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Lin, Lunin and Maldacena [1]. The LLM geometries are parameterized by a single function

u on a plane. We treat this function as a collective coordinate. We arrive at the collective
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LLM geometry. The resulting functional integral is shown, using known methods ([2]), to

be the classical limit of a functional integral for free fermions in a harmonic oscillator. The

function u gets identified with the classical limit of the Wigner phase space distribution of

the fermion theory which satisfies u∗u = u. The calculation shows how configuration space

of supergravity becomes a phase space (hence noncommutative) in the half-BPS sector. Our

method sheds new light on counting supersymmetric configurations in supergravity.

Keywords: AdS-CFT and dS-CFT Correspondence, D-branes.

∗On leave from Tata Institute of Fundamental Research.

c© SISSA 2005 http://jhep.sissa.it/archive/papers/jhep082005052.pdf/jhep082005052.pdf

mailto:gmandal@perimeterinstitute.ca
mailto:mandal@theory.tifr.res.in
http://jhep.sissa.it/stdsearch?keywords=AdS-CFT_and_dS-CFT_Correspondence+D-branes


J
H
E
P
0
8
(
2
0
0
5
)
0
5
2

Contents

1. Introduction 1

2. The moduli space of 1/2-BPS Supergravity 2

3. Quantization of half-BPS vacua 3

3.1 Correspondence between checkerboard configurations and IIB geometries 5

3.2 Recipe for the collective coordinate action 5

3.3 Single giant graviton in AdS5 × S5 6

3.4 D3 brane in arbitrary LLM geometry 9

4. Collective coordinate action 12

4.1 Action 13

4.2 Measure 14

5. Equivalence to Fermion path integral 14

6. Remarks on collective coordinate method with BPS constraint 16

7. Conclusion 18

A. Phase space density action for a single cell 20

B. Gravitons 21

1. Introduction

Recently it has been shown in [1] that the half-BPS IIB supergravity solutions, which

are asymptotically AdS5 × S5 and preserve an O(4) × O(4) symmetry of the asymptotic

isometry group, are in one-to-one correspondence with semiclassical configurations of free

fermions in a harmonic oscillator potential. This result is yet another striking evidence of

the AdS/CFT correspondence [3], since the free fermions are equivalent to [4] the half-BPS

sector of the super Yang-Mills theory. Related work can be found in [5, 4 – 18].

The correspondence between the supergravity configurations and semiclassical fermion

configurations is based on a proposed identification between a supergravity mode u(x1, x2)

with the phase space density u(q, p) of the free fermions, where x1, x2 are two of the

coordinates of the LLM geometry and q, p are coordinates of the phase space of the free

fermions. The present work began with the questions (a) how two coordinates of space time

can become phase space (noncommutative) coordinates and (b) whether one can derive the

noncommutative dynamics directly from supergravity.

– 1 –
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The plan of the paper is as follows. In section 2, we mention a few results of [1] to

identify the moduli space of half-BPS vacua. The moduli space is parameterized by a

single function u(x1, x2) (discussed in the previous paragraph) subject to two constraints.

In section 3 we quantize the half-BPS configurations by identifying u as the collective

coordinate. We provide a parameterization of the generic function u subject to the con-

straints and identify them with D3 branes coupled to LLM geometries. The collective

coordinate actions are then calculated by computing the D3 brane actions. We use the

formalism of phase space path integrals to demonstrate how the phase space dimensions

get reduced by half under the BPS constraint and the configuration space itself becomes

a phase space. In section 4 we collect the results and rewrite the action as well as the

measure in terms of the u-variable. In section 5 we identify the u-functional integral with

the classical limit of a functional integral describing free fermions in a harmonic oscillator.

In section 6 we discuss a first principles approach to derivation of the u-functional integral

using the general formalism of collective coordinates in the presence of BPS constraints,

using Kirillov’s symplectic form. Section 7 contains a summary and some open questions.

In appendix A we present some details concerning identification of the collective coordinate

action of section 4 with the D3-brane actions of section 3. Appendix B makes a qualitative

identification between gravitons and collective excitations in the form of ripples.

Transformation of configuration space into a phase space under BPS conditions has

been considered in [19] in the case of a giant graviton probe in AdS5 × S5. Supertubes

have been discussed in somewhat related contexts in [20, 21]. Rather appealing similarities

with parts of the present work can be found in discussions on topological string/field

theories [22 – 24]. Related ideas have also appeared in the context of quantum hall systems

in [25, 26].

2. The moduli space of 1/2-BPS Supergravity

As shown in [1], the half-BPS geometries (with O(4)×O(4) symmetry) are characterized by

a single function z0(x1, x2) ≡ z(x1, x2, y = 0) (see [1, eqs. (2.5)–(2.15)]). The moduli space

of these solutions is the space of z0’s, subject to the following regularity and topological

constraints.

The regularity constraint. The constraint of regularity on the half-BPS geometries

implies that z0 can only be either 1/2 or −1/2, that is 1

z0(x1, x2) = −1

2

∑

i

χRi
+

1

2

∑

j

χR̃j
, (2.2)

where the x1, x2 plane is tessellated by the regions Ri, R̃j , with z0 = −1/2 in Ri and

z0 = 1/2 in the R̃j.

1χR(x) denotes the characteristic function of a region R ⊂ R
2:

χR(x) = 1 if x ∈ R , = 0 otherwise . (2.1)

– 2 –
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It is useful to define the function

u(x1, x2) ≡
1

2
− z0(x1, x2) . (2.3)

The regularity constraint now reads u(x1, x2) = 0 or 1, equivalently2

(u(x1, x2))
2 = u(x1, x2) . (2.4)

The equation (2.2) becomes

u =
∑

i

χRi
(x1, x2) , (2.5)

where Ri now denote regions with u = 1.

The topological constraint. The topological constraint becomes [1]

∫

Ri

dx1dx2

2π~
= Ni

∫ ∞

−∞

dx1dx2

2π~
u =

∑

i

Ni = N , (2.6)

where

~ = 2πgsα
′2 . (2.7)

The condition that the geometries are asymptotically AdS5 × S5 implies that R = ∪Ri is

a bounded region of the x1, x2 plane.

The functions u(x1, x2) subject to the constraint equations (2.4) and (2.6) characterize

all regular half-BPS solutions of the system with O(4) × O(4) symmetry and AdS5 × S5

asymptotics.

