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Abstract. Diffusion with interruptions (arising from localized oscillations, or traps,
or mixing between jump diffusion and fluid-like diffusion, etc.) is a very general pheno-
menon. Its manifestations range from superionic conductance to the behaviour of -
hydrogen in metals. Based on a continuous-time random walk approach, we pre-
sent a_comprehensive two-state random walk model for the diffusion of a particle
on a lattice, incorporating arbitrary holding-time distributions for both localized
residence at the sites and inter-site flights, and also the correct first-waiting-time distri-
butions. A synthesis is thus achieved of the two extremes of jump diffusion (zero
flight time) and fluid-like diffusion (zero residence time). Various earlier models
emerge as special cases of our theory. Among the noteworthy results obtained are :
closed-form solutions (in o dimensions, and with arbitrary directional bias) for tem-
porally uncorrelated jump diffusion and for the * fluid diffusion’ counterpart; a com-
pact, general formula for the mean square displacement; the effects of a continuous
spectrum of time scales in the holding-time distributions, etc. The dynamic mobi-
lity and the structure factor for ‘oscillatory diffusion’ are taken up in part 2,

Keywords. Diffusion; self-correlation function; continuous-time random walk theory;
two-state random walk ; renewal process.

1. Introduction

Diffusion in a periodic potential is of considerable current interest. It provides a
description of the diffusion of an impurity atom in a crystal, including certain aspects
of the complex phenomenon of the motion of hydrogen interstitials in metals.
In addition, the general problem of Brownian motion in a periodic potential
has a large number of applications, such as superionic conductance, orientational
diffusion in molecular crystals, etc. A basic problem is to elucidate the consequences
of the simultaneous occurrence of two features: random flights from site to site, and
localized oscillations about each site. The non-trivial interference between these
two aspects is manifested in physical quantities such as the frequency-dependent
mobility y(w) and the dynamic structure factor S(k, w).

There are two broad approaches to the problem. The first is a © stochastic process ’
approach that deals with Brownijan motion in a periodic potential. For technical
reasons, explicit calculations are restricted to the one-dimensional case, i.e., the posi-
tion and the velocity of the diffusing particle are treated as scalar random pro-
cesses. One may then write down the Langevin equation for a particle in a
sinusoidal potential, and use a generalization of Mori’s well-known continued-
fraction method to obtain a representation for u(w) (Fulde ez al 1975; Schneider
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1976). Alternatively, one can work with the Fokker-Planck equation for the
conditional probability density P(x, s, ¢| X, v,) of the position and velocity of the
particle in a periodic potential. A short-time expansion coupled with a perturbative
technique may be employed (Dieterich et al 1977) to generate representations for
w(w) and S(k, w). An eigenfunction expansion method (Risken and Vollmer 1978)
yields similar results.

The second approach is more directly concerned with diffusion in a three-dimen-
sional lattice. Random walk analysis is combined with assumptions regarding un-
correlated jumps to develop what are essentially variants of a certain jump diffusion
model. The diffusing particle is assumed to hop instantaneously (i.e., with vanish-
ing flight time) from site to site, while simultaneously executing localized oscillations
whenever it is resident at a site. Starting with the simple model of Chudley and
Elliott (1961), a considerable literature exists on various refinements of detail (Gissler
and Rother 1970; Springer 1972 and references therein). Simultaneously, work has
been carried out on two- and multi-state random walk models, one of the earliest
being that of Singwi and Sjélander (1960) for diffusion in liquids. This permits the
introduction of a finite mean flight time for the jumps. Now the mean residence and
flight times can be quite comparable in many instances of diffusion in solids. It is
therefore of great interest to examine such models in the framework of diffusion on a
lattice (Gissler and Stump 1973; Wert 1978 and references therein; Kutner and
Sosnowska 1979). Neutron scattering is the experimental probe primarily kept in

~ mind in these analyses. '

Concurrently with these developments, a picture has emerged of the relevance of
continuous time random walk (CTRW) theory (Montroll and Weiss 1965; Weiss
1976) to generalized diffusion (see, in particular, Kehr and Haus 1978 and references
therein). This technique offers a powerful approach to a wide variety of such prob-
lems, including that of diffusion in disordered media (Scher and Lax 1973). It is our
purpose, in what follows, to present a general theory of the diffusion of a particle
in a lattice based on the principles of CTRW. This will be done in two parts. In
the first (the present paper), our primary objective is the evaluation of the conditional

probability density for the position of the particle. In the classical limit (which is all
that we consider), this quantity is equal to the van Hove self-correlation function,
whose Fourier transform is measured by the differential cross-section for incoherent
neutron scattering. 'We shall also be concerned with the mean square displacement.
In paper 2 of this series, we shall consider the velocity of the diffusing particle. The
velocity autocorrelation function (and thence the dynamic mobility and the effective
diffusion constant) will be evaluated in a CTRW model in velocity space, allowing for
localiz?d oscillations at each lattice site as well as a distribution of flight times bet-
ween sites.
. To summarize: we shall calculate the self-correlation function for a particle diffus-
ing by nearest-neighbour flights on a regular lattice. An arbitrary holding-time dis-
ntibuti('m for the state of residence at a site is allowed for; so is a distribution for the
flight time ‘between sites. Since these distributions are not restricted to exponential
ones, cognizance must be taken of the first-waiting-time distribution in each case.
A general, complete solution is obtained, in the sense that a closed expression is
presented for the Laplace transform of the generating function of the random walk.

