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Fermions from half-BPS supergravity

Gautam Mandal*

Perimeter Institute of Theoretical Physics
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E-mail: gmandal@perimeterinstitute.cal, mpandal@theory.tifr.res.in

ABSTRACT: We discuss collective coordinate quantization of the half-BPS geometries of
Lin, Lunin and Maldacena [l]. The LLM geometries are parameterized by a single function
u on a plane. We treat this function as a collective coordinate. We arrive at the collective
coordinate action as well as path integral measure by considering D3 branes in an arbitrary
LLM geometry. The resulting functional integral is shown, using known methods ([P]), to
be the classical limit of a functional integral for free fermions in a harmonic oscillator. The
function u gets identified with the classical limit of the Wigner phase space distribution of
the fermion theory which satisfies uxu = u. The calculation shows how configuration space
of supergravity becomes a phase space (hence noncommutative) in the half-BPS sector. Our
method sheds new light on counting supersymmetric configurations in supergravity.
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1. Introduction

Recently it has been shown in [fl] that the half-BPS IIB supergravity solutions, which
are asymptotically AdSs x S° and preserve an O(4) x O(4) symmetry of the asymptotic
isometry group, are in one-to-one correspondence with semiclassical configurations of free
fermions in a harmonic oscillator potential. This result is yet another striking evidence of
the AdS/CFT correspondence [f], since the free fermions are equivalent to [ the half-BPS
sector of the super Yang-Mills theory. Related work can be found in [f, f{l-[g.

The correspondence between the supergravity configurations and semiclassical fermion
configurations is based on a proposed identification between a supergravity mode u(xy, z2)
with the phase space density u(q,p) of the free fermions, where z1,z9 are two of the
coordinates of the LLM geometry and ¢, p are coordinates of the phase space of the free
fermions. The present work began with the questions (a) how two coordinates of space time
can become phase space (noncommutative) coordinates and (b) whether one can derive the

noncommutative dynamics directly from supergravity.



The plan of the paper is as follows. In section [, we mention a few results of ] to
identify the moduli space of half-BPS vacua. The moduli space is parameterized by a
single function u(x1,x2) (discussed in the previous paragraph) subject to two constraints.
In section [J we quantize the half-BPS configurations by identifying u as the collective
coordinate. We provide a parameterization of the generic function u subject to the con-
straints and identify them with D3 branes coupled to LLM geometries. The collective
coordinate actions are then calculated by computing the D3 brane actions. We use the
formalism of phase space path integrals to demonstrate how the phase space dimensions
get reduced by half under the BPS constraint and the configuration space itself becomes
a phase space. In section ] we collect the results and rewrite the action as well as the
measure in terms of the u-variable. In section f] we identify the u-functional integral with
the classical limit of a functional integral describing free fermions in a harmonic oscillator.
In section ] we discuss a first principles approach to derivation of the u-functional integral
using the general formalism of collective coordinates in the presence of BPS constraints,
using Kirillov’s symplectic form. Section [ contains a summary and some open questions.
In appendix [A] we present some details concerning identification of the collective coordinate
action of section ] with the D3-brane actions of section fJ. Appendix [J makes a qualitative
identification between gravitons and collective excitations in the form of ripples.

Transformation of configuration space into a phase space under BPS conditions has
been considered in [[9] in the case of a giant graviton probe in AdSs x S°. Supertubes
have been discussed in somewhat related contexts in [R{, R1]. Rather appealing similarities
with parts of the present work can be found in discussions on topological string/field
theories [RJ—PR4]. Related ideas have also appeared in the context of quantum hall systems

in [23, pd].
2. The moduli space of 1/2-BPS Supergravity

As shown in [[], the half-BPS geometries (with O(4) x O(4) symmetry) are characterized by
a single function zq(x1,z2) = z(w1, 22,y = 0) (see [, eqs. (2.5)—(2.15)]). The moduli space

of these solutions is the space of zy’s, subject to the following regularity and topological
constraints.

The regularity constraint. The constraint of regularity on the half-BPS geometries
implies that zy can only be either 1/2 or —1/2, that is !

1 1
20(x1,22) = —5 > X+ 3 Zng : (2.2)
( J

where the x1,xo plane is tessellated by the regions Ri,}?j, with zop = —1/2 in R; and
20 = 1/2 in the R;.

!xr(z) denotes the characteristic function of a region R C R?:

Xxr(z) =1if x € R,= 0 otherwise. (2.1)



It is useful to define the function

— Zo(xl,.%'z) . (2.3)

N |

u(zy, z9) =
The regularity constraint now reads u(z1,22) = 0 or 1, equivalently?
(u(z1,22))* = ular, z2) . (2.4)

The equation (R.9) becomes

u = ZXRi(xlva) ) (2'5)

i

where R; now denote regions with u = 1.

The topological constraint. The topological constraint becomes [l

/ dxldacQ _ NZ
R; 21h

> dxldacQ
—Zu=Y N;=N 2.
/ onh ZZ: ‘ ’ (2:6)

—00

where
h=2mgsa/?. (2.7)

The condition that the geometries are asymptotically AdSs x S° implies that R = UR; is
a bounded region of the x1,z2 plane.

The functions u(z1, x2) subject to the constraint equations (R.4) and (R.6) characterize
all regular half-BPS solutions of the system with O(4) x O(4) symmetry and AdSs x S°
asymptotics.

