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Abstract

Revivals of the coherent states of a deformed, adiabatically and cyclically varying

oscillator Hamiltonian are examined. The revival time distribution is exactly that

of Poincaré recurrences for a rotation map: only three distinct revival times can

occur, with specified weights. A link is thus established between quantum revivals

and recurrences in a coarse-grained discrete-time dynamical system.
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Revivals of a non-stationary state of a Hamiltonian may be regarded as the quantum

analogs of recurrences in a classical dynamical system. In general, when a quantum

mechanical system is in a state |ψ〉, the autocorrelation function |〈ψ(0)|ψ(t)〉|2 decays from

its initial value of unity with increasing time t. Under very special circumstances, however,

it may return to its initial value at certain instants of time, signalling a full revival.

Typically, however, any return would be to a value in a small neighborhood of unity

[1], which we shall term a “near revival”. This would be the counterpart of a Poincaré

recurrence [2] in a classical system, although, of course, there is no direct connection

between the revivals of quantum states and recurrences of the classical phase trajectories

of the same physical system. Taking into account finite experimental resolution, it is

evident that near revivals rather than exact revivals are the readily identifiable phenomena

of interest. Revivals and fractional revivals of wavepackets are of considerable current

interest in many contexts: atom optics [3], propagation of coherent light through a Kerr

medium [4], Rydberg states [5], interacting atom-radiation (Jaynes-Cummings) systems

[1, 6, 7] with single and multi-photon coherent and squeezed coherent states, quantum

dynamics of boson systems and spin systems [8], and so on.

In this paper, we show that one can indeed establish a close relationship between the

near revivals of a wavepacket and recurrences in a discrete-time dynamical system, by

essentially mapping the former problem onto the latter. This leads to a convenient and

systematic way of analyzing the statistics of revivals. In order to discretize time in an

unambiguous and natural way, the parameters in the Hamiltonian are varied adiabatically

and cyclically, with a time period T . Consequently, it is only at instants separated by

an interval T that the Hamiltonian returns to its original self. It is therefore meaningful

to look for revivals of a state only at the instants T, 2T, · · ·. In turn, this permits us to

analyze the problem in terms of recurrences in a discrete-time map.

As a by-product of the cyclic variation of the parameters in the Hamiltonian, the

state vector may pick up an extra non-integrable (“geometric”) phase [9]. One may

expect the revival times to be affected as a consequence - a priori, to get shifted by the

time required to cover the angular excess (or decrement) representing the anholonomy in

the semiclassical limit, namely, the corresponding Hannay angle [10, 11]. This is indeed

the case [12], and the specific system we work with yields an explicit verification of this

result as well. For definiteness, we consider a unitarily deformed oscillator Hamiltonian

whose eigenstates are squeezed generalized coherent states, while the spectrum remains

linear (equi-spaced). Coherent states and their generalizations [13] are convenient in this

regard, as they approximate classical states of radiation. They also provide a setting in

which anholonomies (non-integrable phases) can be measured experimentally [14, 15] and
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analyzed theoretically [16, 17], in a physical range extending from the extreme quantum

regime to the semiclassical limit. Although revivals, per se, are of greatest physical interest

in the case of spectra that are nonlinear (in the quantum numbers), here we restrict our

attention to a linear spectrum. (In this case exact revivals correspond, as we shall see,

to a trivial periodicity.) Complications such as fractional revivals [18] do not arise here,

and this helps us establish in a clear manner a very interesting link between near revivals,

anholonomies and recurrences – manifestations, respectively, of quantum interference,

non-trivial topology in parameter space, and ergodicity in a classical dynamical system.