T.here_ Is no restriction to one-dimension, and the random walk may have an arbitrary
directional bias.
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The paper is organized as follows. In § 2, it is shown that all the quantities of
interest are derivable from the generating function for the steps > of the random
walk. In § 3, this function is constructed using CTRW theory. In § 4, an explicit
solution for the Laplace transform of the self-correlation function is presented for the
case of the linear lattice. In § 5, the asymptotic (long-time) behaviour of the condi-
tional density is deduced in the general case. Section 6 deals with the mean square
displacement. A convenient closed expression is derived for this quantity, and its
short-time and long-time behaviour discussed. Section 7 specializes the formalism
to the case of jump diffusion. The Chudley-Elliott model is shown to be the simp-
lest of this class of models, corresponding to an uncorrelated (Poisson) sequence of
jump-triggering pulses. In § 8, a complementary class of models is studied; those in
which the halt time at sites vanishes, the mean inter-site flight time being finite.
Section 9 deals with the general case in which both the mean residence and flight
times are finite. This enables one to see clearly the gradual transition, on taking
limits appropriately, from jump diffusion to fluidlike diffusion. It is precisely this
sort of behaviour that occurs in the diffusion of hydrogen in metals in a certain tem-
perature regime (Kehr 1978), and is one of the motivating factors of the present
study. Section 10 contains a capsule summary of the main results, together with
some concluding remarks. It may be helpful to read this section once at this stage
before returning to § 2.

2. The self-correlation function

Consider a classical particle executing a random walk in an empty lattice, with a
randomly varying flight time between sites. It has halts of random duration ateach site,
when it executes oscillations localized about the lattice point labelling the site—i.e.,
there is a “local mode’. There are thus three characteristic times in the problem:
the mean residence time at a site, the reciprocal of the local mode frequency, and the
mean flight time between neighbouring sites. There are two characteristic lengths
(the lattice is taken to be infinite in extent): the range of the potential well about
each site, or the (related) mean amplitude of oscillation of the particle in the well, and
the lattice spacing, which is supposed to be distinctly greater than the oscillation
amplitude. The entire space can therefore be broken up into cells surrounding each
lattice point, with bonds connecting the cells. If the instantaneous position of the
particle is within a cell, it is overwhelmingly probable that the particle is in the oscil-
latory or localized * state ’, denoted by L. On a bond between cells, it may be consi-
dered to be in the diffusive or flight state, F. As the state at a given instant of time is
markedly dependent on the position of the particle, one must carefully take into
account all possible initial and final states of the particle by considering the self-
correlation function P(m, ?) defined as follows: given that, at =0, the particle is
oscillating about the site 0, or is on one of the bonds connecting this site to its nearest
neighbours, P(m, ¢) is the probability of finding it in oscillation about the site m or
on a bond connecting the latter to one of its neighbours, at time z. Our main objec-
tive in this paper is to understand the complications arising from the simultaneous
occurrence of finite mean residence and flight times. We shall therefore neglect the
details of the oscillatory motion henceforth. ‘
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It isnatural to separate the dynamical aspect of the problem from the purely combi-
natorial one. Only nearest neighbour jumps are explicitly assumed®. Now the
number of jumps increases in a random manner as time elapses. On the other hand,
the actual Jocation of the diffusing particle is determined by the solution of a certain
enumeration problem on the lattice concerned, for each given number of steps. The
latter problem has an answer (known in principle for all lattice graphs) that depends
on the dimensionality and structure of the lattice. A complete ¢ step * will be under-
stood as a line joining two nearest neighbour cells. The combinatorial problem asks
for the probability p,(m) of reaching the cell around the site m from that around (
in n steps. To be specific, let us henceforth consider a d-dimensional hypercubic
lattice, with the lattice constant set equal to unity, for convenience. (Extension to
other lattices, including non-Bravais ones, is tedious but straightforward). Then m
is specified by d integers (m,,. .., m,). The generating function of p,(m), namely

o0

Golzpeszd = pam) 22, 20 M
ny=—00

is then given by (see, for instance, Kasteleyn 1967)

Gu(zy,...,20) = [8(2)]", @
d

where gz) = z (rzy + Lz7Y) (3
i=1

1s the generating function of a single step on the lattice concerned. We have allowed
for a possible asymmetrical environment at each site, i.e., for a biased random walk,
by taking (1, ) to be the a priori probabilities of a jump in the + i and —i
directions respectively: we have 0 < r;, I, < 1, and

Q,

i+ =1 @)
i=1

I

Such a biased random walk will be relevant in many situations, such as diffusion in
the presence of an applied field that makes the potential barriers around each site
anisotropic. In the absence of bias, each 1;=(2d)~* =I,. The actual expression for
Pa(m) will automatically take care of the fact that one cannot reach m from 0 in less

a " . o
than 21 | m, | steps; and further, if 7 has #, steps in the i-direction, then n; > | m;|,

and n; = m; (mod 2). The expression for P,(m) is rather cumbersome, and it is
bypassed by working with the generating function (1). .

. Now consider the temporal aspect of the problem. The number # of steps is a sta-
tionary, discrete random process for which a distribution must be deduced from first

*Jump diffusion models incorporating. nearest-neighbour as well iple j e
next-nearest-neighbour jumps) have been conside ¢ e oo, eltiple Jumps &8

red in the li 2. h
1979). For the hydrogen diffusion problem, this m: e a Mo e see, .8, Haus and Kelr

; X T L ay be a izati the
introduction of a finite flight time (Lottner ef o] 1979 y mote relevant generalization than

.
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principles. Let W(n, t) denote this distribution: it is the probability that the particle
executes n complete steps in a time interval z.  Given this quantity, the fundamental
probability we seek to compute is given by

P(m, 1) =) W(n, ) p,(m). | ©)
n=0

In practice, it is most convenient to re-express this connection in terms of the corres-
ponding generating functions. Let W(n, t) have the generating function

H(z, t) = z W, t) 2. . (6)

n=0

Similarly, let

0
Lizy, ...,z ) = »  P(m, 1) 2™ 2™, oM )

mj=—00

Then, using the fact that the generating function of P»(m) has the structure (2), it can
be shown that :

L(zy ooy zg t) = H(g(2), 1), ®

where g(z) is the single step generating function defined in (3). P(m,t) may then
be obtained in principle by the inversion

d
P, 1) =(1j2m)t § T (@af=" ™) H (g (), 0. ©)

The fundamental problem is therefore reduced now to the determination of the step-
generating function H{(z, ¢). Conservation of probability requires that

> W =H(, =1 (10)

n=0

Of considerable importance in what follows is the first moment of W(n, t), namely,
the mean number of steps in the time interval z. This is given by

W)= nWn,t) = [oH (z 1)/oz],_;. (1)
n=1 .

