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1. Introduction

The recent study by Lin, Lunin and Maldacena [1] of a class of half-BPS type IIB geometries

in asymptotically AdS5 × S5 spaces, offers an excellent laboratory to explore aspects of

quantum gravity. In the boundary super Yang-Mills theory, the corresponding half-BPS

states are described by N free fermions in a harmonic potential [2 – 4]. At large N , there

is a semiclassical description of the states of this system in terms of droplets of fermi fluid

in phase space; LLM showed that there is a similar structure in the classical geometries

in the bulk. The semiclassical correspondence is already remarkable in the sense that it

exhibits a noncommutative structure of two of the space coordinates [1, 5]; however, finite

N effects, corresponding to fully quantum mechanical aspects of bulk gravity, open up more

interesting questions [6]. While it has been shown that semiclassically small fluctuations of

the droplet boundaries correspond to small gravitational fluctuations around the classical

geometries [1, 7, 8], at finite N only those fluctuations of the fermi system which have low

enough excitation energy compared to N can be identified with gravity modes propagating

in the bulk (we will elaborate on this in section 4.2.1). Excitations with energy comparable

to or higher than N do not correspond to gravitons but to non-local objects in the bulk,

namely giant gravitons or dual giant gravitons [9 – 11]. Even more remarkable is the fact

that the fermi partition function can be mapped onto the partition function for giant

gravitons or dual giant gravitons [12] alone, without involving any low-energy gravitational

degrees of freedom at all. This seems to suggest that, at least in the half-BPS sector, the

bulk geometry has a nontrivial structure at a small enough length scale whose precise value

depends on N , and that below this length scale gravitational phenomena in the bulk are

described by degrees of freedom that are quite different from the degrees of freedom that

characterize low-energy gravitational fluctuations. In such an interpretation, low-energy

gravity modes would be “composites” of the microscopic degrees of freedom. This provides

a motivation to look for an exact bosonization of the finite N fermi system, which should

provide the “right” variables to describe bulk gravity consistent with such a structure.

Bosonization of a system of finite number of fermions is an interesting problem in

its own right, with many potential applications in quantum field theory as well as in

condensed matter theory. For this reason the problem has received attention for more

than half a century now. Approximate solutions have long been found in case of free

nonrelativistic fermions near the fermi level [13] where the fermion density turns out to

be the spatial derivative of the bosonic field. This bosonization becomes exact when the

fermions are relativistic and are infinite in number [14, 15]. In the case of free nonrelativistic
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fermions in an inverted harmonic oscillator potential in one space dimension, arising in the

context of c = 1 matrix models, approximate bosonization in terms of fermion density

gives rise to the massless boson of two-dimensional noncritical string theory (usually called

the “tachyon”) [16 – 19]. An exact bosonization of fermions in an arbitrary potential in

one space dimension was found in [20, 21] in terms of the Wigner phase space density of

the fermions, but the bosonic variable satisfies an infinite dimensional nonabelian algebra

(W-infinity), instead of the Heisenberg algebra, and it satisfies a quadratic constraint;

the approximate bosonization in terms of the position space density can be derived from

it. Recently it has been noticed [2, 3, 22, 1, 12] that the spectrum, and consequently

the partition function, of N nonrelativistic fermions in a harmonic oscillator potential

(discussed in the previous paragraph) agrees with that of a system of free nonrelativistic

bosons which are infinite in number but each of which moves in an equally spaced N -

level system (similar to harmonic oscillator energy levels with an upper cutoff). Indeed

the fermionic spectrum also agrees [12] with that of a second bosonic system with a finite

number N of particles, each moving in a harmonic oscillator potential. These two bosonic

spectra represent those of giant gravitons [9] and dual giant gravitons [10, 11] respectively.

In the present work, we derive an exact operator equivalence between a system of N

fermions in one space dimension and two different bosonic systems satisfying the usual

commutation relations (Heisenberg algebra). The two bosonic systems are reminiscent

of giant gravitons and dual giant gravitons, but they appear in bosonization of fermions

moving in any potential. Perhaps the most remarkable effect of having a finite number of

fermions is that it gives rise to fuzziness in coordinate space in the bosonized theory. This

fuzziness can be seen directly in the bosonized theory and arises because N provides a high

energy cut-off on the basic bosonic degrees of freedom. It can also be seen by reformulating

the bosonized theory as a theory on a lattice with spacing given by 1/N . In the LLM

context, what this means is that for finite N we have a direct derivation of the appearance

of a short-distance cut-off in the bulk string/gravity theory, at least in the half-BPS sector.

This is consistent with what we expect from stringy exclusion principle [23]. Earlier works

on the appearance of graininess on the gravity side of AdS/CFT correspondence are [24 –

27].

This paper is organized as follows. In the next section, we first give the rules for our

first bosonization which maps the system of N fermions to a system of bosons each of which

can occupy a state in an N -dimensional Hilbert space HN . The finiteness of the number

of fermions reappears in the bosonized theory as finite dimensionality of the single-particle

Hilbert space. Consequences of this for the bosonized theory are discussed in section 3. In

particular, we argue that the quantum phase space of the bosons is fuzzy and compact.

Actually finite N is responsible for graininess even in coordinate space. This is seen more

directly in a lattice formulation of the bosonized theory, with lattice spacing 1/N , which is

also discussed in this section. Section 3 also includes a detailed discussion of the bosonic

phase space density. In the LLM context, the bosonic density as a function of the phase

space has the appearance of a rugged circular “cake” with an approximately fixed diameter,

confirming the interpretation of the bosons as giant gravitons. This is to be contrasted

with the fermionic phase space density which looks like droplet configurations. Section 4 is

– 3 –
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devoted to a detailed discussion of this and other aspects of application of our bosonization

in the LLM context. In particular, we argue that at finite N , the LLM gravitons must

be fuzzy in an essential way. Section 5 describes the second bosonization. The essential

difference with the first bosonization is that the number N now appears as an upper limit

on the total number of bosons. Application of our bosonization to the c = 1 matrix model

is briefly sketched in section 6. Some details of computations are given in appendices A

and B. In appendix C we discuss an important byproduct of our bosonization, namely

the bosonization of N fermions in a finite (K) level system and the resulting bosonic

construction of representations of U(K), which is different from the well-known Schwinger

representation.

2. The first bosonization

Let us first set up the notation. Consider a system of N fermions each of which can occupy

a state in an infinite-dimensional Hilbert space Hf . Suppose there is a countable basis of

Hf : {|m〉,m = 0, 1, . . . ,∞}. For example, this could be the eigenbasis of a single-particle

hamiltonian, ĥ|m〉 = E(m)|m〉, although other choices of basis would do equally well, as

long as it is a countable basis. In the second quantized notation we introduce creation

(annihilation) operators ψ†
m (ψm) which create (destroy) particles in the state |m〉. These

satisfy the anticommutation relations

{ψm, ψ†
n} = δmn (2.1)

The N -fermion states are given by (linear combinations of)

|f1, . . . , fN 〉 = ψ†
f1

ψ†
f2
· · ·ψ†

fN
|0〉F (2.2)

where fm are arbitrary integers satisfying 0 ≤ f1 < f2 < · · · < fN , and |0〉F is the usual

Fock vacuum annihilated by ψm,m = 0, 1, . . . ,∞.

One can create any of the states |f1, . . . , fN 〉 from the state |F0〉 ≡ |0, 1, . . . , N − 1〉 by

repeated application of operators

Φmn = ψ†
m ψn (2.3)

Properties of Φmn and related operators, including the Wigner and Husimi distributions,

are listed in appendix B.

