Direct oxidation of H₂ to H₂O₂ over Pd-based catalysts: Influence of oxidation state, support and metal additives

V.R. Choudharya, C. Samantaa, T.V. Choudharyb,*

a Chemical Engineering Division, National Chemical Laboratory, Pune 411008, India
b 5518 Colony Court, Bartlesville, OK 74006, USA

Received 23 November 2005; received in revised form 3 April 2006; accepted 15 April 2006
Available online 23 May 2006

Abstract

The influence of oxidation state (reduced and oxidized), support (ZrO₂, Ga₂O₃, CeO₂, SiO₂, H-β, ThO₂, CeO₂–ZrO₂, BPO₄ and Pd/Al₂O₃) and precious metal additives (Au, Pt, Rh and Ru) on the direct H₂O₂ synthesis has been investigated over Pd-based catalysts. For all the supports investigated herein, the oxidized Pd catalysts showed significantly superior H₂O₂ yields as compared to their reduced counterparts. The effect of the Pd oxidation state was found to be more important for determining the H₂O₂ yields than the particle size and surface area properties of the catalyst system. An excellent correlation was observed between the H₂O₂ selectivity and H₂O₂ decomposition activity of the oxidized Pd catalysts. The oxidized Pd catalysts showed almost an order of magnitude lower H₂O₂ decomposition activity than the reduced catalysts. The H₂O₂ yield in the H₂ to H₂O₂ oxidation passed through a maximum with increase in the Au concentration. Although a similar effect was also observed in case of Pt, Au was found to be a superior promoter for the direct H₂O₂ synthesis process. Addition of Rh and Ru was found to be detrimental for the H₂O₂ yields; these results can be explained in terms of increased H₂O₂ decomposition activity and/or enhanced H₂ to H₂O reaction activity in their presence.

2006 Elsevier B.V. All rights reserved.

Keywords: H₂O₂; Direct synthesis; Decomposition; Pd catalysts; Metal additives; Oxidation state; Supports

1. Introduction

H₂O₂, which is an environmentally benign oxidant, is expected to play an increasingly important role in the chemical industry [1]. Other applications of H₂O₂ (such as bleach in the textile and pulp/paper industry and in treatment of waste water) are also on the rise, thus indicating the need for larger volumes of H₂O₂. The current commercial process for H₂O₂ production is a circuitous process involving indirect oxidation of H₂ (Anthraquinone process). Since the above process is quite complex, there is a significant interest in developing a direct H₂ oxidation process [2]. Direct synthesis of H₂O₂ has received considerable attention [1–14] in recent years with Pd-based systems as the catalysts of choice. In the H₂ to H₂O₂ oxidation over the Pd catalysts, the selective H₂O₂ (H₂ + O₂ → H₂O₂) and non-selective water (H₂ + 0.5O₂ → H₂O) forming reactions occur simultaneously. Furthermore, the H₂O₂ molecules are unstable in presence of Pd which further facilitates its conversion to water. It is, therefore, extremely difficult to achieve high H₂O₂ selectivity/yields. Since the side reaction involving combustion of hydrogen to water is a highly exothermic reaction, increasing the H₂O₂ selectivity is also important for making the process non-hazardous. The challenges posed by the direct H₂O₂ process, therefore, make it an interesting candidate for study from a scientific as well as a commercial viewpoint.

Our previous studies have suggested that oxidation state of Pd also plays a role in determining the activity/selectivity in the direct H₂ oxidation to H₂O₂ process [6]. Herein, we have systematically considered this aspect by investigating the effect of Pd oxidation state on the H₂O₂ yields over several supported Pd catalysts (Pd/ZrO₂, Pd/Ga₂O₃, Pd/CeO₂, Pd/SiO₂ and Pd/H-β, Pd/ThO₂, Pd/CeO₂–ZrO₂, Pd/BPO₄ and Pd/Al₂O₃). H₂O₂ decomposition studies have also been undertaken on these catalysts (Pd in reduced and unreduced state) to gain further insights into the process.