With the help of (8), it is easy to show that the mean displacement from the
(arbitrarily chosen) origin is given by

im0y = (e — 1) v (0. | | (12)
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This quantity vanishes, of course, for an unbiased random walk. The mean square
displacement, a basic object in any diffusion process, is likewise given by

\

d d
me @)y = {mP®O> =v O+n@® ) ¢i— L (13)
f=1 i=1
where  w () = n(n—1) W (n, 1) = (6°H|az),_y. (14)
n=2

We shall also be interested, at several junctures, in estimating the extent to which the
solutions P(m, t) corresponding to various unbiased random walks depart from the
normal distribution of conventional diffusion theory in an infinite continuum. As in
well known, this is measured by the excess of kurtosis, denoted by y, (f) and given by

ye (1) = ((m* (1)) —3 <m? ()))/(m® (£))%. (15)

After some algebra, we obtain the result

ya () =[(1 +-2[d) vo )+ (1) — 3 »* ()]} (2), (16)

which will be used in the sequel.

3. Evaluation of W(n, t) and its generating function H(z, t)

We shall now derive expressions for W(n, t) and H(z, t) using a continuous-time
random walk technique. In order to ensure the correctness of the enumeration pro-
cedure, it is necessary first to clarify what we mean by a  complete step °.

The temporal development of the diffusion process is an alternating sequence of
states of the particle, of the form..LFLFLF..... A basic assumption is that the L
and F states are not correlated with each other. A complete step is then defined
as an F that is bracketed on either side by L, indicating that the flight between sites
has been completed. Figure 1 shows the possible one-step processes, with the conven-
tion that earlier events stand to the right. The corresponding sequences are LFL,
FLFL, LFLF and FLFLF. There are four such sequences for each n >1. The
CTRW theory leads to an analytical expression for the probability associated with
each sequence in terms of two basic functions of time: the L= F transition probabili-
ties. The answer for Wi(n, t) is then a certain weighted sum of these expressions.
Note that there are five diagrams that contribute to the zero-step probability W (0, t)
in our method of book-keeping, arising from the event sequences L, FL, F, LF and
FLF.

Let us now introduce the primary L=F transition probabilities, and quantities
related to them. We view each possible sequence ...LFLF... as a realization of a
stochastic process with holding time distributions p(f) and g(¢) respectively for the

L and F states. In other words, given that the diffusing particle has just fallen into
an L state (i.e., become localized about a site) at some epoch f,» the probability that

i
b
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Figure 1. The diagrams contributing to (a) the one-step probability, (1, 1); (b) the
n-step probability, W (n, t), n > 1; (c) the zero-step probability, W(0, z). Wavy lines
denote localized states, straight lines denote flight states.

the same state persists at epoch (%, ¢) is given by p(¢). The distribution q(¢) is de-
fined analogously for the state F. Evidently, p(0)=¢(0)=1, and p(¢), () are non-
increasing, positive functions of ¢ satisfying p(c0) =¢(c0)=0. Further, using a prime
to denote differentiation, —p’(¢)d¢ is the probability that a transition from L to F
occurs in the time interval (¢y+7, fy+t-+dt). Similarly, —g'(t)dt is the analogous
F—-L transition probability. The mean residence time at a site is the mean time spent
in the state L, and is equal to

© , o0 o
wo=[dit(—p @)/ [at(—p @)= [ dtp). an
0 0 0 ‘
Likewise, the mean flight time is
o]
wy = [ diq ). (18)
0

Now, in setting up probabilities for sequences such as LFLF.,. from a randomly
chosen origin of time labelled =0, one has no precise knowledge of how long the
initial state has persisted prior to r=0. Therefore the holding-time distribution for
the first state in the sequence is distinct from p(¢) (if this state is L) or ¢(z) (if this state
is F). The first-waiting-time distributions for L and F respectively are given by
(Feller 1966; see also the remarks in Balakrishnan 1980)

Do () = (1/wy) fdt1 P (), g0 () =(1/W1)f dty q (ty). (19)
! t
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The corresponding first transition probabilities per unit time are of course*
—Py (1) =p (Dwy, —g4 (t) =q (t)}w;. | (20)

Next, we must specify the relative @ priori probabilities for the particle to be in the L
and F states respectively at a randomly chosen origin of time. These are quite evi-
dently determined by the mean lifetimes in the two states, and are given by
wo/(Wo+wy) and w/(wo+wy) respectively. For n>1, therefore, one can write

Wy ‘
Win,t)= m(WL,_ )+ Wg_; (1)

"Vl

| ] 21
+ s Wy p @ t) + We_ g, 1)), (21

where the subscripts on W refer to the initial and final states in the sequences. The
construction of the quantities Wy .1 (1), ete., is straightforward. We find

t 1a
I(VL-r.——L (n’ t) = f dt?.n f dtlp (t—t?m) ql (tzn—tzn—l) _P, (tzn——l"'tzn—z)
0 0

g’ (i—1,) py (),

t ta
Weep (1) = — f sy ... J diy § (t—tans1) D' (fansa—ton)
0 0 :

q’ (t2n“t2n-—1) v q’ (ta—tl) P(I) (),
t ty
Wrep®t)= ‘“f gy ... f dty p (t—tan1) @' (fanry—22n)
0 0 ‘
r (fgn—fgn—l) o p' (fe*ﬁ) ‘](l) (H):

! fo
Wee g, t) = J‘ lgnss ... j dty § (t—tanig) D' (tynro—tani1)
] 4

g’ (t2n+1_‘t2n) o p' (tz‘“tﬂ q(') (t). (22)