We will map the above fermionic system to a system of bosons each of which can

occupy a state in an N -dimensional Hilbert space HN . Suppose we choose a basis {|i〉, i =

1, . . . , N} of HN . In the second quantized notation we introduce creation (annihilation)

operators a†i (ai) which create (destroy) particles in the state |i〉. These satisfy the com-

mutation relations

[ai, a
†
j ] = δij , i, j = 1, . . . , N (2.4)

A state of this bosonic system is given by (a linear combination of)

|r1, . . . , rN 〉 =
(a†1)

r1 · · · (a†N )rN

√
r1! · · · rN !

|0〉B (2.5)
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2.1 The bosonization formulae

The bosonization formulae are written most economically using the notions of operator

delta and theta-functions. These are defined for any operator Ô as follows:

δ(Ô) ≡
∫ 2π

0

dθ

2π
exp(iθÔ), (2.6)

and

θ+(Ô) ≡
∞

∑

m=0

δ(Ô − m), θ−(Ô) ≡ 1 − θ+(Ô). (2.7)

Furthermore, we will also need to introduce the following operators:

σk ≡ 1
√

a†kak + 1
ak, σ†

k ≡ a†k
1

√

a†kak + 1
(2.8)

These operators have interesting properties. In particular, the following relations are useful

in obtaining the bosonization formulae given below.

σk σ†
k = 1, σ†

k σk = θ+(a†kak − 1). (2.9)

Since delta-function operators of the form δ(
∑n

i=1 a†ki
aki

−p) will appear quite often in

the formulae given below, we give an alternative, more familiar, expression for it in terms of

more elementary operators. First recall the following representation of the operator |m〉〈n|
in a harmonic oscillator Hilbert space with raising (lowering) operators a†(a):

|m〉〈n| =
1√

m!n!
: a†me−a†aan : (2.10)

where : : represents normal ordering. This implies

δ(a†a − n) = |n〉〈n| =
1

n!
: a†ne−a†aan : (2.11)

which can be used to write

δ(

n
∑

i=1

a†ki
aki

− p) =
∑

rk1
+···+rkn=p

n
∏

i=1

δ(a†ki
aki

− rki
) (2.12)

=
∑

rk1
+···+rkn=p

1

rk1
! · · · rkn

!
: a

† rk1

k1
· · · a† rkn

kn
e
−

Pn
i=1 a†

ki
aki a

rk1

k1
· · · arkn

kn
:

Similarly, one can give alternative definitions of the operators δ(
∑m2

m=m1
ψ†

mψm) which

appear extensively in eqs. (2.17), (2.18) below. We first note the identities

δ(ψ†
nψn) = 1 − ψ†

nψn, δ(ψ†
nψn − 1) = ψ†

nψn. (2.13)

These identities enable us to write the following alternative expressions for some fermionic

delta-functions:

δ(

m2
∑

m=m1

ψ†
mψm) =

m2
∏

m=m1

δ(ψ†
mψm) =

m2
∏

m=m1

(1 − ψ†
mψm). (2.14)

We are now ready to describe the bosonization formulae.

– 5 –
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2.1.1 Fermionic representation of bosonic oscillators

We will first define the bosonic creation and annihilation operators in terms of their action

on the states of the fermion system. We have, on a general N -fermion state (2.2),

a†k |f1, . . . , fN 〉 =
√

fN−k+1 − fN−k |f1, . . . , fN−k, fN−k+1 + 1, . . . , fN + 1〉,
k = 1, . . . , N − 1

a†N |f1, . . . , fN 〉 =
√

f1 + 1 |f1 + 1, . . . , fN + 1〉. (2.15)

Thus, a†k moves each of the top k fermions, counting down from the topmost filled level,

up by one step. Similarly, the action of ak is to move each of the top k fermions down by

one step:

ak |f1, . . . , fN 〉 =
√

fN−k+1 − fN−k − 1 |f1, . . . , fN−k, fN−k+1 − 1, . . . , fN − 1〉,
k = 1, . . . , N − 1

aN |f1, . . . , fN 〉 =
√

f1 |f1 − 1, . . . , fN − 1〉. (2.16)

The reasoning that led us to these expressions for the bosonic creation and annihilation op-

erators has been explained in appendix A.1. Here we simply mention that these definitions

of the bosonic creation and annihilation operators satisfy the oscillator algebra (2.4). The

reader can find a proof of this in appendix A.2. Note that the state |F0〉 = |0, 1, . . . , N −1〉
is special since it is annihilated by all the annihilation operators ak, k = 1, 2, . . . , N .

Therefore, as expected, |F0〉 is the oscillator vacuum state |0〉B .

One can also give operator expressions for the oscillator creation and annihilation

operators in terms of the fermion bilinears. We have,

a†k ≡
∑

mk>mk−1>···>m0

√
m1 − m0 (ψ†

m0
ψm0

)(ψ†
m1+1ψm1

) · · · (ψ†
mk+1ψmk

)

× δ

( m1−1
∑

m=m0+1

ψ†
mψm

)

δ

( m2−1
∑

m=m1+1

ψ†
mψm

)

· · · δ

( mk−1
∑

m=mk−1+1

ψ†
mψm

)

× δ

( ∞
∑

m=mk+1

ψ†
mψm

)

, k = 1, 2, . . . , (N − 1) (2.17)

and

a†N ≡
∑

mN >mN−1>···>m1

√
m1 + 1 (ψ†

m1+1ψm1
) · · · (ψ†

mN +1ψmN
)

× δ

( m2−1
∑

m=m1+1

ψ†
mψm

)

· · · δ

( mN−1
∑

m=mN−1+1

ψ†
mψm

)

× δ

( ∞
∑

m=mN +1

ψ†
mψm

)

. (2.18)

The annihilation operators are obtained from these by conjugation. These expressions

look complicated, but it is easy to see that when acting on a generic fermion state (2.2),

– 6 –
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because of the operator delta-functions, only that term in the sum survives for which mk =

fN , mk−1 = fN−1, . . . , m0 = fN−k in (2.17) and mN = fN , mN−1 = fN−1, . . . , m1 = f1

in (2.18). This reproduces (2.15). One can similarly reproduce (2.16) from the action of

conjugates of (2.17) and (2.18) on the generic fermion state (2.2).

Note that the bosonic oscillators are mapped into combinations of fermion bilinears,

(2.3). This is because we are interested in a fixed fermion number sector of the fermion

Fock space.

2.1.2 Fermion bilinears ψ†
mψn in terms of bosonic oscillators

The inverse map gives fermions in terms of the bosonic oscillators. Since the total number

of fermions is conserved, this bosonization map can only relate fermion bilinears to the

bosonic operators. The generic fermion bilinear is ψ†
m ψn, where m, n = 0, 1, · · · , ∞, but

it is sufficient for us to obtain a bosonized expression for the bilinear for m ≥ n only.

The bosonized expression for m < n can be obtained from this by conjugation. Before

going to the most general expression (see (A.8)) we will first describe the relatively simple

expressions obtainable for (i) for small values of (m − n) and arbitrary N , and (ii) small

values of N and (m−n) any positive integer. We list below expressions for a few examples

of both kinds.

N = 1: This is the simplest case. Here there is only one creation (annihilation) operator,

a† (a). We have,

ψ†
n ψn = δ(a†a − n)

ψ†
n+m ψn = σ†m δ(a†a − n) (2.19)

N = 2: In this case there are two creation (annihilation) operators, a†1 (a1) and a†2 (a2).