3. Quantization of half-BPS vacua

We will treat the function u as the collective coordinate of the space of half-BPS configu-
rations (with O(4) x O(4) symmetry). The space of u’s can be discussed in terms of orbits
of a specific ug under the action of the group of area-preserving diffeomorphisms in two
dimensions (see section [ for this description). Alternatively, u can be parameterized as in
(.H). By choosing generic enough regions R;, we can describe all functions u subject to
the constraints. This is the description we will use in this and the following two sections
to quantize the space of u’s.
Let us choose the regions as follows (see figure fl):
m n
u(zy,x2) = up(z1, z2) — ZXHj(xl,xQ) + Z xp,(x1,22) . (3.1)
j=1 i=1

20 < u < 1 gives rise to singular solutions; e.g. [@] identified the superstar solution [@7@] with
0<u<l. @] also showed in specific examples that the geometries with u > 1 develop closed timelike
curves.
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Figure 1: Checkerboard parameterization. The white rectangles inside the circle represent the
regions H; in (), while the black rectangles outside the circle denote the regions P;. A small
number of isolated cells represents giant gravitons in S° or in AdSs5. When the number of cells is
large, each additional cell (black or white) can be regarded as a D3 brane in an arbitrary background
LLM geometry defined by the rest of the pattern.

Here ug represents a filled circle of radius rq:
ug = 0(ro — ) (3.2)

and the regions Hj, P; are non-intersecting rectangular cells, with H’s (holes) inside the
circle of radius 7y and P’s outside the circle.

The constraint (B.4) is obviously satisfied. The other constraint (P.) can also be easily
satisfied, by choosing the area of each of the cells H; or P; to be integral (in units of 27h)
and by choosing the radius rg in (B.2) so as to keep the total area equal to N. Clearly the
minimum area of the cells H; or F; is 2rh. In the limit of a large number of such cells,
arbitrarily scattered, we can recover a rather general® representation of the type B3),
subject to (R.4) and (.6).

Thus, in (B.T]) we will choose the H; to be minimum area cells (we will take them to be
squares without loss of generality, with each side equal to v27h = €), with centres denoted
by (x{,x%),j = 1,...,m. Similarly we will take F;’s to be squares of the same minimal
size, with centres denoted by (%, x%),i =1,...,n.

The specific rectangular shape of the cells is not important for our discussions (except
for visualizing a simple tiling*). The same results could be derived, e.g. by using cells with
sides along the r and ¢ directions.

3See footnote E
4 The tiling is only in an approximate sense since we will regard the cell boundaries as separated by
distances > O(\/ﬁ) to prevent high curvatures arising from droplets that are too close; such inter-cell



3.1 Correspondence between checkerboard configurations and IIB geometries

The correspondence with IIB geometries, following [}, is described below:

(a) When there are no H’s or P’s, the circle of radius rq represents AdSs x S%, where 7
is given by (B.7).

(b) A configuration (B.I)) with a small number of non-intersecting minimum-area cells P,
and H; represents giant gravitons wrapping the three-spheres of AdSs or S5, so that
the background configuration is essentially the same as in the case (a) above. The
cell P; will represent the i-th giant graviton extending in AdSs (such giant gravitons
are called “dual giant gravitons” [B1], BJ]). The centre of mass of the giant graviton
will be identified with the centre (zi,z%) of the cell P,. Similarly, the cell H; will
represent the j-th giant graviton extending in S° [BJ]. The centre of mass of the
giant graviton will be identified with the centre (27, 17) of the cell H;.

(¢) A single minimum-area cell H; (hole) inside the filled part of a generic u-configuration
(representing an arbitrary LLM geometry) will be identified as a D3-brane wrapping
the three-sphere S of that geometry® (see (B23)).

(d) Similarly, a minimum area cell P; in the unfilled part of an arbitrary u-configuration
will be identified as a D3-brane wrapping the three-sphere S3 of the corresponding
geometry (see (B.39)).

3.2 Recipe for the collective coordinate action

We will derive the collective coordinate action® based on the above correspondences. For
example, for configurations (b), the collective coordinate action for the u-fluctuation repre-
sented by a cell H; or P; will be identified with the action of the corresponding giant (or dual
giant) graviton, subject to the half-BPS constraint. Similarly, for configurations (¢) and
(d), the collective coordinate action will be identified with the action of the corresponding
D3-branes in an arbitrary LLM geometry, subject to the half-BPS conditions.

To describe our method, let us consider the example of the case (c), where we create a
‘hole’ (a white pixel) at the position (Z1,Z2). This changes the initial u-configuration from
an arbitrary initial value ug to up — du (where du is given by (B.4) for a rectangular hole).
As mentioned above, this deformation du should be identified with a BPS D3 brane which
wraps the 3-sphere S3 of the LLM geometry uo and is located at (Z1,Z2). The collective

separations can be interpreted in terms of fuzzy u-configurations satisfying (@) in the finite i theory (see
sections E and E) Droplets closer than this distance can be assumed to merge, leading to “ripples”. These
are proposed in [m] to correspond to gravitons; we briefly explore the correspondence between gravitons and
the collective action for ripples in appendix E

SWe will not consider collective excitations corresponding to multiple D3 branes, except to remark that
two D3 branes which are classically on top of each other are described in [] as a spread-out u configuration
occupying twice the area, to be consistent with the constraints (@) and (E) This accords with the
fermionic description (@) or (@) which we ultimately arrive at.

5An independent derivation, more directly from supergravity, based on Kirillov’s symplectic form, is
briefly sketched in sectionﬂ (see point (2) and the references therein for details.)



coordinate action S[u| that we are looking for should, therefore, satisfy the property that
68 = Sfug — du] — S[uo] should be identical to the action SEZS (DBI + CS) of the above-
mentioned D3 brane.”

Similar considerations apply to the case (d), where one adds a ‘particle’ (a black pixel)
at the position (Z1,Z3) so that ug — ug + du, with du given by (B.4). In this case one
demands that S[u] should satisfy the property that the change in S[u] should be equal to
the action of a half-BPS D3-brane at that position, wrapping S3. The case (b) is of course
simpler where the background geometry is AdSs x S° and the D3-branes are the usual
giant or dual giant gravitons.

With the above understanding of terms, the classical action S[u] should satisfy the
property

55 = SBLS (3.3)
for an arbitrary choice of the fluctuation +du, around any background wug.