*These ekpressions and indeed the entire develo i i i i

: ’ pment of this section, can be summarized in
technical terms (see Cox 1967) as follows: the sequences....LFLF... are realizations of an
equilibrium alternating renewal process with distinct holding time distributions.
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It remains to specify W (0, #). Recalling the five contributory sequences referred
to earlier (figure 1), we have

t
- W . PR 1%
W, z)-m[pom Of dt, q (1 rl)p0<t1>]+m[qo(r>

t t 19
~[anp -1 g;)+ [ dy [ dnat—r a1y 5w |- @)
0 ) }

Further, W (n, 0) =§,,,.
We may now compute the generating function H (z, t). It is obviously convenient
to work with the Laplace transform H (z, s). Let P(s), 7(s) denote the respective

transforms of p(¢) and g (r). After some algebra, we obtain the following compact
result:

His) =14 EDA—s76) GO +7(6)—s 5 96y 24)
§ S(W0+W1) D(Za S) .
where Dz, 5) = 1—z (1—s 5(s)) (1—s G(s)). (25)

This is the required solution. Since H(1, s) = 1/s, no sequences have been left out
in the counting, and W{(n, ¢) is a normalized probability. The solution is of very
general applicability. It encompasses complicated memory effects and correlations
in the pulse sequences that cause the L=F transitions. The case of exponential
holding time distributions is the one of greatest physical relevance. It corresponds
to uncorrelated sequences of transitions, and is studied in detail subsequently.

4. Explicit solution in one dimension

Before proceeding with the general theory, we record here the explicit solution for
the conditional density P (m, t) (or rather, its Laplace transform) in the case of a
one-dimensional random walk. This involves the summation over # expressed
in (5), after the Laplace transform of W (n, t) is obtained from the generating
function (24). Let ~ (m, s) be the transform of P (m, t). Write p, § for P (s) and
g (s) respectively, for brevity. After a considerable amount of algebra, we arrive
at the following final result:

5 1 (P2+9—s779)
P (m, s) = [fv T s(we+wy) (1 —S:l“)):l s 0
S5 )
e ey () (0= 0=,
(26)

where  h=h(s) =2 (D (1—s55) (1—s7). @7
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This expression is valid for m>0. For negative integral m, we must let m—>—m and
interchange r and / in the above. In principle, (26) is an exact, closed form solution to
our two-state random walk problem on a one-dimensional lattice. If one sets § =0,
w;==0 in the above, the corresponding solution in the class of instantaneous jump
models is obtained. On the other hand, setting 5 =0, w,=0 yields the solution for the
case of “ free * diffusion. As a quick check, let us set m=0 and evaluate P(0, ) in the
case g =w;=0, p(t)=exp (—t/7,). Making use of the appropriate inverse Laplace
transforms (Oberhettinger and Badii 1973), we find from (26) and (27) that

P (0, 7) = exp (—tfry) Iy (2 (I try), 28)

where I, is the modified Bessel function of order zero. Equation (28) is in agreement
with the general result (52) to be derived below. Similarly, if we set p =w,=0 and
q(t) =exp (—t[r,), we find

t
PO t)=exp(—tfry [1+ [d ¢ 2 ¢ (2], (29)
0

which is consistent with the general result (7D).

The expressions in (26) and (27) simplify somewhat when r=/ =1. The asymptotic
(#=>00) behaviour of P(m, t) for fixed m is then easily deduced. We expect a fall-off
proportional to ¢~1/2, characteristic of diffusion in one dimension. Examining (26)

and (27) near s=0, we find a leading s behaviour owing to the factor (1 —h2)-12
in curly brackets in (26). This leads to

P (m, 1) ~ [(wy+ w22, (30)

as conjectured. In the next section, we consider the asymptotic behaviour of P(m, ?)
in further detail,

5. Asymptotic behaviour of P(m, t)

Returning to diffusion in d dimensions, let us establish first the asymptotic (¢ — o0)
behaviour of the conditional density P for fixed (finite) m. In contrast to the ¢ ~ 0
regime, there is no simple scaling of variables in the multiple integrals constituting
W(n, t) that enables one to deduce the longtime behaviour of W, H and P directly.
ﬁor this, it is necessary to know the nature and location of the leading singularities of
p()and g(s). If p(r) exp (Ag?) = O and q(z) exp (At)=0(1) as t-> oo, these are
simple poles at s = — A and s = — A; respectively. We shall subsequently (in § 9)
determine H(z, t) in closed form in the case when these are the only singularities of
Pp(s) and g (s). Even in that special case, H(z, 1) is rather complicated in appearance,
. Even without a detailed knowledge of the singularity structure of p(s) and g (s),
it is possible to prove that P(m, 1) = O(@~*"?) as t > oo, in the absence of bias. An
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extra multiplicative exponential damping factor occurs when bias is introduced. To
deduce these results, we begin with equation (23) for H (z, $), to find

{a"ﬁ(z, S)jL=1 _ n! (1 '— Sﬁ)’l_l (1 T Sé‘)n (31)

oz S Wt W) S (F G —spa)y

Provided p'(s) and g (s) are regular® at s = 0, the leading asymptotic behaviour in ¢
of the inverse transform of the left hand side in (31) comes from the term (st)*[n!
in the expansion of the factor exp(st) occurring in the inverse transform.
Therefore, as - oo,

(0"H(z, 1)[02"),_q ~ t"[(wy + wy). (32)
Assuming that summing over the foregoing leading behaviour of each term in the
Taylor series about z=1 of H(z, ¢) gives the leading asymptotic behaviour of
H(z, ?) itself, we get

Hi(z, t) ~ exp [t(z — 1)/(wy + wy)]. (33)
Therefore the generating function for P(m, ¢) behaves as

