we emphasize strongly that our formalism (based on LRT) is eminently suited to
handle arbitrarily varying stress fields as well: the stress occurs outside the matrix

element in (3), and the time evolution is determined by Pflq (), which refers to the

unstressed specimen, as already stated in the Introduction.
The central problem, then, is the evaluation of the matrix element

(R’ lP;q(t)‘R). In the simplest model, this conditional probability obeys the
partial differential (or diffusion) equation (Chandrasekar 1943)

ofR, t)/ot = DV2f(R, 1), ©)
subject to the initial condition

R, 0) = 3R—R) =3(x—x') d(y—y') z—2), (6
where D is the (interstitial) diffusion constant. According to a well known theorem

(see, e.g., Crank 1956), the solutions to the equation are then expressible as products
of functions of (x, ?), (», t) and (z, ¢). Since ¢ (R) has no y or z dependence,

*For example, Cantelli et al (1970) studied the case of H in V using a foil 2 x 10-% cm thick, 1:2
cm wide and 5-0 cm long. The specimen was clamped at one end and the damping of the flexural
modes was measured in the frequency range 8 kHz to 68 kHz.
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the corresponding integrals over these co-ordinates can be carried out in (3).
Conservation of probability yields the value unity in each case. We are left with

(el 1)) =P Crp 32 8y, (Tr 0°) [ &' (1—2 (¥'/L))
(w|1—PFo|=). Y

where the matrix element (x’

P‘:iq @) \ x ) is the solution of the equation

df(x, 1)fot = D &* f(x, t)/ox?, ®
subject to the initial condition |

f(x, 0) = 8(x—x) ®
and the boundary conditions

of(x, ))ox =0 at x=0, x =L. (10)
The last equation expresses the vanishing of the diffusion current on the faces of

the specimen, i.e. the condition that no defects diffuse out of the material. The
solution appropriate to the above initial and boundary conditions is

(» ] P (z)]x) =(1/L) + /L) z‘:j___l cos (um x'/L) cos (um x/L) X
exp (—n® u? Dit/L?). (11

We note that this probability density is properly normalized.* Substituting this in
(7) and evaluating the integrals, we obtain finally

Cery (% 1)> =B Coy X2 85y (Tr o) 2:;1 (82 ) cos (um L) X

[1 — exp (—mu2DyL?)], 12)

where we have used also the Fourier cosine series expansion of the function @ (x)
defined in (4). Equation (12) is essentially equivalent to the result already found by
Alefeld et al (1970), and serves to confirm the validity of our LRT approach and

- subsequent development of the theoretical formalism. The final, saturation value
of the strain is

Ceu (s 0y =B Cop X 8, Tr 0 (), (13)

*As; —>oo thewprobability of finding the diffusing particle in the ran
L O 1, ge (x, x+dx) becomes equal
to (dx/L), independent of both the origin x’ and of x itself, as we should expect on physical grounds.

£
:
H
i
i
i
i
j‘}




e g T

Gorsky effect for low interstitial concentrations 395

corresponding to a relaxation strength proportional to A2 and inversely proportional
to the temperature, as expected. The anelastic relaxation to this value proceeds via
a whole set of relaxation times (Zener 1948; Alefeld et al 1970)

Ty =/t p=1335,.., 14)
where the fundamental relaxation time is
T =IL2D 7 (15)

This is a consequence of the finite geometry* of the material, and reflects the fact
that the anelasticity arises because of the long-range diffusion of the defects as opposed
to local re-orjentations. If we take L2~ 105 cm? and use the value (Wipf and Alefeld
1974) D ~107% cm? sec™? for H in Nb at room temperature, r becomes ~ 1 sec, i.e.,
quite accessible experimentally. While the higher harmonics = , represent even more

rapid relaxation, the corresponding relaxation strengths are reduced by the factor
(1/p® in (12), and their contributions rapidly becomes negligible in a static experiment,
However, there are two (related) situations in which it is not possible to approximate
the process by one with a single relaxation time =. For short times, ie., < 7,
the series in (12) converges very slowly, and we must look for a better representation
for the strain. Correspondingly, in a dynamic experiment the frequency spectrum
(of the loss tangent, for instance) will show a significant departure from the Lorentzian
shape characteristic of a single relaxation time =, in the region w>+2. In fact, we
can predict the high-frequency behaviour of the loss tangent quite easily from (12)
itself. Tt is well known (see, e.g., Nowick and Berry 1972; also BDV) that a creep
function of the form (1 —exp (—t/r)) corresponds to a loss tangent of the form
@ 7 (14-w? 7% which peaks at w r =1 and falls off as w™ for w+ > 1. Corres-
ponding to the multiple relaxation form of (12), the loss tangent is given by