The bosonized expressions are now more complicated than for N = 1 case, but still man-

ageable. We have,

ψ†
n ψn = δ(a†1a1 + a†2a2 − n + 1) + δ(a†2a2 − n)

ψ†
n+m ψn = σ†

1

m
δ(a†1a1 + a†2a2 − n + 1) + σm

1 σ†
2

m
θ+(a†1a1 − m) δ(a†2a2 − n)

−
m−2
∑

r1=0

σ†
1

m−2−r1

σr1

1 σ†
2

r1+1
δ(a†1a1 − r1) δ(a†2a2 − n) (2.20)

Arbitrary N : In this case relatively simple expressions exist only for small values of

(m − n). We give below expressions for m = n, n + 1 and n + 2.

ψ†
n ψn =

N
∑

k=1

δ

( N
∑

i=k

a†iai − n + N − k

)

ψ†
n+1 ψn = σ†

1 δ

( N
∑

i=1

a†iai − n + N − 1

)

+
N−1
∑

k=1

σk σ†
k+1 θ+(a†kak − 1) δ

( N
∑

i=k+1

a†iai − n + N − k − 1

)

– 7 –
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ψ†
n+2 ψn = σ†

1

2
δ

( N
∑

i=1

a†iai − n + N − 1

)

+
N−1
∑

k=1

σ2
k σ†

k+1

2
θ+(a†kak − 2) δ

( N
∑

i=k+1

a†iai − n + N − k − 1

)

−
N−1
∑

k=2

σk−1 σ†
k+1 θ+(a†k−1ak−1 − 1) δ(a†kak) δ

( N
∑

i=k+1

a†iai − n + N − k − 1

)

−σ†
2 δ(a†1a1) δ

( N
∑

i=1

a†iai − n + N − 2

)

(2.21)

Bosonized expression for the generic bilinear for arbitrary N is rather complicated and not

particularly illuminating. It has therefore been relegated to the appendix and is given in

(A.8).

To check the validity of the bosonization formulae, we need to check that the (W∞)

algebra (B.6), expressing the commutation relation of fermion bilinears, works out. The

W∞ algebra (B.6) works out for N = 1, 2 if one uses the bosonized expressions (2.19)

and (2.20). The first case is somewhat trivial. However, the second case is nontrivial and

the satisfaction of the algebra (B.6) requires delicate cancellations, as we have shown in

appendix A. We have not yet completed a check of the algebra for general m, n in the case

of arbitrary N because of the complexity of the relevant formula, (A.8). However, because

of the nontrivial way in which it checks out for N = 2, we are confident that it will also

check out for arbitrary N . Moreover, as proved in appendix A, the algebra works out for

arbitrary N for small values of (m − n).

2.1.3 The bosonized hamiltonian

Let us now discuss the bozonization of the hamiltonian. Before discussing the most generic

case (2.28), let us first ignore the fermion-fermion interactions. Let E(m), m = 0, 1, 2, . . .

be the exact single-particle spectrum of the fermions in that case (E(m) are the eigenvalues

of the matrix Emn of (2.28)). Then, the hamiltonian is given by

H =

∞
∑

m=0

E(m) ψ†
mψm (2.22)

Using the bosonization formula (2.21), a bosonized expression for the hamiltonian can be

easily worked out:

H =
∞
∑

m=0

E(m)
N

∑

k=1

δ

( N
∑

i=k

a†iai − m + N − k

)

=

N
∑

k=1

E
(

N − k +

N
∑

i=k

a†iai

)

. (2.23)

The first equality above follows from the first line of (2.21). Notice that, in general,

the hamiltonian will not be quadratic in the bosonic creation and annihilation operators.

– 8 –
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Nevertheless, the bosonic states (2.5) diagonalize the hamiltonian because it only involves

the occupation number operators.

For most potentials, the exact spectrum E(m) of the single-particle hamiltonian is un-

likely to be known. However, what we need for the purposes of bosonization is any countable

basis, which could be provided, for example, by a part of the single-particle hamiltonian ĥ

that is exactly diagonalizable. Thus, suppose, ĥ = ĥ0 + ĥ1 such that |m〉, m = 0, 1, 2, · · ·
is a countable eigenbasis of ĥ0 with eigenvalues E0(m). Note that we do not require ĥ1 to

be small compared to ĥ0. Then, we have

H =

∞
∑

m,n=0

(

E0(m)δmn + 〈m|ĥ1|n〉
)

ψ†
m ψn

=
N

∑

k=1

E0

(

N − k +
N

∑

i=k

a†iai

)

+
∞

∑

m,n=0

〈m|ĥ1|n〉 ψ†
m ψn. (2.24)

Given ĥ1, the matrix elements 〈m|ĥ1|n〉 can be easily calculated. Typically these matrix

elements will not be diagonal 1. Thus, to obtain the bosonized form of the hamiltonian,

we will need to use not only the bosonized expression for the fermion bilinear in the first

of (2.21), but also the expression (A.8) for the general bilinear ψ†
m ψn. It follows that in

this basis the hamiltonian (2.24) is not automatically diagonal. The “law of conservation

of difficulty” is operative here; the problem of finding the exact fermionic single-particle

spectrum has reappeared as the problem of diagonalizing this bosonic hamiltonian!

Let us now consider a few special cases in some detail to illustrate how our bosonization

works in practice.

Fermions in a harmonic potential. A drastic simplification occurs in this case since

this potential gives rise to an equally spaced spectrum, namely E(m) = c1 m + c2. In

this case, an exact expression for the bosonized hamiltonian can be worked out and it

corresponds to a bunch of simple harmonic oscillators (see (2.23)):

Hequal−spacing = c1

N
∑

k=1

k a†kak + Hvac, (2.25)

where Hvac = c1
2 N(N − 1) + c2N is the energy of the fermi ground state.

Free fermions on a circle. In this case the single-particle spectrum is given by E(n) =

cn2, c = 2π2
~

2/mL2, where m is the mass of a fermion and L is the circumference of the

circle. The novelty here is that except for the ground state, each of the levels is doubly

degenerate. We will consider this case in some detail since it illustrates the generality of

our bosonization. Moreover, this example is among the rare exactly solvable cases with a

nonlinear spectrum.

1The allowed values of m, n depend on the system under consideration. For example, let ĥ0 be the

harmonic oscillator hamiltonian and ĥ1 a quartic anharmonic piece. In this case, the matrix element

〈m|ĥ1|n〉 vanishes unless |m − n| ≤ 4.
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The normalized single-particle eigenstates (assuming periodic boundary conditions) are

χ±n(x) = 1√
L

e±i2πnx/L, n = 0, 1, 2, . . . (χ0(x) = 1√
L

is non-degenerate). The mode ex-

pansion of the fermion field will involve the corresponding annihilation (creation) operators

ψ̃±n (ψ̃†
±n). To make contact with our bosonization, we introduce the following identifi-

cations: ψ2n−1 = ψ̃+n and ψ2n = ψ̃−n for n = 1, 2, . . . (ψ0 corresponds to the constant

mode χ0(x)). This identification maps the two fermion modes corresponding to each of the

degenerate single-particle levels to two consecutive modes in an auxiliary fermion problem

which our bosonization technique can handle. Using this mapping we can now transcribe

all the bosonization formulae to this case. In particular, the bosonized hamiltonian can be

obtained as follows:

Hcircle = c

∞
∑

n=1

n2

[

ψ̃†
+n ψ̃+n + ψ̃†

−n ψ̃−n

]

= c

N
∑

k=1

∞
∑

n=1

n2

[

ψ†
2n−1 ψ2n−1 + ψ†

2n ψ2n

]

= c

N
∑

k=1

∞
∑

n=1

n2

[

δ

( N
∑

i=k

a†iai − 2n + 1 + N − k

)

+ δ

( N
∑

i=k

a†iai − 2n + N − k

)]

=
c

4

N
∑

k=1

[

N − k +
N

∑

i=k

a†iai +
1

2

(

1 − (−1)N−k+
PN

i=k a†
i ai

)]2

(2.26)

The second equality above follows from our mapping of the degenerate levels to odd and

even level of the auxiliary fermion problem and the third follows from the first of the

bosonization formulae in (2.21). As an example, let us compute the energy of the vacuum

state using the bosonized hamiltonian. On the vacuum state, the oscillator term vanishes.