L(zys - s 2y 1) ~ exp [H(g(z) — 1)/(wy + wy)] (34)
where g(z) is the single-step generating function already defined in (3). L thus
factors into a product of d exponentials, each of which is the generating function for

a modified Bessel function. Since only the leading asymptotic behaviour in each of
these must be retained, we obtain finally

ar d
P(m, 1) ~(-’ﬁil”&) exp(— bat ) W (s (r)10, 35)
4art Wotwy/ i=1
d
where by =1-2 z (AL (36)
i=1

Clearly b, >0, the equality sign obtaining when r, =I;=(2d)1. The foregoing shows
how the expected #=%/2 tail is modulated by an exponential damping factor when
diffusion occurs in the presence of bias in any direction. When there is no bias,
(35) reduces to

P(m, t) ~ [ : (37)

2t

(w;+w1)d]d/2

*This analyticity is essential for the  conventional® asymptotic behaviour of P to be realized.
The circumstances under which non-analyticity at s=0 may arise are discussed briefly at the end
of §7, and in greater detail in Balakrishnan (1981). , o
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6. The mean square displacement

We turn now to the determination of that basic quantity in any theory of diffusion,
the mean square displacement. We have already established (see (13)) that

m*()> =v(t) , (38)
~* for an unbiased random walk. (Recall that the lattice constant has been set equal to

unity.) It is therefore »(¢), the mean number of complete steps executed in time ¢,
that remains to be computed. An elegant expression for () can be obtained from

(24). Evaluating aﬁ/ 0z at z =1 and inverting the Laplace transform, we find

1 ! '
0 =m[t — Oj dt, q (tl)]. | (39)

Equation (39) may be re-cast in the form

’ - t _ Wy . 4
® Wo + wy)  (wy + wy) (1 =4, )

in order to clarify the meaning of the various terms. The linear dependence is the
familiar asymptotic behaviour in the purely diffusive limit (i.e., when ¢ is much greater
than the correlation time of the velocity), and is of course obtained as the asymptotic
behaviour in simple random walk theory as well. The second term in (40) is the
- “correction ’ that emerges when one drops the assumption that the flights from site

to site occur instantaneously. It is again well known that the Langevin equation
treatment of Brownian motion yields a specific form for this term: if y is the friction
coefficient, the velocity of the diffusing particle is a stationary Gaussian Markov
process with correlation time y-1, and the mean square displacement has a time-
dependence given by (yi—1-4-exp (—y2)). Equation (39) or (40) is the generalization of
this result, valid even for lattice diffusion, derived within the framework of CTRW
theory. The quantity 1—q4(?) is the no-transition probability (from a randomly
chosen origin of time) in the flight state. The deviation of v(t) from its asymptotic
proportionality to ¢ is therefore given by the product of the foregoing no-transition
probability and the a priori probability for the particle to be in the state of flight.
This is the physical interpretation of the result derived above. This term is absent in
all jump diffusion models (§ 7).

The second term in (39) actually dominates W(t) for very small values of ¢. In

gene;al, q(t) n.mst be a non-increasing function of ¢ as ¢ varies from 0 to co. We
therefore obtain the leading behaviour

W)~ (worbw) 2| '0) | 2, . “1)

This leading quadratic z-dependence is of course required on physical grounds. The

role played by a finite ¢’ in the emergence of this result is noteworthy. All jump

models lead to an unphysical (~ ?) short-time behaviour of (t).
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For a biased random walk, the mean square displacement depends on the second
factorial moment wy(z) as well (see (13)). The leading short-time behaviour of this
quantity is

vy (1) ~ {-z-cwo + W) P ()] (@ O) £, “2)

showing that the bias affects the rms displacement only from the #3 term onwards in
its short-time expansion.

7. Jump diffusion models

Although the assumption that the diffusing particle jumps instantaneously from site
to site cannot be strictly valid, there are many situations in which it is a good approxi-
mation, when w, is much larger than w;. Instantaneous jumps correspond to letting
—q'(t) = 8,(¢) the foregoing, with consequent alterations in the expression for
W(n,t). However, the final result is easily reproduced by simply setting § (s)=0
in (23) and (24). We have then

o _1 E—1)p(s)
H@ 9 s +sw0[1 —z {l—sﬁ(s)}]' 43)

Therefore w(t) = t/w,, (44)

regardless of the actual functional form of p(¢). It is evident that (44) is unphysical
at short times, as already mentioned. Once again, the asymptotic (¢#~c0) form of
P(m, r) may be found following the steps in §5, provided 7(s) is not singular at s=0.
The result, as expected, corresponds to setting wy=0 in (35).

As a check on the formalism, consider the case of a constant residence time 7, at
each site. Then p(t)=0 (1—#/r,) (t = 0), ’

and H@s=1qEDEpGy—1 (45)
s §2 7y (exXp (s79) — 2)

Inverting the Laplace transform (Oberhettinger and Badii 1973), we get

H(z 1) =z [1 + (z—1) (f_—— n)] fornry <t < (@m+1) Tos

7o

n=0, 1, 2,.. (46)

This is precisely the result expected on physical grounds. At ¢#=nr, we have
H(z, t) =z", so that the generating function for the random walk is '

Lz, ..oy 20, 170) = () - @)

as expected. At t=(n-+1)ry, H(z, t)=z", and n>n-+1 in (47). The changeover
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from the former value to the latter one is continuous as ¢ increases from nryto (n-+1)r,.
This physical feature is a consequence of the inclusion of the appropriate
first-waiting-time distribution.