13 1/pd wr, (1-4-e? 7“2)'1, (16)

tan ¢ (e) oc 2:;

where 7, =7/p®.  Clearly, it is erroneous to write down the asymptotic (« v > 1)
behaviour of this sum as a sum of the asymptotic forms of each term, as the resulting
series no longer converges. However, we may approximate the sum by an integral
over u, and scale out the frequency dependence by a change of variables to p’ =uw/2
to obtain a leading high-frequency contribution that is proportional to w V2 rather
than «™. Experimental values corroborate this prediction—see the analysis of
Doremus (1971). We shall establish this result more firmly in the next section, where
the response to a time-dependent stress is worked out.

2.3. Short-time (t < 7) behaviour and dynamic response

Both the aspects mentioned above are studied by the same method of analysis. From
a mathematical point of view, we need a different representation for the conditional

*The surfaces of the slab act as reflecting barriers for the diffusing atoms.
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probability (x’ \ P Zq ® l X ) ,i.e., for the solution of the differential equation (8), that

is more suitable for the investigation of the small ¢ region than the slowly converging
series of (11). The use of Laplace transforms yields the required results: the details
are outlined in Appendix A. The quantity of interest is the integral on the right in
(7). Let us denote the Laplace transform variable (conjugate to the time ¢) by s,
and introduce the dimensionless variable

= (Lf2) (s/DY* = (m[2) (sr)"2. amn

We then find that

frac)

where %1 stands for the inverse Laplace transform. Further manipulations lead to
an expression for {e;(x, #)) that is quoted in Appendix A, (A.8). On the faces
x=0 and x=L this result takes on relatively simple forms. We find, for instance,

sinh ¢ (1—2 x/L)
sf cosh £

1—-qu (t)l x> = o1 g % (18)

ey(0, 1)) = 4BCuoA25;(Tro?) [(t/ﬂ'ws)l/ 2+ 22;1, . (=DEX

{ (4t)rm¥)12 exp (—pinrfdt)—p erfe (,LGzf/4t)1/2}]. (19)

The leading term, for t <, is the first one on the right in the square brackets, pro-
portional to #1/2. This behaviour is of course traceable to the assumption that the
conditional probability (x'|P,4(t)|x) obeys the diffusion equation, i.e., that Fick’s
law is valid. For free diffusion in a semi-infinite medium under such an assumption
the rms displacement is well known to be ~#1/2,  As ¢ increases to become compar-
able to r, the effect of the boundaries of the medium begins to be felt, and the other
terms in (19) begin to contribute significantly.* '

Now let us turn to the determination of the exact expression for the strain response
to an applied stress of frequency w, as in (I. 4). We may take the amplitude oy (R)
to have the same spatial variation across the sample as in (4). Retaining only the
dilatory part of the dipole tensor (for reasons already explained), (I.16) reduces in
the present instance to

F;(R, w) = BCyy A% [Tra(R) + iw f 80 dt’ exp (lwt') X
[dr' Tro R') R | P2 (1) | R)|. (20)

Using the fact that the Fourier-Laplace transform of unity is i/w (the analytic con-
tinuation of the corresponding Laplace transform to s = — iw), we obtain

" ¥The leading #*/2 behaviour of the creep function at once leads to the prediction that the w —
behaviour of the complex compliance J(w) is ~ w~1/2: we have merely to use the relation between
the response and relaxation functions, which reads J(w)=—iw #(w) in the present problem (see
equation (2) of BDV). Here #(w) is the Fourier-Laplace transform of #(t). In Appendix B, we
show how (27) below follows directly from (12), on exploiting this relationship.
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. W 4 .oon (Lo '
Fyj(%, w) = — BCy,)®, (Tt0%ico f > dt’ exp (iwt') f o dx'(1—2x'/L) x -
o' | 1—P5 () | ). | S L@