3. Quantization of half-BPS vacua

We will treat the function u as the collective coordinate of the space of half-BPS configu-

rations (with O(4)×O(4) symmetry). The space of u’s can be discussed in terms of orbits

of a specific u0 under the action of the group of area-preserving diffeomorphisms in two

dimensions (see section 6 for this description). Alternatively, u can be parameterized as in

(2.5). By choosing generic enough regions Ri, we can describe all functions u subject to

the constraints. This is the description we will use in this and the following two sections

to quantize the space of u’s.

Let us choose the regions as follows (see figure 1):

u(x1, x2) = u0(x1, x2) −
m

∑

j=1

χHj
(x1, x2) +

n
∑

i=1

χPi
(x1, x2) . (3.1)

20 < u < 1 gives rise to singular solutions; e.g. [27] identified the superstar solution [28 – 30] with

0 < u < 1. [27] also showed in specific examples that the geometries with u > 1 develop closed timelike

curves.

– 3 –
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Figure 1: Checkerboard parameterization. The white rectangles inside the circle represent the

regions Hj in (3.1), while the black rectangles outside the circle denote the regions Pi. A small

number of isolated cells represents giant gravitons in S5 or in AdS5. When the number of cells is

large, each additional cell (black or white) can be regarded as a D3 brane in an arbitrary background

LLM geometry defined by the rest of the pattern.

Here u0 represents a filled circle of radius r0:

u0 = θ(r0 − r) (3.2)

and the regions Hj, Pi are non-intersecting rectangular cells, with H’s (holes) inside the

circle of radius r0 and P ’s outside the circle.

The constraint (2.4) is obviously satisfied. The other constraint (2.6) can also be easily

satisfied, by choosing the area of each of the cells Hj or Pi to be integral (in units of 2π~)

and by choosing the radius r0 in (3.2) so as to keep the total area equal to N . Clearly the

minimum area of the cells Hj or Pi is 2π~. In the limit of a large number of such cells,

arbitrarily scattered, we can recover a rather general3 representation of the type (2.5),

subject to (2.4) and (2.6).

Thus, in (3.1) we will choose the Hj to be minimum area cells (we will take them to be

squares without loss of generality, with each side equal to
√

2π~ ≡ ε), with centres denoted

by (xj
1, x

j
2), j = 1, . . . ,m. Similarly we will take Pi’s to be squares of the same minimal

size, with centres denoted by (xi
1, x

i
2), i = 1, . . . , n.

The specific rectangular shape of the cells is not important for our discussions (except

for visualizing a simple tiling4). The same results could be derived, e.g. by using cells with

sides along the r and φ directions.

3See footnote 4.
4 The tiling is only in an approximate sense since we will regard the cell boundaries as separated by

distances > O(
√

~) to prevent high curvatures arising from droplets that are too close; such inter-cell

– 4 –
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3.1 Correspondence between checkerboard configurations and IIB geometries

The correspondence with IIB geometries, following [1], is described below:

(a) When there are no H’s or P ’s, the circle of radius r0 represents AdS5 ×S5, where r0

is given by (3.7).

(b) A configuration (3.1) with a small number of non-intersecting minimum-area cells Pi

and Hj represents giant gravitons wrapping the three-spheres of AdS5 or S5, so that

the background configuration is essentially the same as in the case (a) above. The

cell Pi will represent the i-th giant graviton extending in AdS5 (such giant gravitons

are called “dual giant gravitons” [31, 32]). The centre of mass of the giant graviton

will be identified with the centre (xi
1, x

i
2) of the cell Pi. Similarly, the cell Hj will

represent the j-th giant graviton extending in S5 [33]. The centre of mass of the

giant graviton will be identified with the centre (xj
1, x

j
2) of the cell Hj.

(c) A single minimum-area cell Hj (hole) inside the filled part of a generic u-configuration

(representing an arbitrary LLM geometry) will be identified as a D3-brane wrapping

the three-sphere S̃3 of that geometry5 (see (3.25)).

(d) Similarly, a minimum area cell Pi in the unfilled part of an arbitrary u-configuration

will be identified as a D3-brane wrapping the three-sphere S3 of the corresponding

geometry (see (3.39)).

3.2 Recipe for the collective coordinate action

We will derive the collective coordinate action6 based on the above correspondences. For

example, for configurations (b), the collective coordinate action for the u-fluctuation repre-

sented by a cell Hj or Pi will be identified with the action of the corresponding giant (or dual

giant) graviton, subject to the half-BPS constraint. Similarly, for configurations (c) and

(d), the collective coordinate action will be identified with the action of the corresponding

D3-branes in an arbitrary LLM geometry, subject to the half-BPS conditions.

To describe our method, let us consider the example of the case (c), where we create a

‘hole’ (a white pixel) at the position (x̄1, x̄2). This changes the initial u-configuration from

an arbitrary initial value u0 to u0 − δu (where δu is given by (3.4) for a rectangular hole).

As mentioned above, this deformation δu should be identified with a BPS D3 brane which

wraps the 3-sphere S̃3 of the LLM geometry u0 and is located at (x̄1, x̄2). The collective

separations can be interpreted in terms of fuzzy u-configurations satisfying (5.5) in the finite ~ theory (see

sections 5 and 6). Droplets closer than this distance can be assumed to merge, leading to “ripples”. These

are proposed in [1] to correspond to gravitons; we briefly explore the correspondence between gravitons and

the collective action for ripples in appendix B.
5We will not consider collective excitations corresponding to multiple D3 branes, except to remark that

two D3 branes which are classically on top of each other are described in [1] as a spread-out u configuration

occupying twice the area, to be consistent with the constraints (2.4) and (2.6). This accords with the

fermionic description (5.1) or (5.8) which we ultimately arrive at.
6An independent derivation, more directly from supergravity, based on Kirillov’s symplectic form, is

briefly sketched in section 6 (see point (2) and the references therein for details.)

– 5 –
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coordinate action S[u] that we are looking for should, therefore, satisfy the property that

δS = S[u0 − δu] − S[u0] should be identical to the action SBPS
D3 (DBI + CS) of the above-

mentioned D3 brane.7

Similar considerations apply to the case (d), where one adds a ‘particle’ (a black pixel)

at the position (x̄1, x̄2) so that u0 → u0 + δu, with δu given by (3.4). In this case one

demands that S[u] should satisfy the property that the change in S[u] should be equal to

the action of a half-BPS D3-brane at that position, wrapping S3. The case (b) is of course

simpler where the background geometry is AdS5 × S5 and the D3-branes are the usual

giant or dual giant gravitons.

With the above understanding of terms, the classical action S[u] should satisfy the

property

δS = SBPS
D3 (3.3)

for an arbitrary choice of the fluctuation ±δu, around any background u0.