We recall that the coherent state |ζ〉 (ζ ∈ C) of the standard oscillator Hamiltonian

H = h̄ω(a†a+1/2) is given by |ζ〉 = D(ζ) |0〉 where |0〉 is the ground state of H , and D(ζ)

is the displacement operator exp (ζa†− ζ∗a). For each value of ζ , |ζ〉 is represented in the

position basis by a Gaussian wavepacket which does not spread with time (under evolution

governed by H). The centre of the wavepacket oscillates according to the classical laws

of motion. Using the expansion of |ζ(0)〉 ≡ |ζ〉 in terms of the eigenstates {|n〉} of H , its

correlation function is easily found to be

|〈ζ(0)|ζ(t)〉|2 = exp [ 2 |ζ |2 (cosωt− 1) ] . (1)

Thus, in this linear case, revivals of the initial wavepacket simply amount to periodicity

with period 2π/ω. To induce a geometric phase, however, we need a Hamiltonian that has

more than just a single parameter (analogous to ω in H) that can be varied. Further, in

order to have a non-vanishing anholonomy (Hannay angle) in the semiclassical limit, the

geometric phase must have a dependence on the quantum number n labelling the states

[10]. Both these objectives are achieved if we begin with a deformation of H produced

by squeezing. For the sake of generality, we include a possible displacement as well, and

define the transformed Hamiltonian

H̃(α, β) = S(β)D(α)HD†(α)S†(β) (2)

where α, β ∈ C, and S(β) is the squeezing operator [19] S(β) = exp ((βa†
2 − β∗a2)/2).

As D(α) and S(β) are unitary, H and H̃ are unitarily equivalent and isospectral. H̃ has

eigenstates |n , α , β〉 = S(β)D(α) |n〉 ( n = 0, 1, · · ·), connected by ladder operators ã

and ã†, where ã = S D aD† S† and [ã, ã†] = 1.

Under a cyclic, adiabatic variation of the displacement and squeezing parameters α =

α1 + i α2 and β = β1 + i β2, the state |n , α , β〉 acquires a Berry phase γn that is a

sum of contributions from the displacement and squeezing parameters, respectively. The

contribution from the variation of the displacement parameter α can be found from the

group multiplication law for the elements {D(α)} of the Heisenberg-Weyl group, namely,

D(α)D(α′) = D(α+ α′) exp [iχ(α, α′)] (3)
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where χ(α, α′) is twice the area of the triangle with vertices at 0, α′ and α + α′ in the

complex plane. This contribution is independent of n essentially because [a, a†] is just the

identity operator. On the other hand, the contribution from the variation of the squeezing

parameter β is more involved. The squeezing operator S(β) represents an element of the

group SU(1, 1), with generators K+ = a†
2
/2, K− = a2/2 and K0 = [K−, K+]/2 =

(aa† + a†a)/4. The multiplication rule is of the form [13]

S(β)S(β ′) = S(β
′′

) exp [iφ(β, β ′)K0] (4)

where β
′′

is a certain function of β and β ′. The phase φ(β, β ′) is related to the area of a

certain geodesic triangle on the upper sheet of the hyperboloid ~x · ~x ≡ x2
0 − x2

1 − x2
2 = 1,

where (setting arg β = ϕ) ~x = (cosh 2|β|, − sinh 2|β| cosϕ, sinh 2|β| sinϕ), on which the

parameters of SU(1, 1) live. The geometric phase is essentially the solid angle subtended

at the origin ~x = 0 by the invariant area enclosed on the hyperboloid [20]. Since ~x ·~x = 1,

this is just the surface integral over (dx1 dx2)/x0 on the hyperboloid. In terms of β this

integral is

B =
∫
d2β

sinh 2|β|
|β| , (5)

the integration running over the area enclosed by the loop traversed in the β-plane in

a cyclic variation of the squeezing parameters. Further, owing to the presence of the

diagonal generator K0 in Eq. (4), as opposed to the unit operator in the case of D(α),

there is an additional factor (n + 1
2
) in the geometric phase. Collecting these results, we

arrive at the expression

γn = −2A− (n +
1

2
)B , (6)

where A is the area of the loop traversed in the α-plane in one cyclic variation of α1 and

α2. The linear dependence of γn on n [17] implies that A and B are determined by γ0 and

γ1 (and vice versa): A = (γ1 − 3γ0)/4, B = γ0 − γ1.