Again exploiting the relationship between Fourier-Laplace and Laplace transforms,
we get with the help of (18),

Fij(x, w) = BCry)25,,(Tra?) sinh [{ (1—2x/L)]/{ cosh L, (22)
where (since s is now identified with —iw) ¢ stands for
L=(m/2) (—iwr)l? = (w/2) (wr)V2 exp (—im[4) (23)

Therefore the anelastic strain caused by the long-range diffusion of defects under the
application of a stress

o(x, t) = 0® (1—2x/L) cos wt (24)
is given by
<'€if(xa t)> == ISCUQAzsu(TI'UO) X
sinh ¢ (1—(2x/L)) "y
Re % oot — P (—1 t)g , (25)

with { as in (23).
We may verify, first, that the above is consistent with the result derived earlier for
a static stress field. The w - 0 limit of (25) reads

e, 1)) = BCuA%8,y(Tra?) (1—2x/L), (26)

which matches the saturation value (#-co limit) of the expression in (12), as required.
Let us now compute the internal friction corresponding to (25). For simplicity (and
in accordance with the experimental procedure) we may restrict ourselves to the
face x=0 of the specimen. Consider the 11-component of the strain (i.e., the exten-
sion in the x-direction). On including the instantaneous or elastic response, the
complex compliance is given by

J = M7, + BCsy* tanh L1, @7

where My is the (unrelaxed) elastic modulus of the host material. The internal fric-
tion is defined as the argument of this complex quantity. Remembering that we are
working correct to O(1/T) we get

tan ¢(w) =BCyyA2M, Im (tanh £/{)

(sinh 2a—sin 2a)

= BCyyA* M )
A, Y 4a(sinh? a+cos?a)

28)

where  a=(rwr/8)2 = (wI?/3 D). - 29
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An essentially equivalent result for the internal friction has been derived earlier by
Doremus (1971) by a somewhat different and more restricted technique;* the experi-
mental data of Cantelli ez al (1970) on Hin V have been fitted to the above functional
dependence on w and satisfactory agreement obtained. A brief comparison may be
made of (28) with the alternate expression for tan ¢(w) that is obtainable from the
response to a static stress (eq. (12)) on going over to its Fourier-Laplace transform,
as indicated in a footnote in the foregoing (See also Appendix B). We find

tan ¢(w) = BCuy XM, z‘f:l, 3. Ser/niuf(uttaird), (30)

In the low frequency limit (wr <€ 1), the leading behaviour predicted by (28) is
tan ¢(w) & BCy M L2w[12D. : 3D

This is matched very closely by the value obtained from (30) on retaining the first
(u==1) term above, the factor (1/12) being replaced by (8/=%), which is a relative error
of only 1-49%,. Approximating the process by one with a single relaxation time (Ale-
feld et al 1970) is therefore quite justified in this frequency region. However, as wr
increases, this approximation becomes increasingly poor. The asymptotic (wr> 1)
value of tan ¢(w) is, as we have seen already, proportional to w=/2 in contrast to the
o™ behaviour predicted by a single relaxation time approximation. The exact
leading asymptotic behaviour is found from (28) to be '

tan ¢ (w) & B Cry A2 My, (2 Djw L2172 (0 7 > 1). (32)
In figure 2, we plot tan ¢ (w)/BCuA*M, as a function of wr both for the exact result

of (28) and for the approximate one obtained by retaining only the =1 term in (30),
for the purposes of comparison. As the abscissa is on a logarithmic scale, we may

- regard this also as a plot of the function against the reciprocal of the temperature

at a fixed value of w, if the Arrhenius form for the temperature dependence of D is
assumed to be valid. Tt isthe curve predicted in (28) that seems to fit (Doremus 1971)
experimental values (Cantelli et al 1970) better. However, it must be mentioned
here that the temperature dependence of the diffusion coefficient D of H in Nb is
itself a peculiar one (Vélkl and Alefeld 1976). Both the prefactor D, and the acti-
vation energy U show a break in the range —50°C to 0°C, so that the actual T-de-
pendence of tan ¢(w) is quite involved.