We will find that such an S[u] indeed exists (same as the one obtained using the Kirillov

form, section 6).

Besides a classical action S[u], we will also find a measure D[u] such that the measure

for the fluctuation D[δu]ũ0
agrees with the path integral measure of the D3-brane dynamics.

Note that we are making the identification of the D3 brane degrees of freedom with

the collective coordinates of the supergravity background. We are assuming this, as in [1].

This is similar in spirit with the original identification by Polchinski [34, 35] of Dirichlet

branes as collective coordinates of supergravity backgrounds carrying Ramond-Ramond

charges.

We will discuss a more first principles approach in a later section (section 6).

Let us now consider, in turn, the D3-branes corresponding to configurations (b), (c)

and (d) of section 3.1.

3.3 Single giant graviton in AdS5 × S5

In this and the next subsections we will describe the calculation of the right hand side

of (3.3) in the cases (b), (c) and (d) respectively. In section 4 the action S[u] and the

calculation of δS in the left hand side of (3.3) will be discussed.

We will first consider a giant graviton extending in S5 [33]. As discussed above, this

corresponds to a hole H with each side equal to ε =
√

2π~. We will denote the centre of

H as (x̄1, x̄2). The change in the u-function corresponding to creation of the hole is −δu

where

δu = χx̄1,x̄2
(x1, x2)

≡ θ
(

x̄1 +
ε

2
− x1

)

θ
(

−x̄1 +
ε

2
+ x1

)

θ
(

x̄2 +
ε

2
− x2

)

θ
(

−x̄2 +
ε

2
+ x2

)

. (3.4)

7 Note that the configuration u0 − δu does not preserve the area constraint (2.6). So we must create

another deformation +δu′ by adding a “particle”, or inflating the periphery of one of the droplets comprising

u0. In principle δS could depend on the choice of +δu′; however, it is easy to show that the effect is

subleading in 1/N and we will ignore it. This is consistent with the fact that the action S[u] we will arrive

at agrees with the fermion action in the semiclassical limit. We will discuss this further in section 7, point

(6).

– 6 –
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We will now discuss the calculation of the right hand side of (3.3), namely the giant

graviton action. Half-BPS configurations of a giant graviton extending in S5 of AdS5 ×
S5have been discussed in [19]. The giant graviton is a D3-brane with the embedding (in

static gauge)

t = τ , θ = θ(τ) , φ̃ = φ̃(τ) , Ω̃i = σi , ρ = 0 (3.5)

where we have used global coordinates of AdS5 × S5, defined by the metric

ds2 = r0

[

− cosh2ρ dt2 + dρ2 + sinh2ρ dΩ2
3 + cos2θ dφ̃2 + dθ2 + sin2θ dΩ̃2

3

]

. (3.6)

Here

r2
0 = R4

AdS = 4πNl4p = 4πNgsα
′2 . (3.7)

The relation to the LLM coordinates is

r = r0 cosh ρ cos θ

y = r0 sinh ρ sin θ (3.8)

and

φ = φ̃ + t . (3.9)

For y = 0, we have

r = r0 cos θ . (3.10)

We have used the notation (r, φ) as polar coordinates for the (x1, x2) plane. The D3 brane

action is given by8

S = N

∫

dτ

[

− sin3 θ

√

1 − cos2 θ
˙̃
φ

2
− θ̇2 − sin4 θ

˙̃
φ

]

. (3.11)

The factor N in front arises as

N = T3ω3r
2
0 , (3.12)

where T3 = 1/(8π3α′2gs) is the D3-brane tension, ω3 = 2π2 is the volume of the unit S3

and r2
0 is given in (3.7).

The configuration space of the giant graviton is given by θ(τ), φ̃(τ). This corresponds

to a four-dimensional phase space θ(τ), pθ(τ), φ̃(τ), pφ̃(τ). It is easy to see that for BPS

configurations we must have [19]

θ̇ = 0 ,
˙̃
φ = −1 (3.13)

or, equivalently,

pθ = 0 , pφ̃ = −N sin2 θ . (3.14)

8φ̃ here is −φ of [19].

– 7 –
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In [19] the BPS constraints (3.14) were imposed as Dirac constraints on the four dimensional

phase space. The result was a two dimensional phase space which could be coordinatized

by θ, φ̃ which satisfied the following Dirac bracket:

{θ, φ̃}DB =
1

2N sin θ cos θ
, or {sin2 θ, φ}DB =

1

N
. (3.15)

The hamiltonian in the reduced phase space is given by 9

H̃ = −pφ̃ = N sin2 θ . (3.16)

Another way of stating the above result is that the unconstrained path integral for the

system

Zfull =

∫

Dθ(τ)Dpθ(τ)Dφ̃(τ)Dpφ̃(τ) exp

[

i

∫

dτ
(

˙̃
φpφ̃ + θ̇pθ − Hfull

)

]

(3.17)

reduces, under the BPS constraints, to the following path integral

ZBPS =

∫

D[sin2 θ(τ)]D[φ̃(τ)] exp

[

i

∫

dτ
(

−N sin2 θ ˙̃φ− H̃
)

]

(3.18)

where H̃ is given by (3.16). We will show in section 4 how the above functional integral

can be written in terms of the u-variable in the sense of Section 3.2 (in particular (3.3)).

The treatment of the dual giant graviton, extending into AdS5 [31, 32] of AdS5 × S5,

is very similar. The corresponding u-configuration consists of a single cell Pi outside of u0.

Thus,

u(x1, x2) = u0 + δu , (3.19)

where δu is again given by the expression in (3.4).

The D3 brane embedding for the dual giant graviton is

t = τ , ρ = ρ(τ) , φ̃ = φ̃(τ) , Ωi = σi , θ = 0 . (3.20)

For this embedding, r gets related to ρ as follows:

r = r0 cosh ρ . (3.21)

The BPS constraints are:

pρ = 0 , pφ̃ = −N sinh2 ρ . (3.22)

The constrained path integral (the analog of (3.18)) now is

ZBPS =

∫

D[sinh2 ρ(τ)]D[φ̃(τ)] exp

[

i

∫

dτ
(

−N sinh2 ρ ˙̃φ − H̃
)

]

H̃ = −pφ̃ = N sinh2 ρ . (3.23)

We will show in section 4 that this is also a special case of the same u-path integral as the

earlier example was.

9If we use the “moving coordinate” φ, the hamiltonian becomes H = H̃ + pφ̃ = H̃ + pφ = 0. This is a

reflection of the relation ∂/∂t|φ = ∂/∂t|φ̃ + ∂/∂φ̃|t. See also remarks below equation (4.2).