We will find that such an S[u] indeed exists (same as the one obtained using the Kirillov
form, section f).

Besides a classical action S[u], we will also find a measure D[u] such that the measure
for the fluctuation D[du]g, agrees with the path integral measure of the D3-brane dynamics.

Note that we are making the identification of the D3 brane degrees of freedom with
the collective coordinates of the supergravity background. We are assuming this, as in [I]].
This is similar in spirit with the original identification by Polchinski [B4, BJ] of Dirichlet
branes as collective coordinates of supergravity backgrounds carrying Ramond-Ramond
charges.

We will discuss a more first principles approach in a later section (section ff).

Let us now consider, in turn, the D3-branes corresponding to configurations (b), (c)
and (d) of section B.1.

3.3 Single giant graviton in AdSs x S°

In this and the next subsections we will describe the calculation of the right hand side
of (B.3) in the cases (b), (c) and (d) respectively. In section [ the action S[u] and the
calculation of 45 in the left hand side of (B.d) will be discussed.

We will first consider a giant graviton extending in S® [B3]. As discussed above, this
corresponds to a hole H with each side equal to € = v27h. We will denote the centre of
H as (Z1,Z2). The change in the u-function corresponding to creation of the hole is —du
where

ou = Xi‘l,ig (.%'1, .%'2)

z9(@1+§—m1>9(—z1+%+x1)6(@+§—mQ)H(—@Jr%erz). (3.4)

" Note that the configuration ug — du does not preserve the area constraint (@) So we must create
another deformation +du’ by adding a “particle”, or inflating the periphery of one of the droplets comprising
uo. In principle S could depend on the choice of +du’; however, it is easy to show that the effect is
subleading in 1/N and we will ignore it. This is consistent with the fact that the action S[u] we will arrive
at agrees with the fermion action in the semiclassical limit. We will discuss this further in section ﬂ, point

(6).



We will now discuss the calculation of the right hand side of (B.3), namely the giant
graviton action. Half-BPS configurations of a giant graviton extending in S° of AdSs x
S%have been discussed in [[]. The giant graviton is a D3-brane with the embedding (in
static gauge)

t=r, 0=46(r), o= o(1), Q; = oy, p=0 (3.5)
where we have used global coordinates of AdSs x S°, defined by the metric
ds* = ro | — cosh?pdt? + dp?® + sinh?p dQ3 + cos6 d¢? + db? + sin6 dﬁg] . (3.6)

Here
g = RAgs = 47N} = 4rNg,a? . (3.7)

The relation to the LLM coordinates is

r = rgcosh pcos 6

y = rosinh psin (3.8)
and
p=0d+t. (3.9)
For y = 0, we have
r=rgcosf. (3.10)

We have used the notation (7, ¢) as polar coordinates for the (z1,z2) plane. The D3 brane
action is given by®

~2 . S
S = N/dT [— sin39\/1 —cos20p — 602 —sint0 ¢ . (3.11)

The factor N in front arises as
N = Tywsri, (3.12)

where T3 = 1/(873a/2g,) is the D3-brane tension, w3z = 272 is the volume of the unit S3
and 73 is given in (B.7).

The configuration space of the giant graviton is given by 6(7), ¢(7). This corresponds
to a four-dimensional phase space 0(7),pg(7), (5(7'),19(];(7'). It is easy to see that for BPS
configurations we must have [[[g]

=0, ¢=-1 (3.13)

or, equivalently,
po =0, Py = —Nsin?6. (3.14)

8d~> here is —¢ of .



In [I9] the BPS constraints (B.14) were imposed as Dirac constraints on the four dimensional
phase space. The result was a two dimensional phase space which could be coordinatized
by 6, ¢ which satisfied the following Dirac bracket:

1

- 1
e — 1 2 = —
{6, ¢}ps = ONsinfcosd’ O {sin”0, ¢}on N’ (3.15)

The hamiltonian in the reduced phase space is given by ?

H=—p;=Nsin’0. (3.16)

Another way of stating the above result is that the unconstrained path integral for the
system

Zral = /D@(T)ng(T)D(%(T)Dp&(T) exp |:i/d7' <(5pq~5 + Opg — Hfuu):| (3.17)

reduces, under the BPS constraints, to the following path integral
ZBps = /D[sin2 0(7)|D[p(7)] exp [z / dr <—N sin? 9(?5 - ﬁ)] (3.18)

where H is given by (B.1f). We will show in section ] how the above functional integral
can be written in terms of the u-variable in the sense of Section B.3 (in particular (B.3)).
The treatment of the dual giant graviton, extending into AdSs [B1], B2 of AdSs x S%,
is very similar. The corresponding u-configuration consists of a single cell P; outside of uyg.
Thus,
u(zy, x2) = up + ou, (3.19)

where du is again given by the expression in (B.4).
The D3 brane embedding for the dual giant graviton is

t=r1, p=p(1), b= o(1), Q; =0y, 0=0. (3.20)
For this embedding, r gets related to p as follows:
r=rgcoshp. (3.21)

The BPS constraints are:
p,=0, pg=—N sinh? p. (3.22)

The constrained path integral (the analog of (B.1§)) now is
ZBps = /D[Sinh2 p(T)]D[p(7)] exp [i/dT (—Nsinh2 p q~5 - ﬁ)}

H = —p;= Nsinh? p. (3.23)

We will show in section [] that this is also a special case of the same u-path integral as the
earlier example was.

Tf we use the “moving coordinate” ¢, the hamiltonian becomes H = H +p; = H + py = 0. This is a
reflection of the relation 9/0t|, = 0/0t|; + d/8¢|:. See also remarks below equation (@)



3.4 D3 brane in arbitrary LLM geometry

Let us first consider configuration (c) of section B.1], where we have a single cell H (hole)
inside a filled (black) region of an arbitrary u-configuration, which we will write as (see
section B.2)

u(zy, x2) = up — ou, (3.24)

where du is again as in (B.4), but ug represents an arbitrary background u-configuration,
satisfying the constraints (B.6), (B-4). We will ignore here the area-compensating change
ou’ as discussed in footnote fi.