With this verification out of the way, we turn to a very important special case in
‘which an explicit solution for the self-correlation function is possible. If each jump
of the particle is the result of a large number of Bernoulli trials, then (see, e.g., Feller
1966), using the symbol =, for the mean residence time wy,

() =exp (—tfry) | 48)

Equation (48) implies that the random pulses which cause the particle to jump from
site to site form an uncorrelated (Poisson) sequence. Further, the distinction between
p(t) and py(t) disappears in this case (and only in this case). We find

H(z, ) = o/ (1++s7—2) | (49)

and therefore

H(z, 1) = exp (tz—1)/y), (50)
which is the generating function for the Poisson distribution

Wn, t) = (1fn!) (t}ro)" exp (—tfry) (31)

with mean »(t)=t7,. This is the distribution assumed for # in the treatment of the
diffusion of hydrogen interstitials in metals by Gissler and Rother (1970). The jump
diffusion model of Chudley and Elliott (1961) also follows from (51). Using the
relation between the generating functions H and L, we find

. d
P, )= exp (—tfrg) W (rfly™* Ly Qu(rd o), (52)

where I,, is the modified Bessel function of order 7. This is essentially the Chudley-
Elliott result, extended to include bias in the random walk. In one dimension, it
reduces to (28) as required. In figure 2, we have plotted the simple case that obtains
when d=1, m=0, and further r=I/=}. It is easily shown that (52) is the solution

to the following Markovian master equation for biased jump diffusion on a d-dimen-
sional lattice:

1

) |
0
5P 1) = (1/70); [re {P (m; —1, 8) — P (my, 1)} +

TP n 41, 1) — P (m, 0}]. (53)

Here (m;=-1) in the argument of P is

‘ : meant to denote a unit increment (or decre-
ment) in the ith coordinate alone, (

i.e., P(m2+1, t)EP(ml, m2+1,. ey md’ t). The
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Figure 2. Probability P(0, ¢) of return to the origin at time ¢, for an unbiased one
dimensional random walk: (a) jump model with residence time distribution
p(t) =exp (— t/r); (b) zero-residence time model with flight time distribution
q(t) = exp (—1/7); (c) model with finite mean residence and flight times, with

p(t) = q(t) = exp (— t/7).

initial condition is P(m, 0)=>0m, 9, and (1/r,) is the mean rate of jumps. The fore-
going clarifies the connection between the master equation and CTRW approaches,
and the conditions under which the latter reduces to the former: (i) instantaneous
jumps, (ii) exponential holding time distribution, or, equivalently, a Poisson sequence
of jump-triggering pulses.

It is instructive also to pass to the limit when the difference equation (53) goes over
into a partial differential equation. This happens when the step length ¢—0 and,
simultaneously, the mean jump rate (I/j)->c0, keeping the ratio a*|r, finite, as is
familiar in diffusion theory. In the biased case, we must further let (»,—1,)~0 such
that

lim a (r; — 1)/, = f; ( = finite). * (54)
Also set
lim &% (r; + ))]2 7y =D;. (5%
Then, replacing P(m, t) by P(R, t), it is seen that (53) goes over into
d
E®, 1) = { ~ (PloR) + Dy (2*PloRD}
i=1
=—fVP+4+ v -D:-VP (56)

in an obvious notation, D; being the components of the diagonal diffusion tensor D.
The Smoluchowski equation for anisotropic diffusion in a constant force field is thus
recovered. In the simpler situation of isotropic diffusion, (56) reduces to the conven-
tional diffusion equation with the familiar Gaussian solution

P(R, t) = (4w Dt)-4/% exp (— R2/4 D). 7
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The discrete solution (52) is transformed to the above on taking the appropriate
limits in the parameters, and using the limit

lim LIy, 0) exp(—2t?) = (Qfra” exp (—%2). (58)

o}

An idea may be obtained of the extent to which the discrete solution P(m, t) deviates

from a normal distribution by evaluating the excess of kurtosis, y,(#). Using (16)
and (50) for H(z, t), we get

va(t) = (7oft) —2 (d —1)/d. (39)

For 1<y, therefore, the distribution has a broader tail than the corresponding
Gaussian. As ¢ increases, the distribution approaches normality. For d=1, the
approach is asymptotic. In higher dimensional lattices, on the other hand, the ‘ extra’
directions available enable this to be attained at a finite value of t, and for larger
values of ¢ the distribution in fact becomes platykurtic.

We conclude this section on jump diffusion models with a brief discussion of an
important generalization of the case of an exponential holding time distribution.
This is a continuous superposition of exponentials, namely,

() = [ drp () exp (— 1)), | (60)
0

where p(7) is some spectral weight function. It is evident that (60) is a representa-
tion of considerable generality that can arise in numerous physical circumstances.
If the jumps are caused by the simultaneous action of a sef of mutually uncorrelated
pulse sequences, for example, one may expect a departure from (48) that can be writ-
ten as in (60). Again, if the potential barriers separating the ‘localized * states have a
distribution of heights (as in disordered media, for example), (60) results. Whatever

the cause, certain general conclusions can be drawn when p(t) is given by (60). The
transform of this expression is

o .
P = [ drep@Il+sm). (61)
0
For a normalized distribution p(), we then have

N e
H(Z,S):E—!— 0 '

s : (62)
o ll=z [ dr p @)[(L + 57)]

0
where Wy = _f dr 7 p (7). | (63)
0

H

%




TEEEETT

Two-state random walk on a lattice. ]. 125

The point we wish to make is as follows. While »(?) is still given by #/w,, a host of
possibilities exists as regards the behaviour of H(z, ), and hence that of P(m, ?).
The emergence of ‘ non-analytic > behaviour from an infinite summation or conti-
nuous superposition of ‘ regular ’ terms is of course well known, examples ranging
from Regge behaviour to rock magnetism. In the present context, it is evident from
(61) that p(s) may have a part that is non-analytic* at s = 0. Under suitable cir-
cumstances, this leads to an unconventional asymptotic (#~oo) behaviour of P(m, 1),
different from that deduced in § 5 (see Balakrishnan 1981). The dynamic structure
factor would then exhibit corresponding deviations from the standard w?2-1 beha-
viour near w =0. In general, the asymptotic behaviour of H and P in such non-
analytic cases may be deduced with the help of powerful Tauberian theorems, given
a distribution p(7) (or at least its asymptotic behaviour) based on the underlying
physical processes.