3. Ultra-high frequency response
3.1. Statement of the problem
A salient feature of the foregoing is the conclusion that the asymptotic (wr> 1)

behaviour of the internal friction associated with diffusion relaxation is ~ (wr)~172, in
marked contrast to the (wr)™ fall-off corresponding to a Lorentzian spectrum (or a

*The diffusion equation in the presence of a pressure applied across the faces of the slab with
frequency @ and constant spatial gradient is solved approximately (after ¢ linearization *) by an
ansatz. Various minor errors in the result obtained there are rectified in (28). Our result is of

course a by-product of a general theory, and it also explicitly relates tan ¢(w) to the microscopic
parameter A. ‘
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Figure 2. Frequency dependence of internal friction for diffusion relaxation shown
in plot of tan ¢ (w)/B CryA® My against wr, with #=L? Dn®% (a) Exact expression
(equation (28)); (b) single relaxation time approximation. - Since the abscissa is on a
log scale, the plot is also a variation of the internal friction with 71 at fixed o (as
usnal). Experiment fits curve (a). At ultra-high values of & (not shown), we predict
a true w™? fall-off instead of the w=2/2 tail of curve (a), because of departures from
the simple diffusion equation model.

superposition of a finite number of these). This result, borne out by experiment, is
really a consequence of the short-time behaviour of the solution. of the diffusion equa-
tion (5), i.e., of a process obeying Fick’s law. Indeed, a convincing check of this
assertion is as follows (as already mentioned in the footnote referred to earlier). Let
us begin with the leading (small £) behaviour in (19), written in the form

Loy (0, DY/Tx (a9 % 4B Cop X2 (1} )2, (33)
Then the relaxation-response relationship J (w) = — iw g () leads at once to*
tan ¢ (w) = 4 8 Cuy A2 My, Im [T (3/2) exp (im/4) (7® w 7)"1/7]
=B Cuy B My, (27 w )12 = B Cvy A2 M, (2 Dfw LH)'2, 34
which is precisely (32), as required.
While this frequency dependence is undoubtedly the correct one for wr3> 1, possibly
for several decades of this quantity, the question arises as to whether this remains

true at even higher frequencies. It is well known that the ‘naive’ diffusion equation
(5) itself breaks down at * short times > when a careful examination of the microscopic

*We use the fact that if ¢ (f) = ¥, & () = T (1+v) exp (i 7 ¥/2)/e?+1.
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processes involved reveals the existence of new time scales related to atomic dynamics.
The most classic example of this phenomenon is of course that of Brownian motion
(Chandrasekhar 1943), and the development of appropriate ‘ improved > models of
diffusion in dense gases, liquids and solids is a subject in itself, We may note that
such ‘ corrections > may become significant even for time intervals somewhat longer
than the ultimate atomic time scales, for certain effective time scales may emerge
from the underlying atomic processes by a kind of coarse graining. Again, this is
familiar even in the elementary theory of the Brownian motion of a free particle. The
extremely rapid molecular collision processes lead to a longer time scale specified
by the inverse of the friction coefficient (or viscosity).* The question in the present
context, therefore, is: with reference to the Gorsky effect due to the long range diffu-
sion of H in metals, will an improved model of the mechanics of the diffusion process
alter the behaviour of the anelastic response significantly (at high frequencies) ? If so,
what is the correct asymptotic behaviour of, say, the internal friction tan d(w)?

We shall show that the answer to the first question is in the affirmative. Further,
we predict on very general grounds that tan ¢(w) should ultimately exhibit a crossover
back to a w™ fall-off, and we evaluate also the coefficient of this term (correct to a
numerical factor expected to be roughly of the order of unity). Of some significance
is the fact that this coefficient is determined in terms of the fundamental parameters
governing the actual jump diffusion of the interstitials.

3.2. Jump diffusion of H interstitials in Nb

The phenomenon (e.g., see Volkl and Alefeld 197 5) is one for which an exact analysis
is a very complex problem, beset with a number of difficulties. Let us list some of the
points that must be taken into account even in the case of the diffusion of a dilute
interstitial gas of H atoms in the host bec lattice:

(1) The H atoms occupy six inequivalent types of sites (of tetrahedral symmetry)
per unit cell, as shown in figure 1. The interstitial latticeis a non-regular graph in three
dimensions. This makes the combinatorics of a random walk analysis rather com-
plicated, because there is no simple closed form for the corresponding generating
function (see, for instance, Kasteleyn 1967; Gissler and Rother 1970; Gissler and
Stump 1973).