– 8 –



J
H
E
P
0
8
(
2
0
0
5
)
0
5
2

3.4 D3 brane in arbitrary LLM geometry

Let us first consider configuration (c) of section 3.1, where we have a single cell H (hole)

inside a filled (black) region of an arbitrary u-configuration, which we will write as (see

section 3.2)

u(x1, x2) = u0 − δu , (3.24)

where δu is again as in (3.4), but u0 represents an arbitrary background u-configuration,

satisfying the constraints (2.6), (2.4). We will ignore here the area-compensating change

δu′ as discussed in footnote 7.

The D3 brane corresponding to the fluctuation (3.24) is described by the following

embedding (using the LLM coordinates, see (3.26)):

t = τ , x1 = x̄1(τ) , x2 = x̄2(τ) , y = 0 , Ω̃m = σm , m = 1, 2, 3 .

(3.25)

Let us discuss the geometry corresponding to u0. Recall that the LLM metric is of the

form [1]

ds2 = gtt(dt + Vidxi)
2 + gyy(dxidxi + dy2) + gΩΩ dΩ2

3 + gΩ̃Ω̃ dΩ̃2
3 , (3.26)

where dΩ2
3, dΩ̃2

3 represent metric on two unit 3-spheres S3 and S̃3 respectively (the two

3-spheres are distinguished by the fact that S3 has vanishing radius in the u = 1 region of

the ~x-plane (see (3.27)), whereas S̃3 has vanishing radius in the u = 0 region of the ~x-plane

(see (3.37)). The parts of the metric and RR background which are important for us are

near y = 0:

u0 = 1 − y2f

Vi = vi , i = 1, 2

−gtt =
1

gyy
= f−1/2

gΩΩ = y2
√

f

gΩ̃Ω̃ = f−1/2

Bt = −1

4
y4f

B̃t = − 1

4f

dB̂ = −1

4
y3 ∗3 df

d
˜̂
B = −1

2
dx1 ∧ dx2 = −1

4
d(x1 dx2 − x2 dx1) . (3.27)

Here ∗3 is the flat space epsilon symbol in the three dimensions parameterized by y, x1, x2.

All expressions on the right hand sides are understood to be multiplied by (1 + O(y2)).

f(x1, x2), vi(x1, x2) are both obtainable from u0(x1, x2). Explicitly,

f(~x) = Limity→0

[

1

y2
− 1

π

∫

D

d2~x′

[(~x − ~x′)2 + y2]2

]

vi(~x) =
εij

2π

∮

∂D

dx′
j

(~x − ~x′)2
. (3.28)
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Here D denotes the support of u. The limit for f is well-defined since the explicit 1/y2

cancels with a 1/y2 coming from the ~x = ~x′ region of the integral. It is easy to calculate

explicit forms for f , for example, for ring configurations of ũ0.

Under the approximations (3.27) the metric and the RR 4-form field are given, upto

(1 + O(y2)), by

ds2 =
[−(dt + vidxi)

2 + f(dx2
1 + dx2

2 + d~y2) + dΩ̃2]√
f

C(4) = −1

4

[

dt + vidxi

f
+ r2dφ

]

∧ d3Ω̃ (3.29)

where d~y2 = dy2 + y2dΩ2, and d3Ω̃ is the volume form of the three-sphere S̃3 (see (3.26)).

The D3 brane action is given by10 (dropping the bar’s on xi(t) in (3.25))

S = T3ω3

∫

dτ

[

− 1

f

√

(1 + vr ṙ + vφφ̇)2 − f(ṙ2 + r2φ̇2) + r2φ̇ +
1

f
(1 + vr ṙ + vφφ̇)

]

=
1

2~

∫

dt

[

− 1

f

√

(1 + vr ṙ + vφ( ˙̃φ + 1))2 − f(ṙ2 + r2( ˙̃φ + 1)2) +

+ r2(
˙̃
φ + 1) +

1

f
(1 + vr ṙ + vφ(

˙̃
φ + 1))

]

. (3.30)

The BPS conditions can be obtained by the constraint H̃ = −pφ̃, which gives

˙̃
φ = −1 , ṙ = 0 . (3.31)

In the φ, t coordinates

φ̇ = 0 , ṙ = 0 . (3.32)

The hamiltonian H in the LLM frame is H = 0 (see footnote 9). It should be possible

to derive these equations from an analysis of the Killing spinor and world-volume kappa-

symmetry, but another way of seeing the validity of equations (3.32) is that it is equivalent

to time-independence of δu in (3.24). Any such time-independent u-configuration is half-

BPS, as shown in [1]; indeed the half-BPS condition does not allow any time-dependence

of u. Hence (3.32) is equivalent to the Killing spinor condition.

The remaining analysis is similar to the case of the giant gravitons in AdS5 × S5. On

the constrained surface (3.32) we have

pr = 0 , pφ̃ =
1

2~
r2 . (3.33)

The hamiltonian is given by

H̃ = −pφ̃ = − 1

2~
r2 , (3.34)

the negative sign reflecting the energy of a hole.

10Note the appearance in the second line of the ~ of (2.6),(2.7) through the equality T3w3 = N/r2

0 ≡
1/(2~), cf. (3.12).
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The constrained path integral, the analog of (3.18), now becomes

ZBPS =

∫

D[r2(τ)]D[φ̃(τ)] exp[iSBPS]

SBPS =

∫

dτ

(

1

2~
r2 ˙̃

φ − H̃

)

, (3.35)

where H̃ is given by (3.34). To compare with (3.18), note that on (3.10) r2/(2~) =

N cos2 θ = N − N sin2 θ. The extra N is explained in the paragraph following (4.5).

Let us now consider configuration (d), where we have a single (black) cell P in a white

region of an arbitrary u-configuration. The full u-configuration, including contribution

from P is given by

u(x1, x2) = u0 + δu , (3.36)

where δu is given by (3.4).

As in (3.27), the important parts of the metric and RR background are near y = 0.

These are now given by

u0 = y2f

Vi = vi

−gtt =
1

gyy
= f−1/2

gΩΩ = f−1/2

gΩ̃Ω̃ = y2
√

f

Bt = − 1

4f

B̃t = −1

4
y4f

dB̂ =
1

2
dx1 ∧ dx2 =

1

4
d(x1 dx2 − x2 dx1)

dB =
1

4
y3 ∗ df . (3.37)

All expressions on the right hand sides are understood to be multiplied by (1 + O(y2)). vi

are again given by (3.28), while f = (1/π)
∫

D d2~x′ (~x − ~x′)−4.