Hutchings and coworkers observed that Au-based catalysts exhibited high H₂O₂ selectivity, but low H₂O₂ formation rates.
at low reaction temperatures (2 °C) in a solvent mixture of methanol and water [8]. However, a considerable increase in H₂O₂ formation rate was observed when Au was coupled with Pd in the catalyst system. It is therefore interesting to study the influence of different metal additives (and their content) on the direct H₂O₂ synthesis. Herein, we have investigated the H₂O₂ synthesis and decomposition at 25 °C in an acidic medium over the following precious metal added Pd-based systems:

(a) Pd-Au/ZrO₂ (Au/Pd atom ratio range = 0–0.11)
(b) Pd-Pt (Pt/Pd atom ratio range = 0–0.09)
(c) Pd-Rh (Rh/Pd atom ratio range = 0–0.16)
(d) Pd-Ru (Ru/Pd atom ratio range = 0–0.16)

2. Experimental

2.1. Catalyst synthesis

2.1.1. Supported Pd catalysts

The Al₂O₃ (prepared from bohemite by its calcination at 500 °C for 2 h), ZrO₂ (prepared from zirconyl nitrate by its hydrolysis to zirconium hydroxide by ammonium hydroxide and calcining at 500 °C for 2 h), Ga₂O₃, CeO₂, ThO₂ (prepared from thorium nitrate by its hydrolysis to thorium hydroxide by ammonium hydroxide and calcining at 500 °C for 2 h), SiO₂ (prepared from B-type silica gel, by calcining at 500 °C for 3 h), CeO₂–ZrO₂ (prepared by mixing CeO₂ and ZrO₂ with Ce/Zr mole ratio of 1.0, in the presence of deionised water just sufficient to form a thick paste, drying the wet mixture in an air oven at 100 °C for 2 h and then calcining it in air at 600 °C for 3 h), H-B (Si/Al = 27 and crystal size = 1.0 μm) and BPO₄ (prepared from a mixture of boric acid and orthophosphoric acid with B/P mole ratio of 1.0), drying the mixture in air oven at 100 °C for 2 h and then calcining it in air at 600 °C for 3 h) supported oxidized Pd (2.5 wt%) catalysts were prepared by impregnating the respective support with palladium acetate from its acetonitrile solution by the incipient wet impregnation technique. After impregnation, the wet catalyst mass was dried at 100 °C for 2 h and then calcined under static air in a muffle furnace at 500 °C for 3 h.

The supported reduced Pd catalyst was prepared from the respective oxidized Pd catalyst by reducing it with an ammoniacal hydrazine solution at room temperature (27 °C) for 2 h followed by washing, filtration and drying at 100 °C in an air oven.

2.1.2. Bimetallic catalysts

The ZrO₂ supported bimetallic catalysts (e.g. Au-Pd/ZrO₂, Pt-Pd/ZrO₂, Ru-Pd/ZrO₂ and Rh-Pd/ZrO₂) with different noble metal (Au, Pt, Ru and Rh) loadings and constant Pd loading (2.5 wt%) were prepared by simultaneously impregnating fine particles of ZrO₂ with the corresponding noble metal chlorides from their aqueous acidic solution by the incipient wetness technique, drying at 100 °C for 2 h and then calcining in static air at 500 °C for 3 h.

2.2. Catalyst characterization

The Pd⁰ and/or PdO phases in the supported Pd catalysts were determined by X-ray powder diffraction method using a Holland Phillips, PW/1730 X-ray generator with Cu Kα radiation (λ = 1.5406 Å; 40 kV, 25 Ma). The surface area of the catalysts was measured by the single point BET method by measuring the adsorption of nitrogen at liquid N₂ temperature and at the N₂ concentration of 30 mol% (balance helium), using a Monosorb Surface Area Analyzer (Quantachrome Corp., USA) based on dynamic adsorption/desorption technique. Before carrying out surface area measurement experiments, the catalyst (0.1–1.0 g) was pretreated in situ in the sample cell at 300 °C for 1 h in flow of (30 cm³ min⁻¹) of a mixture of helium and nitrogen to remove the traces of moisture.

2.3. Reaction procedure

2.3.1. H₂O₂ synthesis

The direct oxidation of H₂ by O₂ to H₂O₂ over the supported Pd catalysts was carried out at atmospheric pressure (95 kPa) in a magnetically stirred glass reactor (capacity 250 cm³) containing 0.5 g catalyst in a fine powder form and an aqueous acidic solution (150 cm³) as a reaction medium. A H₂/O₂ (4.6 mol% H₂) gas mixture was bubbled (using a fine glass tip) continuously through the reaction medium containing the catalyst under vigorous stirring at a constant temperature. The temperature of the reaction was controlled by continuously passing water through the reactor jacket from thermostatic bath. The concentration of unreacted hydrogen present in the effluent gases, after removing the water vapors from them by condensation at 0 °C, was measured by an online hydrogen analyzer (Kathrometer, Nucon, New Delhi) based on a thermal conductivity detector. After the reaction, the solid catalyst from the reaction mixture was separated by filtration and the filtrate was analyzed for the H₂O₂ formed in the reaction by iodometric titration. The conversion of H₂, H₂O₂ yield and selectivity were obtained as follows:

