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ABSTRACT A local density functional theory of the ground
electronic states of atoms and molecules is generated from three
assumptions: (i) The energy functional is local. (ii) The chemical
potential of a neutral atom is zero. (iii) The energy of a neutral
atom of atomic number Z is -0.6127 Z7/3. The energy func-
tional is shown to have the form

E[p] = Aofp5/3dT + - BoN2/3fp4/3dr + Svpdr

where AO = 6.4563 and Bo = 1.0058. The first term represents
the electronic kinetic energy, the second term represents the
electron-electron repulsion energy for N electrons, and the third
term is the nucleus-electron attraction energy. The energy E
and the electron density p are obtained and discussed in detail
for atoms; their general properties are described for molecules.
For any system the density becomes zero continuously at a finite
distance from nuclei, and contours of the density are contours
of the bare-nuclear potential v. For an atomic species of frac-
tional charge q = 1 - (N/Z), an energy formula is obtained,

-E/Z2N113 = 0.6343 + 0.1721q,
which fits Hartree-Fock energies of 625 atoms and ions with
root-mean-square error of 0.0270. A more general local density
functional involving a coefficient B(N) = BoN2/3 + B1 is briefly
considered.

For the ground state of an atomic or molecular electronic sys-
tem, Hohenberg and Kohn (1) have shown that there exists a
stationary principle determining the spin-free electron density
p = p(l) = NS--S14I2 dwdx2. dxN and the electronic energy
E, having the form

6(E[p] - AN[p]) = 0. [1]

Here N[p] is the functional determining the number of parti-
cles,

N[p] = Sp(l)drl, [2]

the quantity ,1 is the chemical potential of the system of interest,
and the energy functional E[p] is a sum of three functionals,

E[p] = T[p] + Vee[P] + Vne[P], [3]

where T[p] is the electronic kinetic energy, Vee[p] is the elec-
tron-electron repulsion energy and Vne[pI is the nucleus-
electron attraction energy,

Vne[p] = Sp(1) v(1) dTl; V(1) =-Z<Za(1/rai) [4]
Of all densities satisfying [1], the one giving the lowest value
of E [p] is the ground-state density; the corresponding value of
Au is the chemical potential of the ground state, equal to the
negative of its electronegativity (2).

Exact implementation of [1] presently is impossible because
the exact forms of T[p] and V,[p] are presently unknown. Both
of these functionals may be regarded as composed of local and
nonlocal components. In the present paper purely local com-
ponents will be picked out, and the corresponding purely local
density functional theory will be developed.

LOCAL DENSITY FUNCTIONAL THEORY
By a local density functional is meant a functional whose
functional derivative with respect to the density, at a point, is
a function only of the density at that point (and not its deriva-
tives or integrals). A local approximation for T[p] is an integral
ft(p)dr; a local approximation for V,[p] is an integral
fwVee(p)dr. That these are portions of kinetic and potential
energies, respectively, in fact uniquely fixes the forms of t(p)
and v,(p) (3); up to multiplicative constants they must be, re-
spectively, p5/3 and p4/3. The true whole functionals are uni-
versal functionals (1); universality therefore should be imposed
on the local approximate theory. One is thus led to the local
functionals

TL[P] = 5 A(N)fp5"3dT, VeeL[P] = -B(N)fp4/3dT, [5]5 4
where the quantities A(N) and B(N) may have some depen-
dence on N but can have no dependence on v. The corre-
sponding local energy functional is

EL[P] = -A(N)Sp5/3dT + -4B(N)fp4/3dT + SvpdT. [6]5 4
There is no alternative to this.

Completion of the theory requires determination of A(N)
and B(N). The simplest conceivable local functional description
of a neutral atom would confer upon it a zero chemical poten-
tial. Another desirable result for a simple theory would be a Z7/3
dependence for neutral atom binding energies. Assuming both
zero chemical potential for neutral atoms and a Z7/3 depen-
dence of their energies gives the model that will be examined
in this paper. In the next section it is shown that these assump-
tions in fact suffice to determine A(N) and B(N); namely, A(N)
= AO and B(N) = BON2/3, where AO and BO are constants. One
consequently has, in place of [5] and [6],

TLO[P] = 5 AoSp5/3d-T, VeeOL[P] =
3 BON2/3Sp4/3dr, [7]

5 4

and

ELO[P] = 5 AoSp5/3dT + 4 BON2/Spp4/3dT + SvpdT. [8]
5 4

There remains the values of Ao and Bo; their values will turn
out to be 6.4563 and 1.0058, respectively. With this energy
functional, the stationary principle to be solved is

6(EL°[P] -IL °N[p]) = 0, [9]

where /uL0 is the chemical potential in the model.