The D3 brane corresponding to the fluctuation (B.24) is described by the following
embedding (using the LLM coordinates, see (B.24)):

t=r, x1 = Z1(7), x9 = Zo(T), y=20, Qp = Om s m=1,2,3.
(3.25)
Let us discuss the geometry corresponding to ug. Recall that the LLM metric is of the
form [[l]

ds? = gt (dt + Vidaci)z + gyy(da;dx; + dy2) + gaa dQ% + 966 dQ% , (3.26)

where dQ%,ng represent metric on two unit 3-spheres S® and S® respectively (the two
3-spheres are distinguished by the fact that S has vanishing radius in the u = 1 region of
the Z-plane (see (B:27)), whereas S° has vanishing radius in the u = 0 region of the Z-plane
(see (B-37)). The parts of the metric and RR background which are important for us are
near y = 0:

up = 1-y°f
VZ’:UZ‘, i:1,2
1 _
—git=—=1F 1z
Iyy
goo = ¥/ f
gag = 717
1
Bt:_1y4f
~ 1
B =——
t i

. 1
dB = ——y3 *3 df
4
= 1 1
dB = —§dI1 Adxy = —Zd(xl dxg — 2 dwl) : (327)

Here %3 is the flat space epsilon symbol in the three dimensions parameterized by y, x1, 2.
All expressions on the right hand sides are understood to be multiplied by (1 4+ O(y?)).
f(x1,x2),v;(x1,x2) are both obtainable from wug(x1,x2). Explicitly,

L 11 7
f(Z) = Limit, [yQ /D T

T j_f/)Q +y2]2

.. dx’.
m@:@f-—%ﬁ. (3.28)




Here D denotes the support of u. The limit for f is well-defined since the explicit 1/y?
cancels with a 1/y? coming from the Z = 2’ region of the integral. It is easy to calculate
explicit forms for f, for example, for ring configurations of .

Under the approximations (B.27) the metric and the RR 4-form field are given, upto
(1+0(2), by

[—(dt + vidz;)? + f(dx? + dz3 + dif?) + dQ?]
i
+r2dp| A d3Q (3.29)

ds* =
1 | dt + vidx;
(4 — - |22 R
A e
where dif? = dy? + y2dQ2, and d3Q is the volume form of the three-sphere 52 (see (B24)).
The D3 brane action is given by'® (dropping the bar’s on x;(t) in (B.25))

S = T3(d3/d7’ [—%\/(1 + o7+ vsB)2 — F(12 +r2¢2) + r2h + %(1 + V7 + vp)

_ % dt [_%\/(1 vt op(6+ 1)) — F2 4+ 12(6+ 1)) +

S 1 S
T @+ 1)+ 51+ oo+ 1)) (3.30)
The BPS conditions can be obtained by the constraint H = —p 3 which gives

b=—1, 7=0. (3.31)

In the ¢,t coordinates

b=0, 7+=0. (3.32)
The hamiltonian H in the LLM frame is H = 0 (see footnote f]). It should be possible
to derive these equations from an analysis of the Killing spinor and world-volume kappa-
symmetry, but another way of seeing the validity of equations (B.33) is that it is equivalent
to time-independence of du in (B.24). Any such time-independent u-configuration is half-
BPS, as shown in []; indeed the half-BPS condition does not allow any time-dependence
of u. Hence (B.39) is equivalent to the Killing spinor condition.
The remaining analysis is similar to the case of the giant gravitons in AdSs x S°. On
the constrained surface (3.32) we have

1
pr=0,  ps=grt. (3.33)
The hamiltonian is given by
~ 1 9

the negative sign reflecting the energy of a hole.

“Note the appearance in the second line of the & of (@),(@) through the equality Tsws = N/r§ =

1/(2n), of. (B.19).

,10,



The constrained path integral, the analog of (B.1§), now becomes

Zaps = / DIr2(r)| D(r)] expliSwps|

Spps = /dT (%72(; — ﬁf) , (3.35)

where H is given by (B34). To compare with (BI§), note that on (BIQ) r2/(2h) =
N cos?f = N — Nsin? 6. The extra N is explained in the paragraph following (7).

Let us now consider configuration (d), where we have a single (black) cell P in a white
region of an arbitrary wu-configuration. The full u-configuration, including contribution
from P is given by

u(zy, x2) = up + ou, (3.36)

where du is given by (B-4).
As in (B.27), the important parts of the metric and RR background are near y = 0.
These are now given by

up = y*f
Vi=u;
1 _
—gu = —=1Ff 1/2
Gyy
goa = f71/?
9o = V2V f
1
B = ——
t if
~ 1
By = _Zy4f
L 1 1
dB = §d$1 Adry = Zd(m'l dry — o d.%'l)
1
dB = Zy?’ s df . (3.37)

All expressions on the right hand sides are understood to be multiplied by (14 O(y?)). v;
are again given by (B.2§), while f = (1/7) [, &*7' (& — &)~
The metric and the RR form are given by

[—(dt + vidx;)? + f(dx? + dz + di?) + d9?]

vai
1 [dt + vidz;
oW — _2 | ST a4l A g, (3.38)
4 f
where di? = dy? + y?dQ? and d*Q represents the volume-form on S° (see (B:29)).
Let us consider the D3 brane represented by du in (B.36). Its embedding is given by

(using, again, the LLM coordinates of (B.26))

ds® =

t=r, x1 = Z1(7), x9 = Zo(T), y=20, Q= 0m , m=1,2,3.
(3.39)
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The D3 brane action, analogous to (B.3(), is given by (dropping the bar’s on x;(7))