The metric and the RR form are given by

ds2 =
[−(dt + vidxi)

2 + f(dx2
1 + dx2

2 + d~y2) + dΩ2]√
f

C(4) = −1

4

[

dt + vidxi

f
− r2dφ

]

∧ d3Ω , (3.38)

where d~y2 = dy2 + y2dΩ̃2 and d3Ω represents the volume-form on S3 (see (3.26)).

Let us consider the D3 brane represented by δu in (3.36). Its embedding is given by

(using, again, the LLM coordinates of (3.26))

t = τ , x1 = x̄1(τ) , x2 = x̄2(τ) , y = 0 , Ωm = σm , m = 1, 2, 3 .

(3.39)
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The D3 brane action, analogous to (3.30), is given by (dropping the bar’s on xi(τ))

S = T3ω3

∫

dτ

[

− 1

f

√

(1 + vr ṙ + vφφ̇)2 − f(ṙ2 + r2φ̇2) − r2φ̇ +
1

f
(1 + vr ṙ + vφφ̇)

]

=
1

2~

∫

dτ

[

− 1

f

√

(1 + vr ṙ + vφ( ˙̃φ + 1))2 − f(ṙ2 + r2( ˙̃φ + 1)2) −

− r2(
˙̃
φ + 1) +

1

f
(1 + vr ṙ + vφ(

˙̃
φ + 1))

]

. (3.40)

The BPS condition H = −pφ̃, once again equivalent to ˙̃φ = −1, ṙ = 0, implies that the

BPS dynamics is described by the path integral (analog of (3.35))

ZBPS =

∫

D[r2(τ)]D[φ̃(τ)] exp[iSBPS]

SBPS =

∫

dτ

(

− r2

2~

˙̃
φ − H̃

)

H̃ = −pφ =
1

2~
r2 . (3.41)

Note that the hamiltonian for the filled cell is positive this time. For comparison with

(3.23), remarks similar to the ones below (3.35) apply here as well (note that according to

(3.21) r2/(2~) = N cosh2 ρ = N + N sinh2 ρ).

4. Collective coordinate action

We will now show that all the path integrals (3.18), (3.23), (3.35) and (3.41) are equivalent

to the following path integral in terms of the u-variable:

Z =

∫

Du exp[iSBPS]

SBPS =

∫

dx1dx2

2π~
~

∫

Σ̃
dτ ds u(x1, x2, τ, s){∂τ u, ∂su}PB −

∫

Σ
dτH̃

H̃ =

∫

dx1dx2

2π~
u(x1, x2, τ)

x2
1 + x2

2

2~
(4.1)

Here Σ denotes a curve τ 7→ u(x1, x2, τ) in the u-configuration space and Σ̃ denotes

a one-parameter extension of Σ to the map (τ, s) 7→ u(x1, x2, τ, s), s < s0, such that

u(x1, x2, τ, s0) = u(x1, x2, τ). Although in order to write the action we need to intro-

duce the s-extension, it can be easily shown that the extension does not affect the path

integral as long as the boundary value (at s = s0) remains u(x1, x2, τ) (this follows from

the fact that the symplectic form appearing in (4.1) is closed). In this and the following

section we use

(x1, x2) = (r cos φ̃, r sin φ̃) (4.2)

(see eq. (3.9)). The φ̃ coordinate, rather than φ, is the more natural angle to use for

comparison with the boundary theory, because, e.g. the time-derivative in the boundary

theory is the operator ∂/∂t|φ̃ appearing in footnote 9. In terms of (r, φ) coordinates the

hamiltonian is zero (see footnote 9).
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The notation {}PB is defined here as

{f, g}PB ≡ ∂f

∂x1

∂g

∂x2
− ∂g

∂x1

∂f

∂x2
.

We will see later (see section 6 and references therein) that the action (4.1) is Kirillov’s

coadjoint orbit action for the group of area-preserving diffeomorphisms.

The measure Du, described in sections 4.2 and 6, incorporates the constraints (2.4)

and (2.6). The equation of motion for u(x1, x2, τ) that follows from (4.1) is (see [36, 37]):

∂τu − (x1∂2 − x2∂1)u = 0 . (4.3)

4.1 Action

We will show that the action (4.1) gives rise to the various D3-brane actions in (3.18),

(3.23), (3.35) and (3.41) in the sense of (3.3). Consider, for example, configuration (d),

(3.36), (3.39). It is easy to see that if δu does not intersect with u0, then the left hand side

of (3.3) is given by local properties of the cell δu, viz. δS[u] = S[δu]. Thus we get

δS = δSkin − δSham

δSkin =

∫

dx1dx2

2π~
~

∫

Σ̃
dτds δu{∂τ δu, ∂sδu}PB

δSham =

∫

dτ

∫

dx1dx2

2π~
δu(x1, x2, τ)

x2
1 + x2

2

2~
. (4.4)

We need to show that the above action is equal to the action SBPS appearing in (3.41).

Let us consider first the hamiltonian term:

δSham =

∫

dτ〈x
2
1 + x2

2

2~
〉
∫

dx1dx2

2π~
δu(x1, x2, τ)

=

∫

dτ
x̄2

1 + x̄2
2

2~

=

∫

dτ
r2

2~
(4.5)

which matches with the hamiltonian term in (3.41). In the first step we have taken the

integrand out of the cell δu since its size is small, in the second step we have used the fact

that δu has area 2π~ and also equated the average values of x1, x2 with the coordinates of

the centre of mass x̄1, x̄2 (see (3.39)) which satisfies x̄2
1 + x̄2

2 = r2.

The analysis of the hamiltonian term for configuration (c) ((3.24),(3.25),(3.35)) is sim-

ilar. It is interesting to note that in the special cases (3.18) and (3.23) the hamiltonian by

convention measures the energy of the fluctuation δu together with that of a compensating

fluctuation δu′ (see footnote 7) defined by adjusting the radius r0 (this, again, corresponds

to a choice of gauge for C(4) different from that in (3.29), (3.38)). Thus, e.g. the energy

(3.16) includes the energy of the hole −N cos2 θ as well as the energy +N of the compen-

sating outer circular strip +δu′, extending between r0 and r0 + δr0 such that the latter

radius has an area N + 1. In the generic case it is more natural to keep the two effects

separate, which is possible to do in the semiclassical limit.
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The analysis of the kinetic term δSkin is more complicated and is presented in ap-

pendix A. It is, however, somewhat simpler to match the equation of motion that follows

from (4.4) with the equations of motion following from (3.41). The latter are

˙̄x1 = x̄2 , ˙̄x2 = −x̄1 . (4.6)

The equation of motion following from the action (4.4) can be read off from (4.3) and is

given by
˙δu − (x1∂2 − x2∂1)δu = 0 . (4.7)

Using the expression (3.4) for δu, one can show that (4.7) is satisfied to leading order in ~,

provided (4.6) is valid.