(i) The jump diffusion of H atoms is activated both thermally as well as quantum
mechanically, tunnelling being facilitated by the random lowering of neighbouring
potential minima by thermal fluctuations. The elementary step diffusion of a proton
is thus a rather complicated affair (Flynn and Stoneham 1970; Stoneham 1972;
Kehr 1976), among other things leading to complicated isotope effects (Richter
et al 1977). There are at least two characteristic times, namely, the mean residence
time of an H atom at an interstitial site, and the mean flight time between sites. In
addition, there are local mode complications arising from the motion of an H atom
about an interstitial lattice site.

We do not intend to tackle these problems in full here. Our aim is to derive a
simple theory based on physical arguments that enables us to deduce the correct
asymptotic behaviour of tan ¢(w). The method used borrows relevant information

*Some points (regarding time scales) pertinent to the above remarks are discussed in Kubo (1966),
§8; especially see equation (8.11)—(8.16) in that section.
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from a first-principles theory of interstitial diffusion (Balakrishnan and Venkataraman
1975, 1978) that is based on a two-state random walk model. (The latter is inspired

by the model of Singwi and Sjslander (1960) developed for the diffusion of water

molecules). We emphasize that only the results required for our immediate purposes
will be quoted, in the interests of brevity.

For simplecity, let us replace the interstitial lattice by a regular cartesian graph in
which each point has four nearest neighbours, at a distance equal to a/2+/2 (a is the
lattice constant of the host bec lattice). This is the magnitude of the tetrahedral-
tetrahedral step. The inaccuracy introduced by this approximation will be contained,
essentially, in a numerical factor in the final result. Since the interstitial lattice is rather
“ well connected ’, and not sparse, the factor will be roughly of the order of unity.
For the purpose at hand, this approximation is not seriously questionable, and it
permits an analytic solution to be obtained. Even after this simplification, the prob-
lem is formidable: the complicated discrete random walk model must be cast in the
form of a difference equation for the jump diffusion, the continuum limit must be
taken, and the resulting partial differential equation must be solved for the finite

geometry of the specimen, to obtain the ‘correct’ expression for (R"P;q(t). R). How-

ever, we present a stratagem that circumvents these difficulties. It is well known
that a careful treatment of the short-time behaviour of any diffusion process leads to
a drastic alteration of the time dependence of the mean square displacement. This
quantity is asymptotically equal to 6 D¢ (which essentially serves as a definition of the
diffusion coefficient), but at short times switches from the linear # dependence (dictated
by Fick’s law) to a quadratic dependence. The physical reason for the latter is the
‘free particle’ behaviour of the diffusing entity for very short time intervals. An
analysis of Brownian motion (Chandrasekhar 1943) shows, in fact, that the Van Hove
self-correlation function* has the form

Gs(R, t) = [2mg ()] ** exp [—R*2¢(1)], (€R))

where the relationship g(¢) = 2Dt of the naive diffusion equation model is replaced
by the functional form

gt)=Q@D[y) [yt —1+exp (—yt)]. (> 0) (36)

Here y is the (phenomenological) friction coefficient (or viscosity) that is introduced
in the Langevin equation. The mean square displacement works out to be 3g(z).
Using (36), this is seen to approach the value 6D¢ for y¢ > 1, but then to switch
over to the value 3Dyt for y¢ <€ 1. These results are occasionally expressed suc-
cinctly by the statement that, in an accurate treatment of the (classical) Brownian
motion problem, the time variable ¢ occurring in the results obtained from the diffu-
sion equation must be replaced by the ¢ Chandrasekhar prescription ’

t>1 = [yt — 1 + exp (—yt)]/y- - (3D

*We have denoted G (R, t) by (0 |qu(t) ] R) .
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It is this fact that we shall exploit in order to write down the asymptotic behaviour

of tan ¢(w), by identifying the correct modification of the t-dependence of the right
hand side of (33).