We get

Hcircle |0〉B =
c

4

N
∑

k=1

[

N − k +
1

2

(

1 − (−1)N−k

)]2

|0〉B . (2.27)

For N even, the eigenvalue becomes 2c[12 + 22 + · · · + (N/2 − 1)2] + c(N/2)2, while for N

odd we get 2c[12 +22 + · · ·+(N−1
2 )2]. These are precisely the correct energy eigenvalues of

the N -fermion ground state in the two cases. One can similarly check that the bosonized

hamiltonian in (2.26) correctly gives the energy eigenvalues for excited states.

For small fluctuations around the Fermi vacuum, one can define a semiclassical limit in

which the standard relativistic boson emerges as low energy excitations. These excitations

coincide with the ones created by the a†-oscillators. Details of this calculation will be

presented elsewhere.

Notice that the fermionic hamiltonian (first line of (2.26)) is manifestly invariant under

n → −n, for any given n. It is reflected as degeneracies in the spectrum. This manifest

symmetry of the hamiltonian is lost in the bosonized form (last line of (2.26)), although

of course the bosonic spectrum does display the appropriate degeneracies. For example,

consider N even. In this case the fermi ground state is doubly degenerate since the single

fermion at the top can occupy either of the two degenerate states labeled by n = ±N/2. In
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the bosonic language, this pair of degenerate states is |0〉B and a†1|0〉B . Similarly, for N odd,

the fermi ground state is unique, but the first excited state has four-fold degeneracy. The

corresponding four degenerate bosonic states are a†1|0〉B , a†1
2|0〉B , a†2|0〉B and a†2 a†1|0〉B .

There will be a maximum of 2N degenerate states in the most general case. It is an

important problem to understand in a more systematic way this realization of the symmetry

structure in the bosonic theory. This would open up the possibility of applications of our

bosonization to problems in higher than 1 space dimension. For example, in 3 space

dimensions in a potential with spherical symmetry, one can proceed as above and give

some assignment of degenerate angular momentum states to the auxiliary fermion problem
2. The important issue would then be to understand how rotational symmetry is realized

in the bosonized theory. A systematic analysis of this is clearly very important, but is

beyond the scope of the present work.

2.1.4 Interacting fermion models

Our discussion so far has been confined to noninteracting fermions for which the full hamil-

tonian is a sum of single-particle hamiltonians. The generic many-fermion hamiltonian is

of the form

HF =
∑

m,n

1

2
Emnψ†

mψn +
∑

m,n,l,r

Vmnlrψ
†
mψnψ†

l ψr + · · · (2.28)

where Emn = E∗
nm and Vmnlr, . . . satisfy appropriate relations to ensure hermiticity of HF

. By using our bosonization formula (A.8) we can get the bosonic version of HF in terms of

the a, a†. (Similarly we can write down a second bosonized version, in terms of b, b† using

the results of section 5.) It would be interesting to work out the properties of these bosons

for fermions with a Coulomb interaction, for example, and compare with the standard

collective excitations.

3. General properties of the bosonized theory

Let us now explore some consequences of our bosonization. We will first comment on the

finite dimensionality of the single-particle Hilbert space.

3.1 Single particle: quantum phase space is fuzzy and compact

A finite-dimensional single-particle Hilbert space HN is equivalent to a noncommutative

or fuzzy compact phase space (for reviews on fuzzy spaces, see, e.g. [28, 29]). E.g, if the N

states |i〉 are the first N states of a simple harmonic oscillator:3

|i〉 =
α†i
√

i!
|0〉, i = 0, 1, 2, . . . , N − 1, α|0〉 = 0

ĥ = ~

(

α†α +
1

2

)

, [α,α†] = 1, ĥ|i〉 =

(

i +
1

2

)

~|i〉 . (3.1)

2One could choose an assignment by switching on a small magnetic field that breaks rotational symmetry.

The original problem is recovered by letting the magnetic field go to zero after bosonization is done.
3We will use α, α† to denote the lowering/raising operators of the single particle Hilbert space of a

harmonic oscillator (as against ai, a
†
i which are particle creation and annihilation operators).
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then the phase space corresponds to a fuzzy disc (see e.g. [30] and (3.4) below.) Similarly,

if the N states are the 2j + 1 states |j,m〉,m = −j, . . . ,+j of a rotor then the phase space

is a fuzzy sphere [31].

The fuzziness or noncommutativity of the quantum phase space M follows from the

existence of a finite ~, irrespective of whether N is finite or infinite(the infinite-dimensional

Hilbert space of a one-dimensional particle corresponds to a plane with noncommutative

coordinates [x, p] = i~). See section B for more.

The compactness of M follows from finite N . Intuitively, when the states |i〉 are,

e.g., “energy levels” of a bounded hamiltonian, the N Bohr orbits occupy a finite area

of the phase space. A more precise construction goes as follows [30]. Consider HN as a

subspace of an infinite dimensional Hilbert space H∞. For definiteness we will consider

the case of the harmonic oscillator, given by (3.1), the generalization to other cases being

straightforward in principle. The quantum phase space can be defined in terms of the

algebra AN of operators on HN , which themselves can be defined from operators on H∞
using a projection operator:

Ô → ÔN ≡ PN Ô PN = 〈i|Ô|j〉|i〉〈j| ∈ AN , i, j = 1, . . . , N

PN ≡
N

∑

1

|i〉〈i| (3.2)

Of course, the map Ô → ÔN is many-to-one. In terms of the phase space (Husimi)

representation of operators (see appendix B), (3.2) reads

O(z, z̄) → ON (z, z̄) ≡ PN (z, z̄) ∗ O(z, z̄) ∗ PN (z, z̄) (3.3)

where the star product is the Voros star product. The operation on the r.h.s. essentially

turns the support of O(z, z̄) into a compact one of an approximate size

r2
0 = N~ (3.4)

with an exponential tail ∼ exp[−r2/~]. This can be seen by noting that PN (z, z̄) =

Γ(N + 1, r2

2~
)/Γ(N + 1) has the above fall-off property.

Note that the truncation to an effectively compact phase space does not depend on

taking any semiclassical limit. It is clear that the support of ON (z, z̄), irrespective of

the original Ô, will be confined to r ≤ r0. The geometry of the quantum phase space is

therefore that of a disc. We have proved this result here for the harmonic oscillator, given

by (3.1), but similar results hold for other finite dimensional Hilbert spaces.

Another way to see the appearance of the fuzzy disc is to compute the Husimi dis-

tribution for any basis of states in HN . For the harmonic oscillator example (3.1), using

(B.5) we see that the Husimi distribution in state |j〉 is concentrated around r =
√

j, j =

0, 1, 2, . . . ., N − 1. The state of the maximum size, with j = N − 1, has an approximate

radius r0. The existence of the maximum size of the Husimi distribution can be easily

proved for an arbitrary linear combination of the basis states by a simple generalization of

the above argument.
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Coherent states in HN . There is another useful basis of states for HN , the modified

coherent states (see, e.g. [32], eq. (4.16)) defined using the projection PN (see (3.2))

|z,N〉 =
PN |z〉

||PN |z〉||

which, for the harmonic oscillator example, (3.1), becomes

|z,N〉 =
1

(ExpN [|z|2])1/2

N−1
∑

k=0

zk

k!
(α†)

k |0〉 (3.5)

where ExpN [x] ≡ ∑N−1
k=0

xk

k! . The modified coherent states satisfy completeness relations

∫

d2ze−|z|2|z,N〉〈z,N | = PN . (3.6)

The Husimi distribution (regarded in the full phase space of H∞) of any |z,N〉 is

Hz,N(w, w̄) =
e−|w|2

ExpN [|z|2] |ExpN [w̄z]|2. (3.7)

which falls off exponentially beyond |w| =
√

N irrespective of the specific z (it has a peak

around w ∼ z if |z| ≤
√

N).