§ = Tuwn [ dr [~/ v 0602 = 1024 7260) =16 20+ 0+ v5)

LI (. [—%\/(1 + o+ vp(d+ 1))2 = F(72+12(d+ 1)2) —

— 2G4 1)+ %(1+m~+v¢(¢+ 1))] (3.40)

The BPS condition H = —p 4> once again equivalent to (5 = —1,7 = 0, implies that the
BPS dynamics is described by the path integral (analog of (B.35))

Zups = / DIr2(r)]| DI(r)] expliSwps|

/r‘z po ~
—lar(-s_F
SBPS / T ( 2h¢ >
~ 1 9

Note that the hamiltonian for the filled cell is positive this time. For comparison with
(B.23), remarks similar to the ones below (B.35) apply here as well (note that according to
(B21)) 2/(2h) = N cosh? p = N + N sinh? p).

4. Collective coordinate action

We will now show that all the path integrals (B.1§), (B.23), (B.35) and (B.41)) are equivalent

to the following path integral in terms of the u-variable:

7 = /Duexp[iSBpS]

dzid -
Spps = / 1 xzh/ dr ds u(x1,xe,7,5){0ru, Osu}pp — / drH
2mh 5 by

~ . dxldacQ
H —/ Sy u(xy, e, T) 5T (4.1)

Here ¥ denotes a curve 7 +— u(z1,22,7) in the wu-configuration space and Y denotes
a one-parameter extension of ¥ to the map (7,s) — u(xy,xz2,7,5),s < sp, such that
u(zy, x2,7T,80) = u(xy,xe,7). Although in order to write the action we need to intro-
duce the s-extension, it can be easily shown that the extension does not affect the path
integral as long as the boundary value (at s = sg) remains u(x1,z9,7) (this follows from
the fact that the symplectic form appearing in (f.1]) is closed). In this and the following
section we use

(21, 22) = (rcos ¢, rsin @) (4.2)

(see eq. (B9)). The ¢ coordinate, rather than ¢, is the more natural angle to use for
comparison with the boundary theory, because, e.g. the time-derivative in the boundary
theory is the operator 0/0t| j appearing in footnote . In terms of (r, ¢) coordinates the
hamiltonian is zero (see footnote f).
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The notation {}pp is defined here as

We will see later (see section [] and references therein) that the action (1) is Kirillov’s
coadjoint orbit action for the group of area-preserving diffeomorphisms.
The measure Du, described in sections .3 and [, incorporates the constraints (P.4)

and (P.6). The equation of motion for u(z1,z2,7) that follows from (1)) is (see [BG, B7)):
BTu - (.%'132 — mgal)u =0. (4.3)

4.1 Action

We will show that the action ([L.J)) gives rise to the various D3-brane actions in (B.1§),

(B.23), (B.39) and (B.41)) in the sense of (B.d). Consider, for example, configuration (d),
(B.36), (B.39). It is easy to see that if du does not intersect with ug, then the left hand side
of (B.3) is given by local properties of the cell Ju, viz. §S[u] = S[éu]. Thus we get

58S = 5Skin — 6Sham
8Skin = / dydrs / drds 6u{d-0u, Ds6u}pp

2mh $
dzidzo 22 + 3
= . 4.4
5Sham /dT/ o 5u(m1, 2, T) oh ( )

We need to show that the above action is equal to the action Sppsg appearing in (B.41]).
Let us consider first the hamiltonian term:

x? + a3 dridx
5Sham = /dT( 12h 2>/ 217Th25u(.%'1,.%'2,T)

72+ 72
_ d 1 2
/ T on

2
= | dr— 4.5
[ (1.5
which matches with the hamiltonian term in (B.41)). In the first step we have taken the
integrand out of the cell du since its size is small, in the second step we have used the fact

that du has area 27h and also equated the average values of x1,xo with the coordinates of
the centre of mass 71, %2 (see (B.39)) which satisfies % + 73 = r2.

The analysis of the hamiltonian term for configuration (¢) ((B.24),(B.29),(B.34)) is sim-
ilar. It is interesting to note that in the special cases (B.1§) and (B.2) the hamiltonian by
convention measures the energy of the fluctuation du together with that of a compensating

fluctuation du’ (see footnote []) defined by adjusting the radius ro (this, again, corresponds
to a choice of gauge for C® different from that in (B.29), (B-39)). Thus, e.g. the energy
(B.16) includes the energy of the hole —N cos? § as well as the energy +N of the compen-
sating outer circular strip +du/, extending between 7y and rg + dr¢ such that the latter
radius has an area N + 1. In the generic case it is more natural to keep the two effects
separate, which is possible to do in the semiclassical limit.
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The analysis of the kinetic term Sy, is more complicated and is presented in ap-
pendix [Al. It is, however, somewhat simpler to match the equation of motion that follows
from (f.4) with the equations of motion following from (B.41)). The latter are

fl =9, 3_52 = —-27. (46)

The equation of motion following from the action (f4) can be read off from ([£3) and is
given by
ou — (2105 — 2201)0u = 0. (4.7)

Using the expression (B.4) for du, one can show that (f.7) is satisfied to leading order in A,
provided ([.§) is valid.

4.2 Measure

The measure Du is defined as the group-invariant measure where u is parameterized as an
orbit of some specific field configuration ug under the group of area-preserving diffeomor-
phisms (see [B4, B7] and Section f}). The reference configuration ug satisfies u2 = ug and
[ dz1dzs ug/(2h) = N so that the measure Du incorporates the two constraints (R.4) and
(26

When g acts on du (see (B.4)), the action gets transmitted to the centres of mass of du
as a canonical transformation on Z1, Zo (cf. (f.3)). The invariant measure under canonical
transformations is the one already used in (B.41]). We find, therefore, that the measures
also agree.