We now construct the coherent state |z〉 in the tilde-basis, i.e., ã|z〉 = z|z〉 (z ∈ C),

so that

|z〉 = exp

(
−|z|2

2

)
∞∑

n=0

zn

√
n!

|n , α , β〉 . (7)

In the present instance, an equivalent way of obtaining |z〉 is by operating on the ground

state |0 , α , β〉 by the displacement operator exp(zã† − z∗ã). Consider time evolution

governed by the Hamiltonian H̃ , while H̃ itself changes adiabatically owing to a cyclic

variation of the parameters α and β with a time period T >> ω−1. An initial state |z(0)〉
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≡ |z〉 (given by Eq. (7)) evolves at time T to

|z(T )〉 = exp

(
−|z|2

2

)
∞∑

n=0

zn

√
n!

exp
[
−i
(
γn − (n+

1

2
)ωT

)]
|n , α , β〉 . (8)

Using the results quoted in Eqs. (5) and (6) for γn , the correlation function now works

out to

|〈z(0)|z(T )〉|2 = exp
[
2|z|2 (cos(ωT + B) − 1)

]
. (9)

Therefore revivals occur at times T, 2T, · · · provided ωT + B = 2πp, where p = 0, 1, · · · –

that is, provided the cyclic variation of the parameters in the Hamiltonian is carried out in

a time period equal to one of the values (2π−B)/ω, (4π−B)/ω, · · ·. This is to be compared

with the original revival times 2πp/ω (cf. Eq. (1)). As −∂γn/∂n = B (= γ0 − γ1 in

the present instance) is just the Hannay angle [10], we have here an explicit verification

of the staggering of the revival times by precisely the time required to cover this angular

excess (or decrement, depending on its sign) [12].

Next, we note that there is a convenient and natural way to describe the evolution of

the initial state |z(0)〉 to the state at times T, 2T, · · · . Equation (8) can be re-written as

|z(T )〉 = exp
(
i (γ0 −

1

2
ωT )

)
|z e−i(ωT+B)〉 . (10)

Moreover, as the cyclic variation of α and β is continued, the state |n , α , β〉 picks up

the same additional phase γn in each cycle – i.e., the same Hannay angle B is added in

each interval T . Therefore, if θk denotes the phase of the complex eigenvalue labelling

|z(kT )〉 (k = 0, 1, 2, · · ·), the evolution is equivalent to a rotation map [21] on a circle

(S1), namely,

θk+1 = θk − 2π∆ (mod 2π) (11)

where 2π∆ = ωT + B. If ∆ is an integer, every value of θ is periodic, with period

1. This is the case already discussed following Eq. (9). A more general possibility is

∆ = p/q, a rational number. Again, every orbit of the map is periodic, but with a period

q. Correspondingly, every initial state |z(0)〉 has revivals at times qT, 2qT, · · · . But

rational values of ∆ constitute a set of measure zero. The generic case corresponds to

an irrational value of ∆, and this is also the most interesting case. (It is also the most

pertinent one from a practical point of view, as it relates directly to near revivals, as we

shall see.) As is well known, the map no longer has any periodic orbits, but the iterates

of any θ0 cover S1 densely as k → ∞. (Regarded as the Poincaré section for motion on

a 2–torus, this is the quasi-periodic case). The dynamics is ergodic but not mixing, with
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a uniform invariant density ρ(θ) = 1/(2π). Although we no longer have exact revivals in

principle, the system comes arbitrarily close to these in practice (near revivals) – precisely

the analog of Poincaré recurrences. As a consequence, the following complete analysis of

the statistics of near revivals becomes possible.