ATOMS
Rather than to start from [6] and prove [7], it is convenient first
to carry through the whole analysis assuming [7] and then to
demonstrate how [7] can be proved rather than assumed.
With the nuclear potential in the atom given by

v(l) =-Z/ri, [10]
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the stationary principle [9] gives, suppressing the subscri

L0= Aop2/3 + BoN2/3pl/3 - (Z/r)
+ (2/3)(1/N)VeeL[P1.

Introduce the parameter R by the formula

-(Z/R) = 4LO- (2/3)(1/N)VeeO,L[P].
Then [11] becomes

Aop2/3 + BoN2/3pl/3 + Z[(1/R) - (1/r)] = 0. [13]

The value of R is determined by the normalization condition
[2]. The density becomes zero continuously at r = R; it could
not be normalized if the atom did not have a finite radius. All
of this follows from an analysis of the natural boundary con-
ditions for the problem (4). *
To obtain the final formula in the most compact form, let

[14]s = r/R, p(r) = (Z/AoR)3/2[X(S)]3
and define

26 = (BoN2/3)(R/AoZ)/2.
Then one finds

x = -6 + [62 - 1 + (1/S)]1/2.
All atoms and ions are formally equivalent.
The energy components can be found by quadrature. The

results may be compactly expressed in terms of the quan-
tities

Ike(6) = 8wr (1 + x( + x)dx [17]
JO (1+ 26x+ X2).e+1 [17

of which the ones needed are

Ioo(6) = 87r(1 - 62)-1/2 cos-16 8rJ(6) [18]

and

I33(6) = [w/2(1 - 62)2][-36 + (1 + 262)1], [19]
I53(6) = [5r/6(1 - 62)2][-6 (5 - 262) + 3J], [20]

I43(6) = [2ir/3(1 - 62)2][(2 + 62) - 36J], [21]
I32(6) = [3w/(1 - 62)][-6 + J]. [22]

In terms of these one finds

TL °[p] = (3/5)AO-3/2R '/2Z5/2153(6),
Vee0L[P] = (3/4)BoAo-2RZ2I43(6),
Vne°[p] = -Ao-3/2R 1/2Z5/2I32(b)

and also
N = N[p] = Ao-3/2R3/2Z3/2I3(b)

Consequently

TL°[P] = A5Z2NI/335_(__)

=0 ZN4/3Bo 3143(6)
eeOL[P] AO (4[I(6)]2/3J

Z2N'/3 36I43(6)
AO t2[I33(6)]1/3J

Vne0[p] = - N/3 1I32(6)A0 [I33(6)]'/3

[23]
[24]
[25]

[15]

[16]

pt l? The relation that connects [28a] with [28b] is

Bo = (Z/N) 26[I33(b)]1/3.
[11 ] The total energy is given by the formula

[11EL [PI ZN=- 3
A rI32(6) - (3/5)I53(6)

[12] ~~~AO [I33(b)]1/3
-N [(3/4)I43(6)Bo]]

L[I33(6)12/3 a
or by the formula

ELO[P] = -TLO[P] = - (N 33(353(36)]/3
whereas the chemical potential is given by

0 Z2N-2/3 JI33(6) - 643(6)1
YL AO [I33(b)]1/3

7ELO[p] - 3Vne0[P]
3N

[30]

, [31]

[32]

. [33]

Another quantity of interest is the ratio

NVne°[P] 2I32(6)rF =--[4ZVeeL[p][- 36I43(6) [

All of these formulas are satisfied for any compatible values of
the parameters Ao, Bo, 6, Z and N. Eq. 32 verifies that the virial
theorem is satisfied; this arises from the identity

12I53(6) + 156I43(6) - 10I32(6) = 0- [35]

The Hellmann-Feynman theorem also is satisfied; the right side
of [34] follows from it or from [36].
The quantity Bo, and hence 6, may be fixed by the one as-

sumption: The chemical potentials AL 0 for neutral atoms are
zero. Eqs. 32 and 33 show that this produces the identities

EL0 =-TLO = (3/7)Vneo = -3Vee,L (neutral atoms).
[36]

It also follows that 6 has the same value for all neutral atoms,
6(N = Z), the value of which is determined by solution of the
equation

3(1 + 662)J(6) = 6(17 + 462);
namely,

6(N = Z) = 0.53637838.