5. Equivalence to Fermion path integral

Ref. [P] discussed the following path integral which represented a path integral for the

phase space density u(q, p,t) for free fermions moving in one dimension under a hamiltonian

h(q,p)
Zne = / [Du(q, p, t)] o expliS[ul]

S[u] = /dq dph/ dt ds u(q, p,t,s) * {0yu, Osu}yp — / dtH
2mh 5 by

-~ [dqdp h(q,p)
H —/ Gy u(q,p,t) * P (5.1)

For free fermions moving in a harmonic oscillator potential

2 4 g2
hig,p) =~ 5 <. (5.2)
The star product in (B.1]) is defined as
_ @ _ / /
axb(q,p) = |exp 5 ((9q8p/ (9q/(9p) (a(q,p)b(q P )) . (5.3)
q'=q,p'=p
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The Moyal Bracket is defined as

axb—>bxa

{a’a b}MB = ih (54)

The measure Du is defined as the group-invariant measure under the symmetry group W,
of the fermion configuration space [, B7]. The space of u’s is the W, orbit of a reference
configuration ug which we can take to be the expectation value of the Wigner phase space
distribution (f.9) in the Filled Fermi sea. The measure incorporates the constraint

UxU=1u (5.5)
and o

qap

—u=N. .

57 U (5.6)

The operator definition of the Wigner distribution 4(q, p,t) is given in (E.9).

The equation of motion following from this path integral is

8tu(Qap’t) = {h(Qap)?u(Qap’t)}MB
= {h(q,p),u(q,p,t)}rB
= (¢0p — p9y)u(g,p;1) (5.7)

h(q,p) is the single particle hamiltonian appearing in (f.I). The second step follows for
any quadratic hamiltonian. For the ¢ = 1 matrix model, one takes h = (p? —¢?)/2, but the
analysis in [f] is true for any hamiltonian and in particular for h = (p? + ¢2)/2. The third
line follows from this latter hamiltonian. Although the equation of motion (f.7) coincides
with its classical limit ([£.3), the finite 4 dynamics differs significantly from its classical
limit because the constraint (f.5) involves star products, involving fuzzy solutions for u
B7, B3], unlike the constraint (B.4) whose solutions are characteristic functions (R.§). This
is discussed further in the next two sections.

In [B] it was shown that (B.T]) is exactly equal to a path integral for N free fermions
moving in a simple harmonic oscillator potential, defined as follows:

S
ZNC = ZF = /D[\I’]F()) exXp |:’LFF:|

Sp = /dtdm (W1 (, t)(ihdy — h(z, D)W (z,1)]

1 0?

Here W(x,t), U (x,t) are the second quantized annihilation and creation operators (respec-
tively) for the fermions. The subscript |Fy) in the measure implies that the functional
integral is over states obtained from the reference Fock space state |Fy) under Wy, trans-

formations. These in fact span all states with the same fermion number as |Fp), which we
take to be N.
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Wigner phase space distribution. The Wigner phase space distribution u(q,p,t)
which appears in (b.1]) as a path integral variable, can be defined as an operator (sec-
ond quantized, see, e.g. [B7, Bg]) as follows:

u(q,p,t) = /dn\I’T (q + gt) (g —n/2,t)exp [%%7} : (5.9)

Salient properties of this quantity as well those of its expectation values in various states

have been listed in [B7, Bg, Bd].

The correspondence. It is clear that ([L.1) is simply the & — 0 limit of (p.I]), provided
one identifies u(x1,x9) of Section 4 with wu(q,p) of this section. This is the advertised
transformation of configuration space into phase space. The constraints (2.4) and (P.6)
also follow from (b.H) and (b.6). Note that the equation u *u = u reduces to u? = u in the
semiclassical limit, a fact which has been extensively exploited in [B7, BS, Bd].

Hence the collective coordinate quantization of LLM geometries gives rise to the i — 0
limit of free fermions in a harmonic oscillator potential. This is of course what we expect
from the AdS/CFT correspondence [, but we arrived at this result here starting from
D-branes in supergravity. How to elevate this result to finite A remains an interesting
issue. Some possible subtleties are mentioned in the next section. In the next section
we also briefly discuss a more direct derivation of the semiclassical correspondence from
supergravity using Kirillov’s symplectic form.

6. Remarks on collective coordinate method with BPS constraint

In this section we will briefly discuss a first principles approach to the collective coordinate
quantization of half-BPS geometries without using the D3 brane actions.

We begin by noting that the group G of time-independent area-preserving diffeomor-
phisms (SDiff) is a symmetry of the constraints (R.4) and (R.4), as well as of the equations
of motion of the type IIB theory (since the geometries corresponding to various u’s all
satisfy IIB equations of motion). The Lie Algebra G is the algebra of symplectic vector
fields. Thus, elements g = 1 + Xy near identity of G, act on a function u(zq,z2) as

u — u? :u—i—Xf.u:u—i-{f,u}pB
of o

X =€t .
! 62]31'2‘8.%']‘

(6.1)
This action can also be regarded as induced by the motion of points on the plane under a
hamiltonian f:

w(z) = u(z? ), where

(z1,22)7 = <:c1 Lo ﬁ). (6.2)

~,T9 —
8562, 63:1

Finite group elements g € SDiff can be dealt with by exponentiation. Now, since the
function u completely determines the supergravity fields (collectively denoted below as

®): & = Pu], the group G of area-preserving diffeomorphisms has a natural action on
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supergravity fields:
P9I = P[uI]. (6.3)

The choice of any given function ug, and the corresponding ®g breaks the symmetry G —
H, where H denotes the subgroup generated by functions which have zero Poisson bracket
with ug.

The collective coordinate method [BY, §0] consists of making a change of variable
d(t) — {g(t),®(t) = ®9W(t)}, where ®(t) represents motion in the body-fixed frame
which is over and above the collective motion. The dynamics of the collective coordinate
is obtained by implementing the change of variable in the field theory functional integral.