Consider a prescribed small angular interval Iǫ of size 2πǫ, located symetrically about

the initial phase θ0 on S1. Let ∆ ≡ [∆] + δ, where [∆] stands for the integer defined

by ∆ − 1 < [∆] < ∆ (for either sign of ∆), so that δ is an irrational number satisfying

0 < δ < 1. It is then easy to see that θk ∈ Iǫ ⇒ {kδ} < ǫ, where {x} denotes the fractional

part of x. The corresponding correlation function then merely differs from unity by a term

of order ǫ2, because

|〈z(0)|z(kT )〉|2 = exp
[
2|z|2 (cos 2πk∆ − 1)

]

> exp
(

4|z|2 π2{kδ}2
)
> 1 − 4|z|2 π2 ǫ2 . (12)

To order ǫ, therefore, we may regard a return of θk to Iǫ as a (near) revival. The statistics

of the occurrence times of such revivals is then identical to that of the recurrences to an

angular interval of size 2πǫ in the rotation map (11). The solution to the latter problem

is given by certain gap theorems for interval exchange transformations [22, 23]. Applying

these to the case at hand, we obtain the following results in the long-time limit, after

the transients due to specific initial conditions have died out and the invariant measure

is attained.

Ergodicity implies that the mean recurrence time (here, the mean time between suc-

cessive near revivals) is, in units of T , the reciprocal of the invariant measure of Iǫ. As this

measure is uniform on the circle, the mean recurrence time is just T/ǫ, as one may expect.

The distribution of recurrence times is, however, quite remarkable [24]. In general (i.e.,

for arbitrary ǫ and δ), it is concentrated at no more than three points T1 = k1T, T2 = k2T

and T3 = T1 + T2, where k1 and k2 are the least positive integers such that

{k1δ} < ǫ and 1 − {k2δ} < ǫ (13)

respectively. (Recall that ǫ ≪ 1; as long as ǫ < 1/2, k1 6= k2.) It is easy to show that

ǫ ≤ {k1δ}+ 1− {k2δ}: when the equality sign applies, only two recurrence times (T1 and

T2) occur. If F (kT ) denotes the normalized invariant (i.e., post-transient) probability

that the revival time is kT (k = positive integer), then

F (kT ) = (1/ǫ)
[

(ǫ− {k1δ}) δk,k1
+ (ǫ− 1 + {k2δ}) δk,k2

+ ( {k1δ} + 1 − {k2δ} − ǫ ) δk,k1+k2

]
. (14)
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This is consistent with the requirement 〈k〉 = 1/ǫ (which follows from ergodicity) provided

k2 {k1δ}+ k1(1−{k2δ}) = 1, a relationship that can be established independently. With

slight modifications, these results for near revivals continue to hold good in the periodic

case (δ = rational number) as well. They are therefore generic, and do not require any

fine-tuning of the parameters in the problem (ω, T and B).

Revivals are a manifestation of the interference arising from the different phases ac-

quired under time evolution by the stationary basis states in the expansion of a non-

stationary state. Hence it is the quantum-number-dependent part of the phase (both

dynamical and geometric) that is relevant in this regard. That is why, in the present

instance, it is only the coefficient B in the expression for γn (see Eq. (6)) that plays a

role, and not the quantity A. (We have already seen why varying α does not lead to

an n-dependent geometric phase, while varying β does so.) Therefore, as far as revivals

are concerned, we may hold α fixed at the value zero throughout (i.e., displacement may

be dispensed with altogether), without altering any of the conclusions. A cyclic varia-

tion of the squeezing parameters β1 and β2 suffices to produce the relevant non-trivial

anholonomy. For any given values of ωT (≫ 1) and B, the near revivals of the corre-

lation function concerned have been shown to be essentially equivalent to the Poincaré

recurrences in a rotation map on S1. The steady-state distribution of recurrence times is

explicitly determined. It is restricted to just three possible values. Their locations and

relative frequencies of occurrence are easily found for any given δ and prescribed ǫ.

As already stated, we have considered near revivals in the case of a linear spectrum.

In the general nonlinear case (including, in the quantum optical context, multiphoton

coherent states [25]), additional interesting features appear, that have to be taken into

account in establishing a mapping between near revivals (allowing for the effects of possible

non-integrable phases) and Poincaré recurrences. These include fractional revivals [26] and

nonlinear dependence of the geometric phase on the quantum numbers. Details of this

investigation will be reported elsewhere.
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