3.3. Asymptotic behaviour of the internal Sriction

In Appendix C, we give a brief account of the relevant portions of the two-state
random walk model of the jump diffusion of interstitials referred to earlier. It is

shown there, in (C. 8) and (C. 10), that the correct short-time  prescription ’ in the
sense of (37) in the present problem is :

- Dt—>a®w, 125 3/96 Wy +wg) = % w, pgDre. (38)

Here a is the lattice constant of the host bec lattice. The quantities p and g stand for
certain transition probabilities (see Appendix C): each interstitial atom may be in one
of two “ states * at any given instant of time—a state I, in which it is localised about
an interstitial lattice site, or a state F in which it is in flight between two such sites.
Given that it is in state L[F] at time 0, the probability that it continues to be in the
same state at time £ is p() [¢(z)]. Thus the L-> F transition probability per unit time
is given by —p(¢) while for F->L it is given by —4(¢). In (38), p and § stand for the
derivatives evaluated at =0, Further,

we= [0 dtp(e]) = [& atpiry, (39)

and wy, is defined similarly with ¢(z) replacing p(t). The ratios w,/(w,+w,) and

Wg/(W,+Wwp) represent the a priori probabilities of the initial (¢ =0) state being L and F
respectively.

Remembering that =12/ Dx2, if we effect the substitution (38) in (33), we obtain

<€11 (0; t)> N B Cvo AZ g a2Wqu }1/2 t, (40)
(Tr 09 6mL? (w, +wy)
or, if we retain the D or + dependence explicitly,
€1 (0,1)> ..
%a)l ~ B Cuy X* (8w, pi|mer)li2 1. (41)

The corresponding asymptotic behaviour of the internal friction is then given by
tan ¢ (w) & BCoy X2 My, (8w, pg/nr)2 oL (42)
instead of the expression in (34). This is the required result.

3.4. Discussion

The complicated physics of the interstitial jump phenomenon is contained in the
parameters p, g and w,. We do not go into the question of the temperature dependence
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Appendix A
Laplace transform solution of the diffusion equation

The one-dimensional diffusion equation (8), with the initial condition (9), is solved
easily with the help of Laplace transforms. Defining

Fos) = 2 (Gl = [ dtf (e 1) oxp (— o), A

we obtain, on using the initial condition,

&* f(x, s)/ox* = (s/D) f(x,s) = — (1/D) 8(x — x'). (A2)

This is just the differential equation satisfied by the Green function of the operator
(s—Do2/pxY), so that the solution can be written down in terms of the solutions of
the homogeneous equation. Incorporating the boundary conditions (10), the result
is

£ (x, ) = (kD sinh kL) [cosh kx cosh k(L — x") 8(x — x')
+ cosh k(L — x) cosh kx’ 6(x' — x)], (A.3)

where k?=s/D. The inverse Laplace transform f(x, ¢) may be written down in terms
of series of error functions. However, we are actually interested in the integral

fﬁ dx’(l —2§)f(x, t) =1 —%fﬁ dx' x' f(x, t). (A.4)

Therefore we may carry out the integration over x’ using 7 (x, s) in the integrand and
then inverting the Laplace transform. The integration yields

L —
f 0 dx' f(x,s) = (x/s) + sinh k (L — x)/(ks cosh } kL). (A.5)
Since the inverse Laplace transform of (1/s) is unity, it follows immediately that
L '
de' (1 — 2% ) &
| | dx (1 2L) ( X

2, {sinh k 3 L—x)
=-$1{ s L— % A6
L ks cosh § kL (A9

I—P;q(t)lx)

This is the result quoted in (18) of the text in terms of the variable {=(kL/2). As
shown in (21), the response to an applied stress of frequency w is essentially the
Fourier-Laplace transform of the integral on the left in (A.6). It is therefore identi-
cally equal to the analytic continuation to s=—iw, ie., to k=(w/D)/? exp (ir/4),
of the expression in curly brackets on the right-hand side in this equation.