In terms of the modified coherent states, the Husimi distribution in a state |ψ〉, defined

in (B.2)), gets modified to

H(z, z̄,N) = |〈z,N |ψ〉|2 (3.8)

“Fuzzy” coordinate space. It is interesting to note that at finite N (and finite ~) even

the coordinate space is “fuzzy”. This is in the sense that, for any ‘polarization’ (x, p) of

the phase space, localization in x (∆x = 0) requires ∆p = ∞, which is impossible for a

compact phase space. More precisely, the wavefunction δ(x − x0) cannot generically be

built by superposing a finite number of wavefunctions χi(x) = 〈x|i〉, i = 1, . . . , N . Indeed,

the projection in (3.2) implies that |x〉 is replaced by the state |x〉N ≡ PN |x〉 which has

the following position-space wavefunction

〈y|xN 〉 =
∑

i

〈y|i〉〈i|x〉 =

N
∑

i=1

χ∗
i (y)χi(x) (3.9)

This approaches δ(x − y) only in the limit N → ∞.

3.2 Second quantization: the bosonic phase space density

Let us define the following second quantized field

φ(x) ≡
N

∑

i=1

aiχi(x), φ†(x) ≡
N

∑

i=1

a†iχ
∗
i (x) (3.10)

– 13 –



J
H
E
P
0
1
(
2
0
0
6
)
1
1
8

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0

1

2

3

4

-1

-0.5

0

0.5

1

Figure 1: The bosonic phase space density 〈WB(x, p)〉, in the state (2.5), as a function of the (x, p)

plane. In the LLM example, this corresponds to the density of giant gravitons in the (x1, x2) plane.

The bosonic Fock space state (2.5) then has the wavefunction

〈x1, . . . , xM |r1, . . . , rN 〉

=
∑

σ∈PM

1√
M !





r1
∏

i=1

χσ(1)(xi)

r2
∏

i=r1+1

χσ(2)(xi) · · ·
M
∏

i=r1+r2+···+rN−1+1

χσ(N)(xi)



 (3.11)

where |x1, . . . , xM 〉 ≡ ∏M
l=1 φ†(xl) |0〉, M = r1 + · · · + rN . Just like |x〉 is outside the

single-particle Hilbert space HN , the basis |x1, . . . , xM 〉 is outside of the Fock space built

out of states (2.5). The more appropriate wavefunctions are products of |x〉N as in (3.9).

Nevertheless, (3.10) is a useful definition to have.

The second quantized (Wigner) phase space density is given in terms of (3.10) as (cf.

(B.10))

ŴB(x, p) =

∫

dη eiηp φ†(x + η/2) φ(x − η/2) (3.12)

The expectation value of ŴB(x, p) in the state |r1, . . . , rN 〉 is easily computed:

〈ŴB(x, p)〉 =

N
∑

i=1

riWi(x, p), (3.13)

where

Wi(x, p) =

∫

dη eiηp χi(x − η/2) χ∗
i (x + η/2) (3.14)

represents the Wigner density for the individual state |i〉. The semiclassical picture of

(3.13) for a typical state is described in figure 1.

For the harmonic oscillator example, one can use (B.5) to evaluate (3.13). The plot

of (3.13) in the (x, p) plane looks like “a rugged circular cake” with a maximum diameter
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r0 given by (3.4) and with circular ridges of heights ri at radii ∼
√

i. For states which

are arbitrary linear combinations of (2.5) the phase space density still has the shape of a

rugged cake of the same maximum diameter r0, but with the circular ridges generically

replaced by dips and bumps not necessarily maintaining the circular symmetry.

In the context of LLM, these plots depict the density of giant gravitons in the (x1, x2)

plane (see section 4.1).

Another way of seeing the “rugged cake” is to compute

〈z1
1 , . . . , z1

r1
, z2

1 , . . . , z2
r2

, zN
1 , . . . , zN

rN
|r1, . . . , rN 〉 ∼ Sym

[

N
∏

i=1

ri
∏

j=1

(zi
j)

i exp−
[

N
∑

i=1

ri
∑

j=1

|zi
j |2/2

]

(3.15)

which shows that there are rk particles at radius
√

k for each k = 1, . . . , N . The notation

“Sym” represents symmetrization over all the z’s.

A more appropriate second quantized phase space density is (cf. (B.10))

HB,N (z, z̄) = φ(z, z̄,N)φ†(z, z̄,N)

φ(z, z̄,N) ≡
N

∑

i=1

ai〈z,N |i〉 (3.16)

which are finite N versions of (B.10).

3.3 Lattice interpretation

Another, perhaps more appropriate, description of the coordinate space is in terms of a

finite lattice. An easy example is when HN is built out of the first N levels of a harmonic

oscillator (see eq. (3.1)). Consider the radial polarization of the phase space where the

angle ϕ is the coordinate and the hamiltonian r2/2 = −i∂/∂ϕ is the conjugate momentum.

The ultra-violet cut-off in energy or the radius (see (3.4)) implies that there is a finite

lattice cutoff in ϕ (this, together with the infra-red cut-off coming from the compactness

of ϕ, gives a finite lattice, as appropriate for a finite dimensional Hilbert space HN ). Thus

ϕ takes discrete values ϕµ = µε, ε = 2π/N, µ = 0, 1, . . . , N − 1, ϕµ ≡ ϕµ+N = ϕµ + 2π.

The associated ‘position eigenstates’ |ϕµ〉 are defined as discrete Fourier transforms of the

basis states in (3.1):

|ϕµ〉 ≡
N

∑

k=1

e−i 2π
N

µk|k − 1〉 (3.17)

The lattice description of the coordinate space is more appropriate than the continuum

description since with a continuous variable ϕ the associated states |ϕ〉 are typically outside

of HN . In contrast, |ϕµ〉 are all in HN , by definition.

The second quantized field operator φ†(ϕµ) ≡ φ†
µ, which creates a particle on the µth

site, is defined by

φ†
µ ≡ 1√

N

N
∑

k=1

e−i 2π
N

µka†k (3.18)
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Its conjugate, φµ, destroys a particle on the µth site. It is easy to show that these field

operators also satisfy the harmonic oscillator algebra

[φµ, φ†
ν ] = 1 if µ = ν mod N

= 0 otherwise. (3.19)

In terms of these field operators, the N -level lattice hamiltonian may be obtained from

(2.23) by using the following relation:

N
∑

i=k

a†iai =
N − k + 1

N

N−1
∑

µ=0

φ†
µ φµ +

1

N

N−1
∑

µ6=ν=0

[

ei 2π
N

(µ−ν)k − ei 2π
N

(µ−ν)

1 − ei 2π
N

(µ−ν)

]

φ†
µ φν (3.20)

The hamiltonian is essentially the charge Q1, see equation (3.22) below. Notice that the

second term in the above equation gives rise to long-range interactions on the lattice.