H₂ conversion (%) = \(\frac{\text{(moles of H₂ in the feed)} - \text{(moles of H₂ in the effluent gases)}}{\text{moles of H₂ in the feed}} \times 100 \)

H₂O₂ yield (%) = \(\frac{\text{moles of H₂O₂ formed}}{\text{moles of H₂ in the feed}} \times 100 \)

H₂O₂ selectivity (%) = \(\frac{\text{moles of H₂O₂ formed}}{\text{moles of H₂ consumed}} \times 100 \)

Some of the experiments were repeated and an excellent reproducibility (±5% for H₂O₂ yields) was observed for these experiments. The repeatability of the iodometric titration experiments in terms of determining H₂O₂ concentration was within 3%. Constant calibrations were undertaken to ensure the accuracy of the analysis. The flammability and detonability limits for H₂ in O₂ (at 25 °C and 1 atm pressure) are 4.0% H₂ (lower) to 94% H₂ (upper) and 15% H₂ (lower) to 90% H₂.
The process could be hazardous when operated within the flammability limits, particularly when the flammable reaction mixture is ignited or subjected to a dry Pd catalyst. The safety in the present work was ensured by using the feed H2/O2 mixture close to the lower flammability limit, so that the concentration of H2 in the reactor exit gas was less than 4.0% and also care was taken to avoid spillage of catalyst on the reactor walls during the reaction. The H2 gas flow rate was very small (0.7 ml/min); however, a flame arrester for H2 (a 100 cm long and 3.0 mm o.d. ss tube packed with glass beads) was used between the H2 cylinder and reactor to avoid flame propagation back to the H2 cylinder, as a precautionary measure.

2.3.2. H2O2 decomposition

The H2O2 decomposition reaction over the catalysts was carried out using a magnetically stirred glass reactor (capacity: 250 cm³) containing 0.2 g catalyst in 150 cm³ aqueous reaction medium, with or without containing acid and/or halide anions, by injecting 1 ml of 30% (w/v) H2O2 solution in the reactor under vigorous stirring and measuring the gas (O2) evolved in the H2O2 decomposition at 25 °C and atmospheric pressure, as a function of time, using a constant pressure gas collector [15]. The percent H2O2 decomposition data was estimated as follows:

\[
\text{H}_2\text{O}_2 \text{ decomposition (\%)} = \frac{V_t}{V_T} \times 100
\]

where \(V_t\) is the volume of O2 evolved in time \(t\) and \(V_T\) is the volume of O2 evolved in the complete decomposition of H2O2 in the reactor. The H2O2 decomposition activity of the supported Pd catalysts was evaluated in term of a first order rate constant \(k\) according to the first order rate expression: \(\ln \left(\frac{V_T}{V_t} \times \frac{C_A}{V_t}\right) = kC_A t\) (where \(V_T\) is the volume of O2 evolved in the complete H2O2 decomposition, \(V_t\) the volume of O2 evolved in time \(t\) and \(C_A\) is the catalyst concentration/loading).

3. Results and discussions

3.1. Effect of mass transfer on the reaction between H2 and O2

The rate of the reaction between the H2 and O2 in liquid medium is known to depend on the mass transfer of the reactants to the catalyst sites [8]. It is, therefore, important that experiments to investigate the formation of H2O2 in the reaction between H2 and O2 should be carried out under conditions at which the mass transfer has minimal influence on the reaction rate. Fig. 1 shows the conversion of H2 for different agitation rates with all other variables remaining constant. The stirring speed was adjusted by altering the applied voltage \(V\) to the magnetic stirrer. At the lower stirring speeds, the conversion of H2 was found to depend...
on the stirring speed. However, above 230 V there was no significant change in the H₂ conversion, indicating the absence of gas–liquid mass transfer effect on the reaction. For the subsequent experiments, the stirrer speed was fixed at 260 V.