The corresponding value of Bo is, from [30],

Bo = 1.00577635.

[37]

[38]

[39]

[26] Note that neither [38] nor [39] depends on the value of Ao.
With [39] the value of Bo, [32] becomes

[27]

[28a]

[28b]

[29]

ZN'!3
EL°[P] = - [ZC1(6) -NC2(AAo

where

[I3t3(b)]1/3C,6) - 132(6) -(3/5)153(6)

C2(6) = 0.5674920 I43(b)
[I33(6)]2/3

Also, [31] becomes

26[I3(6)]1/3 = 0.75433226(N/Z).

[40]

[41]

[42]

[43]
For each atom or ion, [43] determines 6, which depends only
on the ratio N/Z; [40] then gives EL O. Together, these equations

* This contrasts with Thomas-Fermi-Dirac theory, in which a different
sign of the coefficient of p'/3 leads to a discontinuity at the
boundary.
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FIG. 1. Energies of atoms and ions as a function of fractional charge. Points are Hartree-Fock data (5). The curve is the theoretical prediction
of [40].

determine the energy of all atoms and ions in terms of the single
parameter AO.

For a neutral species, [40] gives
ELO(N = Z) = -(3.9556/Ao)Z7/3. [44]

The Thomas-Fermi value of Ao, 4.7854, would give the nu-
merical coefficient the value 0.8266, quite close to the corre-

1i

(.4

L~.

sponding value in Thomas-Fermi theory, 0.7687. But for the
present purposes a value chosen to give a good empirical fit of
the whole periodic table appears preferable. That requires
taking (see below)

AO = 6.4563,
which gives

ELO(N = Z) = -0.6127 Z7/3.

[451

[46]

r

FIG. 2. Radial distribution functions for Ne+2, Ne, and Ne-2. The broken curve is the Hartree-Fock radial distribution function for Ne
(5).
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Table 1. Various functions of the fractional charge q

1 1
--Cl -C2

q 6 Ao AO rF

-0.4 0.9008 0.7879 0.1800 7.3531
-0.2 0.7027 0.8035 0.1920 7.1689
0.0 0.5364 0.8169 0.2042 7.0000
0.2 0.3952 0.8281 0.2166 6.8446
0.4 0.2744 0.8369 0.2292 6.7012
0.6 0.1701 0.8433 0.2420 6.5685
0.8 0.0794 0.8471 0.2549 6.4455

See text for definitions of quantities tabulated.

Consider now the question whether [7] could have been de-
rived as a consequence of some other postulate. The answer is
yes, if one assumes [46] itself and unknown A(N) and B(N), one
finds on working the whole theory through that dA(N)/dN =
0 and dB(N)/dN = (2/3) (B/N), which give just [7].

CALCULATIONS ON ATOMS
By [43], all quantities which are functions of a are functions of
N/Z. Or, they may be taken to be functions of the fractional
deviation from neutrality, the parameter q = (Z - N)/Z. Table
1 gives some typical values.

Fig. 1 shows how well the theoretical formula [40] predicts
energies of atoms and ions.t With the data base taken to be the
entire set of energies from an available table of Hartree-Fock
calculations (9), the theoretical curve for the quantity E/Z2N1/3
as a function of q, shown in Fig. 1,j has a root-mean-square error
of 0.0334, or typically about 5%, whereas the best least-squares
linear fit of the same data, given by the formula

-E(N,Z)/Z2NI/3 = 0.6343 + 0.1721q, [47]

has a root-mean-square error of 0.0270, just a little less. The
value of Ao for the theoretical curve was chosen to make unity
the average over the whole data set of the ratio of computed to
Hartree-Fock energy. Actual Hartree-Fock energy compo-
nents do not confirm the prediction of a constant rF value for
a given value of q, but they do confirm the prediction from
Table 1 that a decrease in N for a given Z should decrease the
rF value. Negative ions exist in this model, for all values of q
greater than -0.5. However, electron affinities of neutral atoms
are negative.

Fig. 2 shows the radial distribution functions for the species
Ne+2, Ne, and Ne-2, as determined from [13]-[16]. Also shown
on the figure is the Hartree-Fock distribution function for Ne.
The comparison is favorable, but it is less so for atoms of higher
Z. As Z increases, the whole local density functional density
shrinks as Z-'/3, whereas real densities retain more slowly
dying-off tails.