Our lattice models inherit higher conserved charges from the underlying free fermion

system. There are exactly N conserved charges, which arise due to the conservation of

the individual energies of the non-interacting fermions. It is more usual to write these

conserved charges as

Qn =

∞
∑

m=0

{E(m)}n ψ†
m ψm. (3.21)

Here n is any positive integer, but the number of independent charges is only N since the

values of these charges in any N -fermion state can be expressed in terms of only the N

independent energies of the occupied levels. In the lattice formulation of the bosonized

theory, these charges translate into the operators

Qn=

N
∑

k=1

{

E
(

N − k +
N − k + 1

N

N−1
∑

µ=0

φ†
µ φµ +

1

N

N−1
∑

µ6=ν=0

[

ei 2π
N

(µ−ν)k − ei 2π
N

(µ−ν)

1 − ei 2π
N

(µ−ν)

]

φ†
µ φν

)}n

(3.22)

By construction these higher charges exist for any potential in which the fermions are

moving. In particular, they also exist for fermions moving in a harmonic oscillator potential,

which is relevant for the half-BPS sector of N = 4 super Yang-Mills theory. This raises the

possibility of some connection of our lattice models with the integrable spin-chain models

of N = 4 super Yang-Mills theory 4 which have been a recent focus of study in connection

with AdS/CFT duality. What this connection might be is not clear to us, but investigating

this possibility could be worthwhile.

We end this section by mentioning that an explicit expression for the lattice hamilto-

nian can be given for an equally spaced spectrum of the form E(m) = c1 m + c2. This is

relevant for the half-BPS sector mentioned above. The hamiltonian turns out to be

Hequal−spacing =
c1

2
(N +1)

N−1
∑

µ=0

φ†
µ φµ +

c1

2

N−1
∑

µ6=ν=0

[

1 − i cot
π

N
(µ − ν)

]

φ†
µ φν +Hvac (3.23)

4See, for example, the paper by Beisert and Staudacher [33] for a summary of the current status of the

subject and for references to recent literature.

– 16 –



J
H
E
P
0
1
(
2
0
0
6
)
1
1
8

where Hvac = c1
2 N(N − 1) + c2N is the ground state energy. This hamiltonian has long-

range interactions. Moreover, unlike in the case of standard SYM spin-chains [33], here

there can be multiple excitations at any site since the variables at each site are harmonic

oscillators. Whether the reformulation of the half-BPS sector as the spectrum of this lattice

hamiltonian has any new insights to offer remains to be seen.

3.4 More on second quantization

In view of the lattice interpretation of coordinate space, it may be appropriate to introduce

discrete Wigner/Husimi phase space distributions [34] WB(i, j),HB(i, j) in both the first

and second quantized formalism (the precursors of this concept are (3.8), (3.16)). We will

not go into the full details here, but consider only the diagonal elements which turn out to

be

ŴB(i, i) = Φ̂B(i, i) = a†iai (3.24)

Using (2.21), we can relate these to ψ†
nψn which, when evaluated on wavefunctions of the

form (2.2), get related to the fermionic Wigner density ŴF (x, p) (see (B.8), also footnote 5),

〈ŴF (x, p)〉 =
∑

n

〈ψ†
nψn〉Wn(x, p) (3.25)

Here Wn are the single-particle Wigner distributions. For the corresponding states (2.5)

we find (see (3.13))

〈ŴB(x, p)〉 =
∑

i

〈a†iai〉Wi(x, p) (3.26)

Combining all this with (2.21) we get for these special states (monomials of the form (2.2))

〈ŴF (x, p)〉 =
∑

n

N
∑

k=1

〈

δ

(

N
∑

i=k

ŴB(i, i) + N − n − k

)〉

Wn(x, p) (3.27)

In case of (3.1), 〈ŴB〉, 〈ŴF 〉 for these states are functions of only x2 + p2 (“circular config-

urations”) in which case we get a relation between the bosonic and fermionic phase space

densities

〈ŴF (r)〉 =
∑

n

N
∑

k=1

δ

(

N
∑

i=k

{
∫

[dr′]〈ŴB(r′)〉Wi(r
′)

}

+ N − n − k

)

Wn(r) (3.28)

where we have taken the semiclassical limit to perform the average inside the δ-function.

In the next section, we will interpret this as a relation between the LLM metric and

the giant graviton density.

3.5 Action for WB

For noninteracting fermions, the second quantized action for the fermions is given by the

Kirillov coadjoint orbit action written in terms of the Wigner phase space density ŴF [20,

21, 35, 5, 6] 5

S[WF ] = Ssympl[WF ] + Sham[WF ],

5In these references the notation u(q, p) was used in place of WF (q, p); notations in this paper are

explained in appendix B.
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Ssympl =

∫

dt ds

∫

dqdp

2π~
WF (q, p, t, s) ∗w {∂tWF , ∂sWF }MB ,

Sham =

∫

dt HF =

∫

dt

∫

dqdp

2π~
WF (q, p, t) ∗w h(q, p) (3.29)

Here the action is written in the first order form, similar to the single-particle action
∫

dt (pq̇−H(p, q)), with WF (q, p) itself playing the role of the phase space coordinates (p, q).

The notation “sympl” denotes the symplectic form (pq̇) term and “ham” denotes the hamil-

tonian term. The variable s denotes an extension of WF (q, p, t) to WF (q, p, t, s), devised

to enable us to write down the symplectic term. The physical trajectory is parametrized

by t at some s = s0 and the equation of motion is independent of the s-extension because

the symplectic form is closed. See [35, 5, 6] for details.

Using the bosonization formulae in section 2 and appendix A one gets an action for

the bosons in terms of WB(q, p). For equally spaced fermionic levels we can use (3.28) to

get an action of the form

S[WB ] = Ssympl[WB ] +

∫

dt

∫

dqdp

2π~
WB(q, p, t) ∗w hB(q, p) (3.30)

where hB is an equally spaced finite-level (N) hamiltonian. The symplectic form can be

explicitly written down, though we will not do so here.

4. Application of our bosonization to LLM

Review. As discussed in the Introduction, [2, 3] made the observation that a half-BPS

sector of N = 4 super Yang Mills theory is described effectively by a theory of free fermions

moving in a simple harmonic oscillator potential. The semiclassical fermion phase space

is described by droplets of uniform density in two dimensions. Ref. [1] uncovered such a

droplet structure also in the corresponding sector of type IIB supergravity in asymptotically

AdS5×S5 spacetimes. It was noted in [2, 3, 12] that states of the fermion theory should have

a bosonic description in terms of giant gravitons, since the latter are known to correspond

to operators of the Yang Mills theory which can be written in terms of the fermions [4].

The identification between the fermionic and the bosonic states was explicitly stated in [12]

as a one-to-one map

|f1, . . . , fN 〉 ↔ |r1, . . . , rN 〉 (4.1)

where

rN = f1,

rk = fN−k+1 − fN−k − 1, k = 1, 2, . . . , N − 1 (4.2)

This maps the fermionic hamiltonian

HF =

∞
∑

n=0

(n + 1/2)ψ†
nψn, (4.3)
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with excitation spectrum given by E =
∑N

k=1(fk − k + 1), to a bosonic hamiltonian

HF − N2/2 = HB =

N
∑

i=1

ia†iai, (4.4)

with excitation spectrum given by E =
∑N

k=1 krk. A few examples of the map (4.2) are

|F0〉 ≡ |0, 1, . . . , N − 1〉 7→ |0〉B
ψ†

Nψ0|F0〉 ≡ |1, 2, . . . , N〉 7→ a†N |0〉B
ψ†

Nψ†
N+1ψ1ψ0|F0〉 ≡ |2, 3, . . . , N + 1〉 7→

(

(a†N )2/
√

2
)

|0〉B
ψ†

N+1ψ
†
Nψ2ψ0|F0〉 ≡ |1, 3, . . . , N,N + 1〉 7→ a†Na†N−1|0〉B (4.5)

The second equation assigns a single hole at the lowest level (costing energy N) to a single

bosonic particle at level N . The 4th equation assigns two holes at levels 0 and 2 (total

energy cost 2N − 1) to two bosonic particles, at levels N and N − 1.