3.2. Influence of the Pd oxidation state on the H₂ to H₂O₂ reaction over different supported Pd catalysts

Figs. 2 and 3 reveal the performance of the different supported Pd catalysts in the H₂ to H₂O₂ oxidation with Pd in the reduced (Pd⁰) and oxidized state (PdO), respectively. The H₂O₂ decomposition activity for the different catalysts is also shown. The H₂ conversion activity of the reduced catalysts was higher than that for the oxidized forms. However, the oxidized Pd catalysts had a considerably higher selectivity for the H₂O₂ formation. Also, the H₂O₂ decomposition activity was an order of magnitude higher for the reduced Pd catalysts. The higher H₂O₂ decomposition activity for the reduced Pd catalysts may be related to the higher propensity for H₂O₂ adsorption on reduced Pd sites.

In case of the direct H₂ oxidation process, the selectivity for H₂O₂ may decrease either due to combustion side reaction (H₂ + 0.5O₂ → H₂O) or secondary reactions of H₂O₂ leading to further water formation. Therefore, a lowering of the H₂O₂
conversion activity of the catalyst should increase the H$_2$O$_2$ selectivity in the H$_2$ to H$_2$O$_2$ oxidation. In line with this, a good correlation was observed between the selectivity for H$_2$O$_2$ in the H$_2$ to H$_2$O$_2$ oxidation process and the H$_2$O$_2$ decomposition activity for the oxidized catalysts (Fig. 4a). Metal particle size and surface area data for the different reduced Pd catalysts are shown in Table 1. The properties of the reduced Pd catalysts were found to be less important in determining the H$_2$O$_2$ yield/selectivity in the H$_2$ to H$_2$O$_2$ oxidation. The reduced Pd catalysts in general, gave more or less similar results (little or no H$_2$O$_2$ selectivity) in the H$_2$ to H$_2$O$_2$ oxidation because of their extremely high H$_2$O$_2$ decomposition activity (Fig. 2).

3.3. Effect of metal additives

Results showing the influence of gold (Au) concentration in the oxidized Pd-Au/ZrO$_2$ catalyst on its performance in the H$_2$ to H$_2$O$_2$ oxidation reaction at 25 °C in an aqueous acidic (0.03 M H$_3$PO$_4$) medium are presented in Fig. 5a. The H$_2$ conversion over the catalyst was found to increase with the increasing gold loading in the catalyst. However, the H$_2$O$_2$ yield in the H$_2$ to H$_2$O$_2$ oxidation initially increased (more than doubled) and then decreased slightly with increase in the Au concentration. Thus, an optimum Au concentration is required for achieving high H$_2$O$_2$ yields in the reaction under the investigated experimental conditions.

Table 1

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Surface area (m2 g$^{-1}$)</th>
<th>Average Pd particle size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd (2.5%)/Al$_2$O$_3$</td>
<td>176.0</td>
<td>24.0a</td>
</tr>
<tr>
<td>Pd (2.5%)/Ga$_2$O$_3$</td>
<td>36.0</td>
<td>22.0a</td>
</tr>
<tr>
<td>Pd (2.5%)/CeO$_2$</td>
<td>18.0</td>
<td>45.0b</td>
</tr>
<tr>
<td>Pd (2.5%)/ZrO$_2$</td>
<td>59.0</td>
<td>54.0b</td>
</tr>
<tr>
<td>Pd (2.5%)/Th$_2$O$_4$</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>Pd (2.5%)/SiO$_2$</td>
<td>231.0</td>
<td>12.0a</td>
</tr>
<tr>
<td>Pd (2.5%)/CeO$_2$–ZrO$_2$</td>
<td>8.0</td>
<td>–</td>
</tr>
<tr>
<td>Pd (2.5%)/BPO$_4$</td>
<td>25.0</td>
<td>–</td>
</tr>
<tr>
<td>Pd (2.5%)/H-β</td>
<td>165.0</td>
<td>18.0a</td>
</tr>
</tbody>
</table>

a Determined by using Scherrer’s formula.

b Obtained from TEM.

Fig. 5

Influence of the concentration of gold loading in the oxidized Pd/ZrO$_2$ catalyst on the: (a) H$_2$ to H$_2$O$_2$ oxidation and (b) H$_2$O$_2$ decomposition rate constant (k_d) in aqueous acidic (0.03 M H$_3$PO$_4$) reaction medium (at 25 °C).