A first principles derivation of the collective coordinate action (without using the iden-
tification with D3 branes) would involve implementing the above procedure in the case of
1IB supergravity. We will not attempt to do this here in detail, but give a brief discussion:

1. Since the IIB Lagrangian is second order in time derivatives, the low energy action
for g(t), is expected to be quadratic in ¢ (before implementing the BPS condition).

This corresponds, for example, to (B.11), (B.30) or (B.40), which are second order in

time at low velocities. The phase space of the collective degree of freedom g(t) at
this stage involves g(t) as well as 74(t) where m,4(t) is the “momentum” for g(t).

2. In case of the D3 brane dynamics one can explicitly see how (B.I7) changes to (B.1§)
with the imposition of the BPS constraint (B.14). One would similarly expect that,
if one implements the change of variable ® — {g(t), ®} in the IIB functional integral
“in the presence of a BPS constraint”, the dynamics of the collective variable g(t)
will be described by a first-order action and g(¢)’s themselves would become a phase
space. The most natural such an action on a G-orbit of a configuration ug is given
by Kirillov’s method of coadjoint orbits [B7, Bd, [ (see, e.g. [BA, eq. (68)])

Sers = [ dt(Xivuo) — [ atlg™ Xng,uo), (6.4
where (X7, ug) = %(f(xl,xg)uo(xl,xg)). The notation X; denotes the Lie

algebra element ¢~'¢ and X}, = ¢~ 'hg denotes the g-transported Lie algebra element
corresponding to the hamiltonian h = (22 + 23)/2. This action exactly coincides
with (f1]) [B7, Bg]. Indeed the measure also coincides with the measure of (f.1]). As
a matter of fact we initially arrived at the action ([.1]) by considering the Kirillov
action [IJ; from this viewpoint the D3-brane method can be viewed as additional
evidence in support of the Kirillov action.

3. Evaluation of a functional integral “in the presence of a BPS constraint” involves
insertion of an appropriate projection operator. It is possible that the resulting
functional integral is an index, as in [[&], 4], which are natural tools for counting
geometries satisfying a specific number of supersymmetries.

4. If all ®[u]’s can be generated by the collective motion ®[uf], clearly the other degrees
of freedom ® are to be omitted from the functional integral under the half-BPS
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constraint. In this sense, the collective coordinate functional integral would appear
to be the entire supergravity functional integral when subjected to the half-BPS
constraint (see the next point, however).

5. There is an important subtlety regarding the number of connected components of
the wu-configurations. Although SDiff acts on the LLM geometries, it is not clear
how it can change the number of connected components of a given u-configuration.
Of course, under the W, group mentioned in section [, such a transformation can
happen (a fuzzy droplet can split into two fuzzy droplets). However, W, is the
symmetry group of the equation u * u = w and is not naturally associated with the
LLM constraint ©?> = u. It remains unclear to us at the moment how to describe the
entire space of LLM geometries as the orbit of a given configuration under a certain

group G.

7. Conclusion

In this paper we considered collective coordinate quantization of LLM geometries identi-
fying the function z(x1,2,0) = 1/2 — u(z1,22) of [[l] as the collective coordinate. The
explicit form of the collective coordinate action (and measure) is derived by identifying the
collective degree of freedom as that of a D3 brane coupled to an arbitrary LLM geometry.
The D3 brane functional integral, subject to the BPS constraint, can be written directly in
terms of the u-variable. We show that the resulting functional integral is the A — 0 limit of
a functional integral describing free fermions in a harmonic oscillator potential. We discuss
a first principles approach towards derivation of the w-integral using the general method
of collective coordinates subject to a BPS constraint.
We note a few important points:

1. We find that supergravity configuration space becomes a phase space (hence non-
commutative, with a noncommutativity parameter given by a certain %), when con-
strained to configurations preserving a certain number of supersymmetries. Although
we found this phenomenon in a specific case here (half-BPS IIB supergravity solutions
with O(4) x O(4) symmetry), it is clear that this phenomenon should be generic. In
particular the appearance of a first order action, discussed in section f, is related to
the fact that the BPS equations are first order. The formalism of phase space path
integrals employed in this paper makes it rather apparent how a configuration space
path integral with second order action becomes a phase space path integral with first
order action under the imposition of the BPS constraint. It appears to be possible,
using this, to count supersymmetric configurations within low energy field theories
including supergravity. This observation clearly has implications for counting entropy
of supersymmetric black holes and other related configurations.

2. As we mentioned in the previous section, functional integrals preserving a certain
number of supersymmetries have earlier been treated in, for example, [, 4], where
the partition function is a ‘twisted’ one involving insertion of operators related to
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(—1)F. Tt would be interesting to see if this is the case for half-BPS supergravity so-
lutions treated in this paper. One would imagine defining such path integrals in terms
of projection operators in the Hilbert space enforcing the supersymmetry conditions;
it is of interest to explore the connection between this definition and the ‘twisted’
partition function mentioned above. Another related way of understanding “BPS
functional integrals” would be to use topological twisting so that the relevant super-
symmetry operators become BRST operators and the desired path integral becomes
the normal path integral in the topological theory.

. It is entirely possible, as in the context of the ¢ = 1 matrix models, that the semi-
classical collective excitation approach misses important subtle points of the fermion
theory. In the case of ¢ = 1 this was discussed in great detail in [i5, {6, B7, B, {7, 5.
One important effect missed by classical collective excitations (corresponding to the
massless ‘tachyons’) is the unstable DO brane of the two-dimensional string the-
ory [[9, B{] (this viewpoint is explained in [F1]). In the present case, the semiclassical
collective excitations consist of ripples (corresponding to gravitons, see appendix [B])
as well as D3 branes (roughly analogous to the tachyons and DO branes, respectively,
of two dimensional string theory). However, we might discover other important effects
related to the non-perturbative description (f.]) possibly missed by the semiclassical
treatment of the collective excitations.