The rationale behind the map (4.2) is as follows. A fermion configuration can be

specified in terms of holes created in the Fermi sea. The idea is to regard a hole (together

with the upward shift of the Fermi sea to make space for it) as a bosonic excitation.

The correspondence between giant gravitons and gauge invariant operators suggests an

identification of these bosonic excitations with giant gravitons.

Our operator map and Exactness of the Bose-Fermi equivalence. The above

rationale of treating a hole as a boson is somewhat intuitive, so let’s see how it holds in

specific examples. Consider the second equation of (4.5). Here the hole corresponds to the

excitation A†
N ≡ ΦN0 = ψ†

Nψ0, which satisfies the algebra (see (B.6))

[AN , A†
N ] = ψ†

0ψ0 − ψ†
NψN (4.6)

This evaluates to 1 on |F0〉 but not in general. Indeed these operators are related to the

fermion phase space density which satisfy the W∞ algebra but not satisfy the Heisenberg

algebra.

This might seem to suggest that (4.2) may not hold operatorially [36], that is, the

“hole” operators may not satisfy the usual bosonic commutation rules, after all. On the

other hand, it is also known [12] that with this map the fermionic and bosonic partition

functions agree. The only way to settle which possibility is realized is to try to see if

one can deduce operator maps from (4.2). The operator maps described in this paper

(section 2, appendix A and section 5) indeed precisely fit the bill 6. The precise bosonic

excitation is more complicated than the naive guess of (4.6) and is such that it does satisfy

the Heisenberg algebra. Indeed the Heisenberg algebra is implied by the the fermion

anticommutation relations (and vice versa) and the bose-fermi equivalence is exact.

6We first deduced the operator map for the LLM system, but as mentioned in section 2, they hold for

fermions moving in an arbitrary potential and even in the presence of fermion-fermion interactions
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4.1 Giant graviton phase space density

The exact bosonic operators ai, a
†
i are clearly related to creation or destruction of giant

gravitons [2, 3, 1, 12, 5]. To see this in detail, we now come back to the bosonic phase

space discussed in the earlier section.

The correspondences with the last section are:

1. The states |i〉 ∈ HN correspond to giant gravitons in energy eigenstates.

2. The modified coherent states |z,N〉, |z| < N describe a giant graviton state localized

near the point z.

3. The giant graviton energy levels are equally spaced, as in the harmonic oscillator

example (3.1). Thus, the phase space density of giant gravitons (i.e. the density of giant

gravitons in the (x1, x2) plane)7 has (see eq. (3.13) and below) the geometry of a rugged

cake8, as discussed in section 3.2 (see figure 1). Such a geometry (with heights ri at radii

∼
√

i) accords with the picture of ri giant gravitons moving in the i-th orbit. This adds to

the evidence that the bosons ai, a
†
i indeed represent giant gravitons.

4. Arbitrary LLM ‘droplet’ geometries correspond, in a one-to-one fashion, to the

“rugged cake” geometries of giant gravitons. It is interesting to note that the giant gravitons

never leave the original circular region (3.4) representing AdS5 × S5, even for arbitrary

LLM geometries.

5. For circular configurations, the giant graviton phase space density in the semiclassi-

cal limit is directly related to the fermion phase density via (3.28). Because of the relation

between the fermion phase space density and the LLM metric, (3.28) also expresses the

LLM metric in terms of the giant graviton phase space density in the semiclassical limit.

Section 4.2 will discuss the finite N version of this relation where we will write down exact

expressions for gravitons in terms of the oscillators ai, a
†
j .

Remarks: a. The bosonization formula in section 2 automatically incorporate the fact

that although multiple fermions cannot occupy the same energy levels, the giant gravitons

can. In the simple examples like (4.5), where the r.h.s. of the third line describes two giant

gravitons in the N -th orbit, the equivalent fermionic description on the l.h.s. describes a

spreading out. In general such effects are encoded in the operator maps.

b. In [5], only non-overlapping giant gravitons were considered, and agreement found

with the W -action (3.29). When overlapping giant gravitons are considered, the data

consist of not only the centres of mass of the giant gravitons, but the “heights” (how many

on top of each other). It would be an interesting exercise to obtain (3.30) from considering

such overlapping giant gravitons.

7The identification of the (x1, x2) plane of LLM with the phase space of half-BPS giant gravitons was

made in [5].
8There is a subtlety, however, about the origin of the “cake”. The giant gravitons at the “North pole”

have zero energy. If we are not interested in keeping track of the total number of giant gravitons, we can

choose to ignore all such giant gravitons and therefore ignore the harmonic oscillator ground state. Our PN

(see (3.2)) will therefore consist of the states |i〉, i = 1, 2, . . . , N . The formulae in the last section will have

to be correspondingly modified, and in this convention, the rugged cake will have a “dip” in the middle.
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4.2 LLM gravitons and our bosons

Consider the single trace operators of the boundary theory. In the fermionic realization,

these operators correspond to [4]

β†
m =

∞
∑

n=0

√

(m + n)!

2mn!
ψ†

n+m ψn, m = 1, 2, . . . ,∞ (4.7)

It is easy to check that [β†
m, β†

n] = 0 = [βm, βn], but that [βm, β†
n] 6= δmn. In fact, in terms

of our bosonic oscillators which do satisfy the standard oscillator algebra, (2.4), the single

trace operators have complicated expressions, involving creation as well as annihilation

operators. The operator expression, which can be obtained by using the bosonization for-

mula, (A.8), is quite messy, but the corresponding “single-particle” state, which is obtained

by acting on the fermi vacuum, has a simple enough expression:

β†
m |F0〉 =

N
∑

n=2

(−1)n−1

√

(N + m − n)!

2m(m − n)!(N − n)!
θ+(m − n) a†1

m−n
a†n |0〉B

+

√

(N + m − 1)!

2mm!(N − 1)!
a†1

m |0〉B . (4.8)

We see that even a “single-particle” state has in general many excitations of our elementary

bosons. For m < N , because of the theta-function the sum in the first term on the right-

hand side of (4.8) terminates at n = m. So in this case the highest energy creation operator

that appears on the right-hand side is a†m and it appears by itself. If m ¿ N , the leading

term on the right-hand side in 1/N expansion has an overall factor of Nm/2, which is

the correct large-N normalization for a single trace operator. We thus begin to see how

the usual picture of collective excitations arises in the large-N limit for low-energy states.

On the other hand, for any m > N the highest energy creation operator that appears

in “single-particle” states is a†N and it appears together with other excitations. This is a

reflection of the fact that a single trace operator in the boundary theory of higher than

Nth power of a matrix is not independent since it can be rewritten in terms of products

of lower traces. Let us now explain the above comments in greater detail.

4.2.1 Fuzzy gravitons

From (4.7) we get

β†
1|F0〉 =

√

N

2
a†1|0〉B

β†
2|F0〉 = −1

2

√

N(N − 1)a†2|0〉B +
1

2

√

N(N + 1)

2
(a†1)

2|0〉B
..

β†
N+1 |F0〉 =

N
∑

n=2

(−1)n−1

√

(N + m − n)!

2m(m − n)!(N − n)!
a†1

N+1−n
a†n |0〉B

+

√

(2N)!