4.2 Measure

The measure Du is defined as the group-invariant measure where u is parameterized as an

orbit of some specific field configuration u0 under the group of area-preserving diffeomor-

phisms (see [36, 37] and Section 6). The reference configuration u0 satisfies u2
0 = u0 and

∫

dx1dx2 u0/(2π~) = N so that the measure Du incorporates the two constraints (2.4) and

(2.6).

When g acts on δu (see (3.4)), the action gets transmitted to the centres of mass of δu

as a canonical transformation on x̄1, x̄2 (cf. (6.2)). The invariant measure under canonical

transformations is the one already used in (3.41). We find, therefore, that the measures

also agree.

5. Equivalence to Fermion path integral

Ref. [2] discussed the following path integral which represented a path integral for the

phase space density u(q, p, t) for free fermions moving in one dimension under a hamiltonian

h(q, p)

ZNC =

∫

[Du(q, p, t)]u0
exp[iS[u]]

S[u] =

∫

dq dp

2π~
~

∫

Σ̃
dt ds u(q, p, t, s) ∗ {∂tu, ∂su}MB −

∫

Σ
dtH̃

H̃ =

∫

dq dp

2π~
u(q, p, t) ∗ h(q, p)

~
. (5.1)

For free fermions moving in a harmonic oscillator potential

h(q, p) =
p2 + q2

2
. (5.2)

The star product in (5.1) is defined as

a ∗ b(q, p) =

[

exp
( i~

2

(

∂q∂p′ − ∂q′∂p

)

)

(

a(q, p)b(q′, p′)
)

]

q′=q,p′=p

. (5.3)
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The Moyal Bracket is defined as

{a, b}MB =
a ∗ b − b ∗ a

i~
. (5.4)

The measure Du is defined as the group-invariant measure under the symmetry group W∞

of the fermion configuration space [2, 37]. The space of u’s is the W∞ orbit of a reference

configuration u0 which we can take to be the expectation value of the Wigner phase space

distribution (5.9) in the Filled Fermi sea. The measure incorporates the constraint

u ∗ u = u (5.5)

and
∫

dqdp

2π~
u = N . (5.6)

The operator definition of the Wigner distribution û(q, p, t) is given in (5.9).

The equation of motion following from this path integral is

∂tu(q, p, t) = {h(q, p), u(q, p, t)}MB

= {h(q, p), u(q, p, t)}PB

= (q∂p − p∂q)u(q, p, t) (5.7)

h(q, p) is the single particle hamiltonian appearing in (5.1). The second step follows for

any quadratic hamiltonian. For the c = 1 matrix model, one takes h = (p2− q2)/2, but the

analysis in [2] is true for any hamiltonian and in particular for h = (p2 + q2)/2. The third

line follows from this latter hamiltonian. Although the equation of motion (5.7) coincides

with its classical limit (4.3), the finite ~ dynamics differs significantly from its classical

limit because the constraint (5.5) involves star products, involving fuzzy solutions for u

[37, 38], unlike the constraint (2.4) whose solutions are characteristic functions (2.5). This

is discussed further in the next two sections.

In [2] it was shown that (5.1) is exactly equal to a path integral for N free fermions

moving in a simple harmonic oscillator potential, defined as follows:

ZNC = ZF =

∫

D[Ψ]|F0〉 exp

[

i
SF

~

]

SF =

∫

dt dx [Ψ†(x, t)(i~∂t − h(x, ∂x))Ψ(x, t)]

h =
1

2

(

−~
2 ∂2

∂x2
+ x2

)

. (5.8)

Here Ψ(x, t),Ψ†(x, t) are the second quantized annihilation and creation operators (respec-

tively) for the fermions. The subscript |F0〉 in the measure implies that the functional

integral is over states obtained from the reference Fock space state |F0〉 under W∞ trans-

formations. These in fact span all states with the same fermion number as |F0〉, which we

take to be N .
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Wigner phase space distribution. The Wigner phase space distribution u(q, p, t)

which appears in (5.1) as a path integral variable, can be defined as an operator (sec-

ond quantized, see, e.g. [37, 38]) as follows:

û(q, p, t) =

∫

dηΨ†
(

q +
η

2
, t

)

Ψ(q − η/2, t) exp
[

i
p

~
η
]

. (5.9)

Salient properties of this quantity as well those of its expectation values in various states

have been listed in [37, 38, 36].

The correspondence. It is clear that (4.1) is simply the ~ → 0 limit of (5.1), provided

one identifies u(x1, x2) of Section 4 with u(q, p) of this section. This is the advertised

transformation of configuration space into phase space. The constraints (2.4) and (2.6)

also follow from (5.5) and (5.6). Note that the equation u ∗ u = u reduces to u2 = u in the

semiclassical limit, a fact which has been extensively exploited in [37, 38, 36].

Hence the collective coordinate quantization of LLM geometries gives rise to the ~ → 0

limit of free fermions in a harmonic oscillator potential. This is of course what we expect

from the AdS/CFT correspondence [1], but we arrived at this result here starting from

D-branes in supergravity. How to elevate this result to finite ~ remains an interesting

issue. Some possible subtleties are mentioned in the next section. In the next section

we also briefly discuss a more direct derivation of the semiclassical correspondence from

supergravity using Kirillov’s symplectic form.

6. Remarks on collective coordinate method with BPS constraint

In this section we will briefly discuss a first principles approach to the collective coordinate

quantization of half-BPS geometries without using the D3 brane actions.

We begin by noting that the group G of time-independent area-preserving diffeomor-

phisms (SDiff) is a symmetry of the constraints (2.6) and (2.4), as well as of the equations

of motion of the type IIB theory (since the geometries corresponding to various u’s all

satisfy IIB equations of motion). The Lie Algebra Ḡ is the algebra of symplectic vector

fields. Thus, elements g = 1 + Xf near identity of G, act on a function u(x1, x2) as

u → ug = u + Xf .u = u + {f, u}PB

Xf = εij
∂f

∂xi

∂

∂xj
. (6.1)

This action can also be regarded as induced by the motion of points on the plane under a

hamiltonian f :

ug(x) = u(xg−1

) , where

(x1, x2)
g ≡

(

x1 +
∂f

∂x2
, x2 −

∂f

∂x1

)

. (6.2)

Finite group elements g ∈ SDiff can be dealt with by exponentiation. Now, since the

function u completely determines the supergravity fields (collectively denoted below as

Φ): Φ = Φ[u], the group G of area-preserving diffeomorphisms has a natural action on
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supergravity fields:

Φg = Φ[ug] . (6.3)

The choice of any given function u0, and the corresponding Φ0 breaks the symmetry G →
H, where H denotes the subgroup generated by functions which have zero Poisson bracket

with u0.