TN T
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To obtain an expression for the response to a time independent stress that is parti-
cularly useful for ¢ < =, we must first use the expansion

sech $kL =2 exp (— ',:;kz;)sz= o (—D¥ exp (—pkL) (A7)

in (A.6), and invert the Laplace transform term by term. Using standard results on
Laplace transforms (Oberhettinger and Badii 1973), (7) is brought finally to the form

e, 1)) =28Coy 22 8, (Tr 0%) Y7 _ o (— 1) [(Aefmr)/2 x
{exp[—(u + x/L)* nr/4t] — exp[—(u + 1 — x/LY* wr/41] }
+ (1 —x/L) exfe {3m (u + 1 — x/L)(x/1)"}
— (u + /L) exfe {4 (u + x/L) (=/t)2)]. A

where 7 = L?/Dn?, The special case x = 0 is easily simplified to yield (19).

Appendix B
Direct evaluation of J(w) from the creep function
We show how the relation J(«)= —iw ¢ (w) between the response and relaxation

functions may be used to find J (w) directly from i (£). (Tensor indices have been
suppressed). Specifically, we begin with (12) written as

&1 (0,2)> - _ s O ® i B g .
Srens HO =P ) 1 () 0o i),
(B.1)

with the aim of obtaining the anelastic compliance expressed in (27). We have
—iw § (0) = — iw fff dt exp (fwt) i (t)

= (88 Cu, X*/n?) z;": L3, (BP—iwn) ™, (B.2)

The sum is evaluated by means of a Sommerfeld-Watson transform. Consider the
integral

I = Q2mi)t f o exp (im (z—1)[2) sec (nz]2) (2 — iwr)™ (B.3)

where C is a hairpin contour encircling the poles of sec (7z/2) at z =1, 3,... on the
positive real axis in the clockwise sense. Since the integrand vanishes sufficiently
rapidly as |z|->oo0 along any ray in the upper or lower half plane, C maybe distorted
to a hairpin contour C’ encircling the poles at z=—1, —3, ... in the anticlockwise
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sense, plus small circles encircling (in the positive sense) the poles of the integrand at
z = 4 (iw 7)}2, Now

I=Q) Y% 1 5 (8 —fwo)?, (B.4)
while f c=— f c Some simple algebra then yields
J (0) = — iw i (w) = (B Cyy A* tanh {)/¢, (B.5)

where { = } m (—iwr)'/2, which is exactly equal to the anelastic contribution in (27).

Appendix C
Mean square displacement in interstitial jump diffusion

We give here a very brief outline of the relevant portions of the theory of jump diffu-
sion on an (empty) lattice (Balakrishnan and Venkataraman 1975, 1978) that is based
on a two-state random walk analysis. Consider, for simplicity, a cartesian lattice
graph with points labelled by 1=(l;, L...) where /;=0, 41, ... A particle diffuses
through this lattice by jumping from site to site along the bonds connecting them.
At any instant of time, it may be in one of two states: either in mid-flight between
two sites (state F), or engaged in localized motion about a site (state L). Let us
define a complete step as a sequence of events that may be denoted by L-F-L. Then
the possible zero-step processes are F, FL, FLF, L and LF; the one-step processes
are FLFL, FLFLF, LFL and LFLF; and so on for n>1. The question to be answered
is: what is the (normalized) probability Wi(n, t) of the particle executing n steps in a
time interval £ ? Once this is known, the Van Hove self-correlation function Gy(R, t)

in the classical limit (which we have denoted by (0 ] Peg(t) |R)) can be determined

using combinatorics specific to the lattice concerned. For a random walk starting
from the lattice point 0 (or from a bond attached to it, and going through 0 as the

first stop) to the lattice point I (the position R being at this site or on a bond attached
to it), we find

GR, 1) =>" W(nt)P,(. : (C.1)

Here P,(]) is the combinatorial factor that gives the probability of reaching 1 from 0
in exactly » steps. We must also include in W(n, t) the a priori probability of the
initial state of the particle being L or F. It is convenient to work with generating
functions. Let us denote that of P,(I) by [Q(2)]"; for unbiased single step jumps on a
simple cubic lattice, for instance, 0 (z) = (1/6) (z, + 2> + 25 + 271 + 23 + 2™,
Further, let H(z; t) be the generating function of W(n, ¢). Then the generating
function of G(R, t) can be shown to be H(Q(z); t), and the mean square displace-
ment (in the absence of any bias or drift in the random walk) works out to