. We have used D3 branes coupled to LLM geometries to find noncommutative dy-
namics in the configuration space. It is interesting to note that in the limit of LLM
geometries which describes D3 branes in the Coulomb branch [fll, the value of & scales
to zero causing the noncommutativity to disappear, as one would expect.

. As seen in section [, the phase space density action obtained from the fermion the-
ory has an additional degree of noncommutativity reflected in the appearance of star
products, over and above the noncommutativity mentioned in points (1) and (4). The
latter is already evident in the semiclassical limit itself where the Moyal brackets get
reduced to Poisson brackets and reflects a phase space structure of the classical con-
figuration space. Clearly the former is related to the issue of finite i correspondence
between the half-BPS geometries and the fermion theory. Of particular importance
is whether the generalization to the constraint u * u = u (instead of u? = u) allows
some insight into gg effects in string theory. Some aspects of the effect of finite g
have been discussed at the end of the previous section.

. A specific subleading 1/N correction briefly mentioned in this paper is the effect of
the compensating fluctuations du’ (see footnote []). This effect is indeed calculable in
the right hand side of (B.J) for various choices of §u/ and it is an interesting question
whether the corresponding modification in the left hand side arises correctly by taking
into account interaction between du and du’ coming from the star product structure

of S[u].
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7. Most of this paper dealt with collective excitations identified as D3 branes. We discuss
gravitons briefly in appendix [B; it would be interesting to quantitatively reproduce

the graviton fluctuations from our collective action.
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A. Phase space density action for a single cell

In this appendix we will evaluate §Sy, appearing in (f.4), with 6u as in (B.4). For simplicity
of notation, we will denote

r=q, Toa=Dp. (A1)
Let us define
=G+ 5Fq,  pE=Ep+; T (A-2)
Then
du(g,p) = 0(q")0(a™ )0 )0(p™). (A.3)
It is easy to calculate
dou = p[6(p)0(p™) —0(pT)6(p7)] 0(aM)0(a) +
+q [6(g7)8(a™) —0(g)d(g7)] 6(T)o(p™) (A4)
and
ou' = p' [6(pT)8(p™) — 0(pT)a(p7)] B(¢)0(q7) +
+q [0(¢)0(g7) —0(g™)d(g7)] 0(pT)O(p™) (A.5)
We define the Poisson bracket
{f,9}pB = 04fOpg — OpfO4g - (A.6)

We get, after some simplification,
6Skin = / drds / %mu{a’u,aw}p}g
27
3dp d _ _ .
= [FE ) 4 RN + 000} | [ aras @ i)

1[5

A=l 5()5(). (A7)
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In the last line we have used eqgs. (.2) and (A.1]) and the equality

G0 — P = (54 — qp) = Ds(—120) . (A.8)

Thus 0Skin appearing in (l.4) agrees with the corresponding term in (B4J)) apart from a
proportionality constant A.

Let us discuss the constant A. In the last line of (A.7) 6,(0) denotes d(z; — 1),
similarly 6,(0) denotes 6(z2 —x2). Clearly we need a regularization. It is natural to choose
64(0) = 0,(0) = a/Vh. We get A = 1if a®> = 7/3. We do not believe that this regularization
has a particular significance since the agreement at the level of the equation of motion,
between ([.f) and ([.7), does not use any such regularization. In other words, the equation
of motion (f.7), which can be derived from ([£.§), can be used to fix the relative coefficients
between dSki, and §Sham in ([L4), thus determining A =1 in ([A.7). Such a method proves
the desired result without the use of a regularization.

B. Gravitons

So far in this paper we have primarily considered collective motions identified as D3 branes.
We found that (see (B.3(])) the & of the collective action naturally corresponds to the D3-
brane tension: 1

ﬁ = T3w3 . (Bl)

This raises a puzzle about other collective motions such as gravitons. Suppose we consider
an equation analogous to (B.J), where the du fluctuation corresponds to a ripple (see
footnote f]) and the brane refers now to a fundamental string. Since the left hand side
of (B.J) continues to have a prefactor 1/h (see, e.g. (f4), ([5)), while the fundamental
string tension does not involve 1/g¢,, we apparently have a puzzle here.

The resolution comes from the fact that du now describes “ripples” which are fluctua-
tions extending from the original droplet(s) by distances O(v/%). Because of this, as we will
show below, the collective action evaluates to O(gs) which cancels the 1/gs, reproducing
the fundamental string tension so far as gs-counting is concerned.

The simplest parameterization [53, ] for the ripples is as in figure fl. For simplicity we
have considered the unperturbed droplet to correspond to AdSs x S°, but similar arguments
can be made with respect to ripples traveling in other backgrounds.

The precise form of u(xy,z2) is

(@1, @) = 0([p" (21) — @2 [22 —p~ (21)]) (B.2)

where p*(z1) are to be chosen consistent with (R-6). The fact that the amplitude of the
fluctuations ~ O(vh) implies dp*,dp~ ~ O(Vh), where sp* = p*(x1) F pi(z1). pi(z1)
denote the unperturbed profile. Following steps similar to [59, if] the action §S for the
fluctuation turns out to be quadratic in dp™,dp~ and hence ~ O(h) < O(gs). Thus, gs
cancels from the left hand side of (B.3) for ripples, consistent with their interpretation as
fundamental string modes.

We hope to come back to a quantitative derivation of the action (as well as path
integral) for gravitons from the collective coordinate path integral ({.1]).
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X2

Figure 2: The fluctuations p* (1) and p~ (1) extend from the original droplet to distances O(v/h).
The lagrangian for these fluctuations evaluates to O(gs). This cancels the prefactor 1/gs sitting
outside the collective action (Q), consistent with fundamental string tension which is independent

of gs.
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