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Abstract .  We review some of the recent developments in nonperturbative string theory 
and discuss their connections with black hole physics and low dimensional fermi systems. 

1. I n t r o d u c t i o n  

In this section I shall briefly motivate the need to consider nonperturbative string 
theory. Perturbative string theory, as defined by a sum over two-dimensional sur- 
faces of different genera (number of handles) [1] provides the first ever (and so far 
the only) example of a theory of interacting gravitons that is equivalent to Einstein's 
theory at low energies [2] and is finite in perturbation theory under appropriate cir- 
cumstances. While this is an important step towards finding a quantum theory 
of gravity, there are several questions that remain unanswered in the perturbative 
approach. To pick a few: 
(a) given the fact that perturbative string theory is defined necessarily in a fixed 
background geometry, is there a nonperturbative formulation (lagrangian or other- 
wise) that can determine the background geometry itself? 
(b) if the background geometry involves strong curvature then one expects the cou- 
pling constant to grow large which makes perturbation theory in such backgrounds 
unreliable; how does one define the theory nonperturbatively in such cases? 
(c) a related question is: in the regions of large curvature since string theory be- 
comes strongly coupled, the notion of an expectation value of the metric itself 
becomes unreliable thanks to strong quantum fluctuations of the metric and its 
strong mixing with the higher string modes; clearly the picture of "spacetime" 
needs a revision - -  what is the new picture? 

Besides these there are questions related to non-gravity aspects of string theory 
which also require a nonperturbative definition. For instance, one needs to have a 
nonperturbative mechanism of supersymmetry breaking because breaking SUSY at 
any finite order necessarily spoils the finiteness of string theory (at least till date). 
There is also this interesting observation [3] that string perturbation theory, even 
when finite, is non-Borel summable in a certain way, one interpretation of which is 
the existence of instanton contributions that are stronger than in conventional field 
theories and which go as exp(-1/gstri,9). A nonperturbative formulation is clearly 
tailored to probe such effects. 

The only workable nonperturbative string theory at the moment is defined in 
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terms of the so-called "matrix models". In the rest of the talk I will define and 
describe matrix models and discuss how they address some of the questions listed 
above 

2. M a t r i x  models  and  dynamica l ly  t r i angula ted  r andom surfaces 

Random matrices have been used in nuclear physics for a long time [4] largely 
because of the connection between nuclear spectral density and eigenvalue density 
of random matrices. The connection between functional integral over matrix-valued 
fields and two-dimensional surfaces of different topologies was first made in the 
path-breaking papers [5] by 't Hooft on dual string models and large-N QCD. To 
understand this connection let us first discuss the discrete (lattice) approach to 
quantum gravity. 

The subject of quantum gravity in the continuum is fraught with several basic 
questions of principle. Quite besides tile issue ot nonrenormalizability which is the 
major problem is four dimensions, there is the issue of the metric-dependence of 
the short-distance cut-off (needed to ensure general coordinate invariance in the 
quantum theory) which makes even the definition of the theory problematic in all 
dimensions. One of the early remedies considered was to think of lattice gravity or 
"dynamically triangulated random surfaces" (DTRS). As in the case of lattice gauge 
theories which are automaticallz gauge invariant, the DTRS formulation is also a 
priori general coordinate invariant. In two dimensions, the original ideas of Regge 
[6] were adopted in the following form. The lattice regularization of Polyakov path 
integral [1] 

z = f exp[- 
h 

is taken to be [7] 

Z = E F(G)e-PP(GI-fh(G), 
G 

F(G) = / ''~ dDXi 1 11--  exp[-  (2) 
, {i j )  

~' lgab (gaXUtObX#} ] / d2~v~{fl + .~xR + (1) 

In the first equation there is an explicit summation over genus h; since ( 4 r ) - '  f v/fiR 
= (2 - 2h) one could pull out the/3' term outside to display the sum over genus as 
~"~a exp[-/~'(2 - 2h)]. In the second equation the sum is over all possible triangu- 
lations G. We denote the number of links (edges) of G as I(G), the number of sites 
(vertices) as s(G) and the number of plaquettes (faces or triangles) as p(G). The 
notation h(G) stands for the gelms of the simplex G, defined by the Euler formula 

h( G) = s( G) - i( G) + p( G). (3) 

The connection with matrix models comes about as follows. Consider the fol- 
lowing partition function 

Z ( g ) -  J dM exp[-trV(M)], V(M) -- (1M 2 + gM3). (4) 
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