RMS displacement = a2 [9H (z; 1) | 6z],_; = a2 v(1), (C2)
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where a; is the step length and »(?) is the mean number of steps taken in time ¢. It
remains to work out an expression for W(n, t) and hence for H(z; t), from first prin-
ciples. Let us assume that the switching processes from state L to state F and vice
versa are stationary random processes; given that the particle is in state L at time ¢,
let p(t—t,) be the probability that it continues to be in the same state at time ¢ (re-
gardless of its earlier history); similarly, given that it is in state F at #,, let g(t—t,) be
the probability that it continues in the same state at time ¢. Evidently, p(0)=q (0)=1,
and p(t), q(¢) are positive quantities for > 0. Before writing down the expressions for
the chains contributing to W(# ,t), we must decide on the a priori probability factor
for the particle to be in state L (or F), from physical grounds. The most appropriate
choice is to weight the initial state by taking account of cumulative past history as
contained in the integrals '

wy = [2dp([¢']) = [§dp(r), and (C.3)

wp= [0 o dt' (') = [ dr' g ). (C4)

The relative probabilities for initial states L and F respectively are then w,/(w,+wy)
and Wg/(w,+wp). Further, the transition probabilities per unit time for L - F and
F—L are —p(t) and —¢(z) respectively. The expression for W(0, ¢) is then a sum of
the probabilities for the five processes listed earlier, and reads

(wyt+wg) WO, 1) = we|a(t) — [ o dty pUt—1) 4 (1)
+ fodts [§ dt at—1) p (—1) & (1)]
Fwe o) — [ A a(t—1) 5 (1) |- | (C.5)

The general probability W(n, t) (n>>1) is a sum of four multiple integrals, corres-
ponding respectively to sequences FLF...LF, FLF...L, LF...LF, and LF...L.
A scaling of the variables shows that, to evaluate v(f) correct to O (#2), it is sufficient
to consider W (0, t) and W (1,t). We find, after simplification, that

v(O)=1 w, 541 (n+wp)+O0 () (C6)

where p = [dp (t)/dt] ,—,, and similarly for g.

This result is sufficient for our purposes. The diffusion equation predicts, as we
have already seen, that the rms displacement is equal to 6D¢. On the other hand, at
short times, we obtain from (C. 2) and (C. 6) the answer

RMS displacement = w;, p g a® t2/16 (w,-+wy), (&)
on putting in the value a,=a/2+/2 for the tetrahedral-tetrahedral step in a host bce
lattice. Comparing this with 6 D, it is clear that the correct ¢ short-time prescription ’
is )

Dt—>w, p g a®t*/96 (w +wp). - , (C.8)

P.—4
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It is this expression that is made use of in (33) to obtain (40) and the results that
follow.

It is also possible to sum the series for the generating function H(z; f), or at least
for its Laplace transform F{(z; s) in closed form. The behaviour of H(z; s) ass—0
yields the ¢ - co behaviour of the theory, and we find (again in the absence of any
bias in the random walk)

w(t) = t (wy-twp)= + O (). - (C.9)

A comparison once again of (C.9) with the diffusion equation result shows that we
may write (C.8) in the alternate form

Dt->%w, p g De2. | (C.10)
L

This leads to the expression quoted in (41).

For completeness, we must mention here that a number of specific models of
diffusion emerge as special cases of our general formalism. For instance, the jump
diffusion model of Chudley and Elliott (1961) is an instantaneous Jump model, i.e.,

—4(t)> 8, (1), | €11

together with an exponential form p (t)=exp (—t/7p), so that 7, is the mean residence
time at a site. This sort of model is incorrect at short times, suffering from the same
deficiency as the solution of the diffusion equation. On the other hand, the retention
of a finite mean flight time r, ensures the correct short-time behaviour of the theory.
If we specialize to an exponential form for ¢(z) as well, according to q(t) =exp (—t/r5),
then w; =7, and w¥ = r,. We obtain a closed form for » (£), namely,

v(t) = — 7+ Tpexp (=tlrp) | (rp+7p), (C.12)

entirely from random walk theory. In the limit 7> 0 (instantaneous jumps) the
Chudley—Elliott theory is recovered; while in the limit 7> 0, the correct * Chandra-
sekhar prescription ” for the diffusion of a free particle (see (36) and (37) of the text)

is obtained. The general closed form for H(z; s) makes it possible, of course, to
analyse more detailed models as well.
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