8. Zero halt time models

The general theory may also be reduced to another physically interesting special case,
complementary to that of § 7. *Free’ diffusion may occur, in the sense that the
particle does not spend any time at all in the localized state while hopping from site to
site. This amounts to passing to the limit — P'(t)~38.(¢) in the formalism of §3.

The resulting generating function H(z, s) is given by

B _1 . E—=1)q() (1—s g(s))
Hez, 5) = s + swy [1—z (1—s g(s))] ' (64

As far as »(?) and hence the mean square displacement are concerned, the expressions

derived in § 6 and the related discussion remain valid, with W, set equal to zero.
Once again, consider first the case of a constant flight time =, for each step, as a

check on the formalism. Setting g(¢) = 8(1—t/ry) (t>0), we get, transforming back

. to the time variable,

H(z,t) = (65)

zn-1 [l—l-(z—l) (i -—n)] for n n<IS@E+1) 7y (n=1,2, ).

1

As in (46) ff., this is just the required answer. Recall that a complete step, labelled
by n, requires that each F be adjoined by L on either side. This is why z"-1 in (65)
plays the role of z" in (46). ‘ '

Next, we turn to the functional form

q(t) = exp (—t/my), (66)

*If the variance of p(¢) diverges, for instance, then 17(&)=wo+cs+ds¢+...._ ..near s=0, where
1<a<2. This is precisely the sort of behaviour that leads to 1 /f* noise effects in certain problems
(Tunaley 1976), power-law tails in velocity correlation functions (Alder and Wainwright 1970),
etc.

P .‘_2
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which is again of special interest. It implies that a Markov process governs the
continued stay of the particle in the same state of flight at time ¢ that it entered at

t=0. We find }
11
H, 1) = [1 ~I 4l (rz/m] exp (—1/ry), 6
so that
A |
Wn, t) = [8,,,(, + m (;1-) ] exp (—t/ry). (68)

The mean square displacement follows from
1) = (tfr) — 1 + exp (—1/my), (69)

which has the correct behaviour for both small # and large 7 (~¢2 and ¢ respectively),
as discussed in § 6. Now (69) is exactly what is obtained in the standard Langevin
equation model of diffusion, = being identified with the correlation time of the
velocity, »~!. It is to be noted that this result is now attained by a random walk
method, as a special case. In view of the above equivalence, we may regard this case
as a basic model of free diffusion in the time-dependent random walk approach.
What (67) describes is the time development of the ¢ steps * (transitions) in the pro-
cess. The subsequent linking of H(z, t) to the conditional density of the displace-
ment (or any other physical random variable) depends on the particular system of
interest—e.g., a lattice, or a continuous medium, or an irregular array of points, etc.

A closec} expression for P(m, t) may be derived from (67). A trivial re-writing of
that equation shows that the generating function for P has the structure

f/'fl l

Lew sz ) = [1+ [ dg exp {28(2)} ] exp (—t}ry), (70)
0

where g(z) is given by (3). Since the exponential in curl

. ; y brackets factors into a pro-
duct of exponentials, we arrive at the solution

try

P, 1) =[5, o+ of WL ™R L, QG 1)9) exp (—ifmy).

(71)

gure 2 contains a plot of the
and this should be compared

odel of § 7. It is interesting to
the alternative representation

P(m, t) = [Sm,o - ( ; )miz ()11

€Xp (—1/7y).

Onc? again, this reduces to (29) in one dimension. Fj
spfecxul case de=1, m=(, r=I=% as obtained from (7D

with the corresponding plot for the Jjump diffusion m ’
note that, in one dimension, P(m, t) has ma

w

2 (=1)" Ly, 21 (rl)l/%/m}

n=0

(72)

—
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The solution (71) should be compared with that of the zero jump time model, equa-
tion (52). The ‘ superposition * implied by the integration over & intuitively suggests
an improvement in the short-time behaviour of the theory, a feature already dis-
cussed earlier. The master equation of which (71) is the solution makes the point
even more explicit. For notational simplicity, consider the one-dimensional, un-
biased case. We find

a_a;P (m, 1) = (1/27) {P (m + L, ) + P (m—1, )—2 P (m, 1)}
- {8m+1, 0 1 Sm-1, 0—2 Sy, 0} exp (—t/my)] . (73)
Thus &P (m, 1)/ot—0 as t—0, and the desired feature follows. Note that
P (m, 0) =8, , is the initial condition on P.

The deviation from a normal distribution of the solution P (m, ¢) for an unbiased
random walk may again be judged by the excess of kurtosis. We find, for d=3,

vy (£) = [v @)+ ‘3 ( 1-——2éexp (—t/r)—exp (—2 t/-rhl))] / v* (1), (743

where v () is given by (69). Thus vy (¢) has the same leading behaviour as 1/v (7)
for both <= and t> =, and becomes negligible for ¢ > Ty

9. Model with exponential holding times p (t), q (f)

- The natural extension of the special cases discussed in § § 7 and 8 is a model in which

p(t) = exp (—t/7), q(t) = exp (—t/ry), (75)

where 7, and 7, are in general distinct. The scope of applicability of the theory is
now increased, as there do occur situations in which 7o and 7, are comparable®. The
analytic solution to be presented shortly for H(z, t) displays the roles played by
finite halt and flight times in the diffusion process.