MOLECULES
The molecular problem is formally the same as the atomic
problem, the only difference being that the nuclear potential
is given by [4] instead of by [10]. This potential is itself the
variable in terms of which the density can be expressed. One
obtains for any molecule, for any nuclear configuration, the
result that it has a finite size, with its electron density extending

FIG. 3. Contours of electron density for B2. (Upper) Local density
functional theory, with Vma, = 2. (Lower) Molecular orbital theory
[after Wahl (ref. 10)]. Adjacent contours differ by factors of 2 in each
case.

from the nuclei out to the surface (or surfaces) at which the
nuclear potential has the maximum value vmax, at which the
density becomes zero continuously. In terms of the variable

sm(1) = VmaxSMYL;-

and the parameter

26M = (BON)2/3(AOVmax)112,
one finds, in complete analogy with [16],

XM = -bM + [5M2 - 1 + (1/SM)]12,
where, in analogy with [14],

p[V(1)] = (-Vmax/AO)31/2[XM(SM)]3.

[48]

[49]

[50]

[51]

t For previous discussions of this problem, see the works of Fraga (5,
6), Goodisman (7), and March and White (8).

f This way of representing and fitting the data emphasizes percentage
rather than absolute errors in energies. The analogue of [47] for a fit
of E itself is -E = Z2N1/3(0.6510 + 0.1800q), with a root-mean-
square error of 35.

Completion of the analysis for any molecule requires
carrying through the quadratures implied in [6]. That aside, the
general result is already evident from [50]: In local density
functional theory, contours of the bare-nuclear potential are
contours of the total electron density. That this is an approx-
imate characteristic of real molecules is evident from Fig. 3,

Physics: Parr et al.
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in which are displayed contour diagrams for the molecule
B2.

DISCUSSION
The appeal of local density functional theory is three-fold. It
is simple and easy to implement. It gives interesting predictions
of energies and electron densities, for both charged and un-
charged species. Most important, it provides an attractive
starting point for systematic development of accurate density
functional theory.

It was Fraga who long ago (5) first demonstrated that the
ratio of [34] was surprisingly constant for neutral atoms, and
recent work by Politzer (11), Ruedenberg (12), and others has
revealed that such constancies persist for molecules. The present
analysis provides a physical basis for regularities of this kind,
and extends them to charged species.
The implied assumption of local density functional theory

is that the approximation
Vee[P] Vee',L[P] = 0.75N2/3 f5p4/3dr [52]

will give not unreasonable values of Ve for actual systems. This
can be checked by comparing actual Ve, values for Hartree-
Fock wavefunctions for atoms with values computed from [52]
by using Hartree-Fock densities (9). For the atoms He through
Co, the ratio of actual to computed Ve values varies from 0.72
to 1.07; from F through Co this ratio ranges only from 1.00 to
1.07. Another comparison is with the value of the self-repulsion
energy (1/2) ifp(1)p(2)(1/r12)drjdr2 for a uniform distribu-
tion of charge in a sphere of radius R. The correct value is
0.6N2/R, whereas [52] gives 0.5N2/R.

Charge densities obtained from theories employing [52]
nevertheless are deficient in comparison with actual densities;
they fall to zero too fast, especially for high Z. This is a firm
prediction from local density functional theory. It should prove
an advantage when one proceeds to develop the nonlocal con-
tributions to the theory by gradient expansion methods, because
the finite boundaries of the local approximation permit inclu-
sion of higher-order gradient corrections than otherwise would
be possible.

To assume chemical potentials of neutral atoms to be zero
denies an essential characteristic of actual atoms, but never-
theless it is natural in the simplest local theory.

It will be interesting to study incorporation of [52] into various
other models. One could use [52] together with a correct
wave-mechanical T[41], for instance, or in a density functional
model including Weizsacker corrections to T[p]. One may also
wish to consider more elaborate (nonlocal) self-consistent pre-
scriptions for determining the coefficient of the integral
fp4/3dr. Without going that far, it certainly will be worthwhile
to study the result of dropping the assumption [46], which will
permit a more general form for B(N), in particular the enticing
form

B(N) = BoN2/3 + B1, [53]
where Bo and B1 are constants.

Mr. Danny Murphy has helped in connection with [52], and Mr.
Steven Valone, in connection with [531. This work has been aided by
grants from the National Science Foundation and the National Insti-
tutes of Health.
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