The collective coordinate method [39, 40] consists of making a change of variable

Φ(t) → {g(t), Φ̃(t) ≡ Φg(t)(t)}, where Φ̃(t) represents motion in the body-fixed frame

which is over and above the collective motion. The dynamics of the collective coordinate

is obtained by implementing the change of variable in the field theory functional integral.

A first principles derivation of the collective coordinate action (without using the iden-

tification with D3 branes) would involve implementing the above procedure in the case of

IIB supergravity. We will not attempt to do this here in detail, but give a brief discussion:

1. Since the IIB Lagrangian is second order in time derivatives, the low energy action

for g(t), is expected to be quadratic in ġ (before implementing the BPS condition).

This corresponds, for example, to (3.11), (3.30) or (3.40), which are second order in

time at low velocities. The phase space of the collective degree of freedom g(t) at

this stage involves g(t) as well as πg(t) where πg(t) is the “momentum” for g(t).

2. In case of the D3 brane dynamics one can explicitly see how (3.17) changes to (3.18)

with the imposition of the BPS constraint (3.14). One would similarly expect that,

if one implements the change of variable Φ → {g(t), Φ̃} in the IIB functional integral

“in the presence of a BPS constraint”, the dynamics of the collective variable g(t)

will be described by a first-order action and g(t)’s themselves would become a phase

space. The most natural such an action on a G-orbit of a configuration u0 is given

by Kirillov’s method of coadjoint orbits [37, 36, 41] (see, e.g. [36, eq. (68)])

SBPS =

∫

dt〈Xt, u0〉 −
∫

dt〈g−1Xhg, u0〉 , (6.4)

where 〈Xf , u0〉 ≡
∫

dx1dx2

2π~
(f(x1, x2)u0(x1, x2)). The notation Xt denotes the Lie

algebra element g−1ġ and Xh ≡ g−1hg denotes the g-transported Lie algebra element

corresponding to the hamiltonian h = (x2
1 + x2

2)/2. This action exactly coincides

with (4.1) [37, 36]. Indeed the measure also coincides with the measure of (4.1). As

a matter of fact we initially arrived at the action (4.1) by considering the Kirillov

action [42]; from this viewpoint the D3-brane method can be viewed as additional

evidence in support of the Kirillov action.

3. Evaluation of a functional integral “in the presence of a BPS constraint” involves

insertion of an appropriate projection operator. It is possible that the resulting

functional integral is an index, as in [43, 44], which are natural tools for counting

geometries satisfying a specific number of supersymmetries.

4. If all Φ[u]’s can be generated by the collective motion Φ[ug], clearly the other degrees

of freedom Φ̃ are to be omitted from the functional integral under the half-BPS
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constraint. In this sense, the collective coordinate functional integral would appear

to be the entire supergravity functional integral when subjected to the half-BPS

constraint (see the next point, however).

5. There is an important subtlety regarding the number of connected components of

the u-configurations. Although SDiff acts on the LLM geometries, it is not clear

how it can change the number of connected components of a given u-configuration.

Of course, under the W∞ group mentioned in section 5, such a transformation can

happen (a fuzzy droplet can split into two fuzzy droplets). However, W∞ is the

symmetry group of the equation u ∗ u = u and is not naturally associated with the

LLM constraint u2 = u. It remains unclear to us at the moment how to describe the

entire space of LLM geometries as the orbit of a given configuration under a certain

group G.

7. Conclusion

In this paper we considered collective coordinate quantization of LLM geometries identi-

fying the function z(x1, x2, 0) ≡ 1/2 − u(x1, x2) of [1] as the collective coordinate. The

explicit form of the collective coordinate action (and measure) is derived by identifying the

collective degree of freedom as that of a D3 brane coupled to an arbitrary LLM geometry.

The D3 brane functional integral, subject to the BPS constraint, can be written directly in

terms of the u-variable. We show that the resulting functional integral is the ~ → 0 limit of

a functional integral describing free fermions in a harmonic oscillator potential. We discuss

a first principles approach towards derivation of the u-integral using the general method

of collective coordinates subject to a BPS constraint.

We note a few important points:

1. We find that supergravity configuration space becomes a phase space (hence non-

commutative, with a noncommutativity parameter given by a certain ~), when con-

strained to configurations preserving a certain number of supersymmetries. Although

we found this phenomenon in a specific case here (half-BPS IIB supergravity solutions

with O(4) × O(4) symmetry), it is clear that this phenomenon should be generic. In

particular the appearance of a first order action, discussed in section 6, is related to

the fact that the BPS equations are first order. The formalism of phase space path

integrals employed in this paper makes it rather apparent how a configuration space

path integral with second order action becomes a phase space path integral with first

order action under the imposition of the BPS constraint. It appears to be possible,

using this, to count supersymmetric configurations within low energy field theories

including supergravity. This observation clearly has implications for counting entropy

of supersymmetric black holes and other related configurations.

2. As we mentioned in the previous section, functional integrals preserving a certain

number of supersymmetries have earlier been treated in, for example, [43, 44], where

the partition function is a ‘twisted’ one involving insertion of operators related to
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(−1)F . It would be interesting to see if this is the case for half-BPS supergravity so-

lutions treated in this paper. One would imagine defining such path integrals in terms

of projection operators in the Hilbert space enforcing the supersymmetry conditions;

it is of interest to explore the connection between this definition and the ‘twisted’

partition function mentioned above. Another related way of understanding “BPS

functional integrals” would be to use topological twisting so that the relevant super-

symmetry operators become BRST operators and the desired path integral becomes

the normal path integral in the topological theory.

3. It is entirely possible, as in the context of the c = 1 matrix models, that the semi-

classical collective excitation approach misses important subtle points of the fermion

theory. In the case of c = 1 this was discussed in great detail in [45, 46, 37, 38, 47, 48].

One important effect missed by classical collective excitations (corresponding to the

massless ‘tachyons’) is the unstable D0 brane of the two-dimensional string the-

ory [49, 50] (this viewpoint is explained in [51]). In the present case, the semiclassical

collective excitations consist of ripples (corresponding to gravitons, see appendix B)

as well as D3 branes (roughly analogous to the tachyons and D0 branes, respectively,

of two dimensional string theory). However, we might discover other important effects

related to the non-perturbative description (5.1) possibly missed by the semiclassical

treatment of the collective excitations.