We use (75) in (24) and invert the Laplace transform. After some tedious algebra,
we obtain the following result. Let A, = 1/75, A, =1 |74, and

1) = [} Qg — AJE -+ Aghyz] e (76)
Then  2( + ADHG, 1) = Aoz — 1) exp (— Ay £) -+ [(\g + Ayz) cosh 52
HARD {00 = X) Oo — A2) + Dh}sinh ]

exp {—} (A, + A1) | (77)

*The Singwi-Sjolander (1960) model for diffusion in liquids uses the choice (75). Although the
ﬁrst-waiting—time complication is ignored, no consequences ensue as a result because only the
exponential forms for p(z) and g(¢) are employed in that work. ,
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It is easily verified that H(I, ) = 1, as required, and that H(z, t) is an entire function
of z. If 7y =0, we have

1@~ (1/271) + (z — Hiry + Oy, (78)
and therefore

H(z, t) > exp [tz — 1)/r,], (79)
yielding the jump model of (50) . While if r, - 0, we find

@)~ (1/27) + (z — })[2r, + O(ry), (80)

and hence

Hiz, 1) = [L — (1/2) + (1)2) exp (zt/m)] exp (— t}ry), (81)

thus reproducing the free diffusion model of (67) f1.
Returning to (75) to (77), we find (using (39), for instance)

wWit) = [t — 71+ 7y €Xp (— )] /(ry + 7). (82)

It is evident that the mean square displacement has the correct short-time behaviour.
The diffusion constant for unbiased random walk in three-dimensions is given by

D = @6(ry + 7)), _ (83)

e

as expected. In part 2, we shall see how (83) is modified in the presence of a local
mode. ‘

The structure of the ‘interference’ between the L and F states is made more trans-
parent by considering the special case 7, = v, = , which lies halfway between the
extremes studied earlier. Equation (77) now simplifies somewhat, and we obtain

= kL b

H(z, £) = %[(1 - %) + (1 + ;) cosh (#V/z])

+ 2/+/5) sinh (tv;/T)] exp(— ). (84)
The corresponding probability W(n, 1) is given by

_ 1 (Z‘/T)2" 2/ )2+l (t/,,.)2n+2
W, 1) = n AT — — tl7).
n, 1) 2[5 0T @1 +(2n+ 51t o 2)!] exp (— #/7).  (85)

Equ.ation (85) should be compared with (51) (corresponding to 7y =0) and with (68)
(wl.uch obtains when 7, = 0), Compact as (85) s, however, there does not appear to be
a simple closed form for P(m, t) in this instance, even in one dimension, This is itself

R T —

I ——
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an indication of the non-trivial ‘ mixing * caused by the random alternation (in time)
of the L and Fstates. For the sake of comparison, we have again computed (numeri-
cally) the quantity P(0, ¢) for the case d=1, m=0, r=Il=1%, and plotted the result in
figure 2. We note that the flat behaviour near =0 persists, a consequence of the
finite mean flight time in the model. The asymptotic (¢/7— oo) behaviour of the
model is of course already explicit, from the general discussion.

Other combinations of p (¢) and ¢ () can be studied, depending on the physical
motivation. One such possibility is

p () =exp(—trg), q() = &1 — t/my), (86)

corresponding to flights of a fixed time =, between two neighbouring lattice sites,
interrupted by residence times distributed exponentially (as in the foregoing). This
choice is related to the * finite flight time > model of Gissler and Stump (1973) for the
diffusion of interstitial hydrogen. The formalism of the earlier sections can be
applied to this case in a straightforward manner.* A distribution of flight times (such
as the exponential distribution of (75)) is of course a more general consideration
than the assumption of a constant flight time.

10. Summary and concluding remarks

We have developed a comprehensive two-state random walk model for the diffusion
of a particle on a lattice. The outcome is a picture of the diffusion process that synthe-
sises in a natural manner features of the two extremes of jump diffusion and fluid-like
diffusion. The latter emerge as clearly identified limiting cases. Various models
extant in the literature have been shown to correspond to special cases that obtain
unider additional assumptions. The general theory also enables one to isolate features
that are common to whole classes of models (e.g., instantaneous jump models)
regardless of their finer details.

As the important results of this paper we may list the following: Equation (24)
for the generating function of the steps of the random walk, which, in conjunction
with (25) and (8), yields the generating function for the conditional probability,
P(m, 1t); the explicit solution (26) for the linear lattice; the compact formula
(39) (or (40)) for the mean square displacement of the particle; the unconventional
asymptotic behaviour and other (‘ non-analytic’) effects caused by a continuous
superposition of exponential holding time distributions, as discussed in § 7; the
continuum-diffusion-like result of (69) for the mean square displacement in lattice
diffusion, when a finite mean flight time is allowed for; the corresponding closed-
form solution for P(m, 7) exhibited in (71); and the strong mixing of the flight and
residence states in general, (84) being a particular manifestation of the effect.

As already stated in § 2, we have focussed our attention in this paper on the inter-
play of the two characteristic times Wwo and wy (the mean residence and flight times).
The details of the motion of the particle while in the localized state about a lattice
site would also bring in the third characteristic time, the inverse of the local mode
frequency. Besides, for certain calculations such as that of the structure factor, we
should have to augment the temporal propagators —p'(z,—1#;) and —q’ (#,—t,) used

*In this case, the two-state random walk problem essentially simplifies to a single-state one with
a displaced exponential distribution P(t) =exp (— @t — 7)/70), (t = 7).
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in constructing the sequences W(n, ¢) in § 3 with concurrent spatial propagators for
displacements within a cell and between cells. This would be similar to the procedure
used by Singwi and Sjslander (1960) for diffusion in liquids, We may take the motion
of the particle to be described by an isotropic, three-dimensional, classical oscillator
of frequency w, whenever it is in the localized state. The propagator required is the
conditional density for a displacement r within a cell in the time interval z. We may
use for this quantity the self-correlation function given by Vineyard (1958), namely,

maw? ]3/2 [ mw? r? J
1) = 0 exp | — g 87
8, 1) LWkB T(—cos oy D) © L~ &y T(1—c0s wp " @7

The resultant convolution of such factors can be handled by supplementing the
Laplace transform (with respect to the time variable) with a spatial Fourier transform.
However, our somewhat different objective in the present paper was better served,
in the interest of clarity, by keeping out this aspect of the problem. In paper 2, we
concentrate on the dynamic mobility u(w). We shall see that the oscillatory motion of
the particle plays a significant role in determining the structure of this quantity.
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