Fig. 6

Influence of the concentration of Pt in the oxidized Pd (2.5%)/ZrO$_2$ catalyst on the: (a) H$_2$ to H$_2$O$_2$ oxidation and (b) H$_2$O$_2$ decomposition rate constant (k_d) in aqueous acidic (0.03 M H$_3$PO$_4$) reaction medium (at 25 °C).

Fig. 7

Influence of the concentration of Ru in the oxidized Pd (2.5%)/ZrO$_2$ catalyst on the: (a) H$_2$ to H$_2$O$_2$ oxidation and (b) H$_2$O$_2$ decomposition rate constant (k_d) in aqueous acidic (0.03 M H$_3$PO$_4$) reaction medium (at 25 °C).
constant (precursor for H$_2$O$_2$ formation [10,16]) eventually leading to the ability of Pt to catalyze the scission of the O–O bond [10]. Species at higher Pt content is probably related to the superior water formation. The decreased stability of the hydroperoxy medium are presented in Fig. 6a. The H$_2$ conversion activity of the catalyzed Pd catalysts had a significantly higher selectivity for H$_2$O$_2$ formation in the direct H$_2$O$_2$ synthesis process [8]. This may be related to the ability of the Au to form stable hydroperoxy species which are considered to be the precursors for H$_2$O$_2$ [16]. The increase in the secondary decomposition reaction of H$_2$O$_2$ (Fig. 5b) however probably dominates at higher Au concentration leading to a maximum in H$_2$O$_2$ yield with Au content.

Results showing the influence of Pt concentration in the oxidized Pd-Pt/ZrO$_2$ catalyst on its performance in the H$_2$ to H$_2$O$_2$ oxidation in an aqueous acidic (0.03 M H$_3$PO$_4$) reaction medium are presented in Fig. 6a. The H$_2$ conversion activity of the catalyst increased with the increase in the Pt concentration in the catalyst. Similar to the Au case, the H$_2$O$_2$ yield also passed through a maximum as a function of Pt content. However, in case of Pt addition, the initial increase in H$_2$O$_2$ yield was lower than that observed on Au addition; H$_2$O$_2$ yield increased only by a factor of ~1.5 in the Pt case. Interestingly the H$_2$O$_2$ yield at higher Pt concentrations quickly dropped below that of monometallic Pd-based catalyst; this was in contrast to the Au case (Fig. 5a). The observed decrease in the H$_2$O$_2$ yield/selectivity in the H$_2$ to H$_2$O$_2$ oxidation with the increase in the Pt concentration in the catalyst may be attributed to the increased H$_2$O$_2$ decomposition activity of the catalyst (Fig. 6b) and decreasing stability of the hydroperoxy species (precursor for H$_2$O$_2$ formation [10,16]) eventually leading to water formation. The decreased stability of the hydroperoxy species at higher Pt content is probably related to the superior ability of Pt to catalyze the scission of the O–O bond [10].

Presence of Ru and Rh in the catalyst was found to be detrimental to the H$_2$O$_2$ yields (Figs. 7 and 8). It is apparent that in case of Ru and Rh, the increase in H$_2$ conversion was not sufficient to compensate for the loss in H$_2$O$_2$ selectivity due to increase in the secondary H$_2$O$_2$ decomposition (Figs. 7b and 8b) and enhancement of the direct non-selective parallel H$_2$ to water oxidation side reaction.

4. Concluding remarks

1. The H$_2$ conversion activity of the reduced Pd catalysts was higher than that for the oxidized forms. However, the oxidized Pd catalysts had a significantly higher selectivity for the H$_2$O$_2$ formation.
2. The H$_2$O$_2$ decomposition activity was an order of magnitude higher for the reduced Pd catalysts. Correspondingly the oxidized catalysts showed significantly superior H$_2$O$_2$ yields.
3. Catalyst properties such as particle size and surface area were found to be less important than the oxidation state in determining the H$_2$O$_2$ selectivity.
4. The H$_2$O$_2$ yield in the H$_2$ to H$_2$O$_2$ oxidation passed through a maximum with increase in the Au concentration. A similar effect was also observed in case of Pt. However, Au was found to be a superior promoter for the direct H$_2$O$_2$ synthesis process.
5. Presence of Rh and Ru was found to be detrimental for the direct H$_2$O$_2$ synthesis process.

Acknowledgments

Chanchal Samanta and V.R. Choudhary are grateful to the CSIR (New Delhi) for the award of a Senior Research Fellowship and the Emeritus Scientist Scheme, respectively.

References