4. We have used D3 branes coupled to LLM geometries to find noncommutative dy-

namics in the configuration space. It is interesting to note that in the limit of LLM

geometries which describes D3 branes in the Coulomb branch [1], the value of ~ scales

to zero causing the noncommutativity to disappear, as one would expect.

5. As seen in section 5, the phase space density action obtained from the fermion the-

ory has an additional degree of noncommutativity reflected in the appearance of star

products, over and above the noncommutativity mentioned in points (1) and (4). The

latter is already evident in the semiclassical limit itself where the Moyal brackets get

reduced to Poisson brackets and reflects a phase space structure of the classical con-

figuration space. Clearly the former is related to the issue of finite ~ correspondence

between the half-BPS geometries and the fermion theory. Of particular importance

is whether the generalization to the constraint u ∗ u = u (instead of u2 = u) allows

some insight into gst effects in string theory. Some aspects of the effect of finite gs

have been discussed at the end of the previous section.

6. A specific subleading 1/N correction briefly mentioned in this paper is the effect of

the compensating fluctuations δu′ (see footnote 7). This effect is indeed calculable in

the right hand side of (3.3) for various choices of δu′ and it is an interesting question

whether the corresponding modification in the left hand side arises correctly by taking

into account interaction between δu and δu′ coming from the star product structure

of S[u].
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7. Most of this paper dealt with collective excitations identified as D3 branes. We discuss

gravitons briefly in appendix B; it would be interesting to quantitatively reproduce

the graviton fluctuations from our collective action.
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A. Phase space density action for a single cell

In this appendix we will evaluate δSkin appearing in (4.4), with δu as in (3.4). For simplicity

of notation, we will denote

x1 = q , x2 = p . (A.1)

Let us define

q± = ±q̄ +
ε

2
∓ q , p± = ±p̄ +

ε

2
∓ p . (A.2)

Then

δu(q, p) = θ(q+)θ(q−)θ(p+)θ(p−) . (A.3)

It is easy to calculate

˙δu = ˙̄p
[

δ(p+)θ(p−) − θ(p+)δ(p−)
]

θ(q+)θ(q−) +

+ ˙̄q
[

δ(q+)θ(q−) − θ(q+)δ(q−)
]

θ(p+)θ(p−) (A.4)

and

δu′ = p̄′
[

δ(p+)θ(p−) − θ(p+)δ(p−)
]

θ(q+)θ(q−) +

+ q̄′
[

δ(q+)θ(q−) − θ(q+)δ(q−)
]

θ(p+)θ(p−) . (A.5)

We define the Poisson bracket

{f, g}PB = ∂qf∂pg − ∂pf∂qg . (A.6)

We get, after some simplification,

δSkin =

∫

dτds

∫

dqdp

2π~
~δu{ ˙δu, δu′}PB

=

∫

3dp dq

8π
{δ2(q+) + δ2(q−)}{δ2(p+) + δ2(p−)}

[
∫

dτds ( ˙̄qp̄′ − ˙̄pq̄′)

]

= A

∫

dτ

(

− r2

2~

˙̃
φ

)

A =
3~

π
δq(0)δp(0) . (A.7)
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In the last line we have used eqs. (4.2) and (A.1) and the equality

˙̄qp̄′ − ˙̄pq̄′ = ∂s(p̄ ˙̄q − q̄ ˙̄p) = ∂s(−r2 ˙̃
φ) . (A.8)

Thus δSkin appearing in (4.4) agrees with the corresponding term in (3.41) apart from a

proportionality constant A.

Let us discuss the constant A. In the last line of (A.7) δq(0) denotes δ(x1 − x1),

similarly δp(0) denotes δ(x2 −x2). Clearly we need a regularization. It is natural to choose

δq(0) = δp(0) = a/
√

~. We get A = 1 if a2 = π/3. We do not believe that this regularization

has a particular significance since the agreement at the level of the equation of motion,

between (4.6) and (4.7), does not use any such regularization. In other words, the equation

of motion (4.7), which can be derived from (4.6), can be used to fix the relative coefficients

between δSkin and δSham in (4.4), thus determining A = 1 in (A.7). Such a method proves

the desired result without the use of a regularization.

B. Gravitons

So far in this paper we have primarily considered collective motions identified as D3 branes.

We found that (see (3.30)) the ~ of the collective action naturally corresponds to the D3-

brane tension:
1

2~
= T3ω3 . (B.1)

This raises a puzzle about other collective motions such as gravitons. Suppose we consider

an equation analogous to (3.3), where the δu fluctuation corresponds to a ripple (see

footnote 4) and the brane refers now to a fundamental string. Since the left hand side

of (3.3) continues to have a prefactor 1/~ (see, e.g. (4.4), (4.5)), while the fundamental

string tension does not involve 1/gs, we apparently have a puzzle here.

The resolution comes from the fact that δu now describes “ripples” which are fluctua-

tions extending from the original droplet(s) by distances O(
√

~). Because of this, as we will

show below, the collective action evaluates to O(gs) which cancels the 1/gs, reproducing

the fundamental string tension so far as gs-counting is concerned.

The simplest parameterization [52, 45] for the ripples is as in figure 2. For simplicity we

have considered the unperturbed droplet to correspond to AdS5×S5, but similar arguments

can be made with respect to ripples traveling in other backgrounds.

The precise form of u(x1, x2) is

u(x1, x2) = θ([p+(x1) − x2][x2 − p−(x1)]) , (B.2)

where p±(x1) are to be chosen consistent with (2.6). The fact that the amplitude of the

fluctuations ∼ O(
√

~) implies δp+, δp− ∼ O(
√

~), where δp± = p±(x1) ∓ p±0 (x1). p±0 (x1)

denote the unperturbed profile. Following steps similar to [52, 45] the action δS for the

fluctuation turns out to be quadratic in δp+, δp− and hence ∼ O(~) ∝ O(gs). Thus, gs

cancels from the left hand side of (3.3) for ripples, consistent with their interpretation as

fundamental string modes.

We hope to come back to a quantitative derivation of the action (as well as path

integral) for gravitons from the collective coordinate path integral (4.1).
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Figure 2: The fluctuations p+(x1) and p−(x1) extend from the original droplet to distances O(
√

~).

The lagrangian for these fluctuations evaluates to O(gs). This cancels the prefactor 1/gs sitting

outside the collective action (4.4), consistent with fundamental string tension which is independent

of gs.
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