2N+1(N + 1)!(N − 1)!
a†1

N+1 |0〉B . (4.9)
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Consider the first equality. Taking inner product with |z〉 on both sides, we see that

〈z|β†
1|F0〉 =

√

N

2
〈z|a†1|0〉B ∼ z exp[−|z|2/2] (4.10)

This is the wave-function (in the coherent state basis) of the “graviton” of unit energy. The

“graviton” of energy m ¿ N , always has a single particle component ∼ zm exp[−|z|2/2].
These correspond to the gravitons wave-functions of [37]. For m > 1, however, they also

have multi-particle components, e.g. for m = 2, there is a two particle component with

wavefunction 〈z1, z2|(a†1)2|0〉B ∼ z1z2 exp[−(|z1|2 + |z2|2)/2]. For m > N there are no

single-particle components of the wave-functions.

Remarks: 1. It is easy to see from (4.9) that “gravitons” of energy > N do not exist

as single particles and are composed of multiple a†i modes of lower energy. This suggests

that the existence of an infinite number of gravitons, a hallmark of commutative gravity,

is only an approximation valid in the large N limit. For finite N , the oscillators ai, a
†
i ,

which are by definition N in number and hence independent of each other, provide a more

appropriate basis to describe the geometry.

2. Finite number of independent metric fluctuations is an indication of noncommu-

tative geometry. Thus, e.g., metric fluctuations on a fuzzy sphere will involve spherical

harmonics only up to rank proportional to the radius of the fuzzy sphere.

3. Formulae such as (3.4) suggest that the large N limit involves nonperturbative

effects of the form exp[−1/~] ∼ exp[−N ].

4. At finite N , superscript effective action should receive interesting corrections from

the “compactness” of the phase space which is captured by the difference between the

Moyal star product and the ordinary product appearing in the WF action (3.29) [5, 6] and

the corresponding structure in the WB action (3.30).

5. The second bosonization

Consider a second system of bosons each of which can occupy a state in an infinite Hilbert

space HB. Suppose we choose a basis |m〉,m = 0, . . . ,∞ of HB. In the second quantized

notation we introduce creation (annihilation) operators b†m (bm) which creates (destroys)

a particle in the state |m〉. These satisfy the commutation relations

[bm, b†n] = δmn, m, n = 0, . . . ,∞ (5.1)

A state of this bosonic system is given by (a linear combination of)

∞
∏

k=0

(b†k)
nk

√
nk!

|vac〉 . (5.2)

Now consider the subspace of the Hilbert space spanned by states with the restriction
∑∞

k=0 nk = N . We label a state of this type by |s1, s2, . . . , sN 〉 where si are non-increasing
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set of integers representing the energies of N bosons. In [12] a map between these states

and the fermionic states was proposed

sN−i 7→ fi+1 − i, i = 0, 1, . . . , N − 1 (5.3)

The rationale behind this map was to regard the “particle” excitations (which correspond

to dual giant gravitons) as bosons. In the following subsection we describe the operator

equivalence of this system with the N -fermion system.

5.1 The map between fermions and ‘dual-giant’ bosons

Let us start by rewriting the Hilbert space of the fermion system into a disjoint union of

subspaces spanned by states with a fixed number of particle excitations.

H(F ) = ∪N
k=0H

(F )
k (5.4)

where H(F )
N−k = Span{|0, 1, . . . , k − 1, fk+1, . . . , fN 〉 : fk+1 6= k}. The operator that distin-

guishes the states belonging to different subspaces H(F )
k is ν̂ :=

∑∞
k=1 b†kbk which translates

to

ν̂ =

∞
∑

k=1

b†kbk = N −
N

∑

k=1

k−1
∏

m=0

ψ†
mψm . (5.5)

Further, define

ŝp =

∞
∑

k=1

(k − 1)

p−1
∑

l=0

δ

( ∞
∑

i=k

b†ibi − l

)

N
∑

m=p

δ





∞
∑

j=k−1

b†jbj − m



 ,

f̂p =
∞
∑

k=0

k δ

(

k−1
∑

i=0

ψ†
i ψi − p + 1

)

δ





k
∑

j=0

ψ†
jψj − p



 . (5.6)

and

ψfp
=

∞
∑

k=0

ψkδ

(

k−1
∑

i=0

ψ†
i ψi − p + 1

)

δ





k
∑

j=0

ψ†
jψj − p





bsp =
∞
∑

k=1

bk−1

p−1
∑

l=0

δ

( ∞
∑

i=k

b†i bi − l

)

N
∑

m=p

δ





∞
∑

j=k−1

b†jbj − m



 (5.7)

for p = 1, 2, . . . , N . The corresponding ψ†
p and b†sp ’s can be obtained by taking the hermitian

conjugates. Since we are to keep the total number of particles fixed we only consider the

operators of the type b†kbm. Using eq. (5.1) we have

[b†kbm, b†pbq] = δmpb
†
kbq − δkqb

†
pbm (5.8)

which is again a W∞-algebra. We want to find the operator correspondences between

operators of the kind b†kbm on the bosonic side and ψ†
kψm type operators on the fermionic
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side. We present below the expressions of these operators for the special cases of N = 1, 2.

The generalization to arbitrary N is a lengthy but straightforward exercise.

For N = 1, we can associate b†kbm with ψ†
kψm (and bkb

†
m with 2δkm − ψkψ

†
m) and the

algebra (5.8) follows immediately.

For N = 2 case we first seek operators b†kb0 (b†0bk) which create (annihilate) a particle

excitation that takes a state in H(F )
m to one in H(F )

m+1 (H(F )
m+1 to one in H(F )

m ). To find these

let us observe that each state of the subspace H(F )
k is a linear combination of states with k

excited bosons (and N − k in the ground state) |s1, s2, . . . , sk, sk+1 = 0, . . . , sN = 0〉 with

k ≤ N . The operator b†kb0 excites a particle from level-0 to level-k. This operator takes

|s1 = 0, . . . , sN = 0〉 to |s1 = k, s2 = 0, . . . , sN = 0〉. Similarly it takes |s1, 0, . . . , 0〉 to

|s1, k, 0, . . . 0〉 if k ≤ s1 or |k, s1, 0, . . . , 0〉 if s1 ≤ k and so on.

We find the following expressions for b†kb0 and b†0bk:

b†kb0 =
√

2 ψ†
k+1ψ1 δν̂ +

[

k−1
∑

l=1

ψ†
k+1ψ0ψ

†
k+l ψk−l+1 δk−f̂2−l+1

+ ψ†
kψ0

( ∞
∑

l=1

δf̂2−k−l−1 +
√

2 δk−f̂2+1

)]

δν̂−1,

b†0bm = ψ†
1 ψm+1 δm−f̂2+1 δν̂−1 +

[

ψ†
0 ψf̂2

ψf̂1
ψ†

f̂1+1
δf̂2−m−1 (1 − δf̂2−f̂1−1)

+ ψ†
0 ψm δf̂1−m (1 +

√
2 δf̂2−f̂1−1)

]

δν̂−2 (5.9)

for k,m ≥ 1. The general operators of the type b†kbm can be generated out of the above

ones using

b†kbm = δkm b†0b0 + [b†kb0, b
†
0bm]. (5.10)

The fermion bilinear operators turn out to be:

ψ†
kψk = (δk + δk−1) δν̂ + (δk + δk−ŝ1−1) δν̂−1 + (δk−ŝ2

+ δk−ŝ1−1) δν̂−2 (5.11)

and

ψ†
k+1ψk =

1√
2
b†1b0 δk−1 δν̂ + (b†1b0 (1 − δŝ1

)δk + b†k bk−1 δk−ŝ1−1) δν̂−1

+

(

b†k+1 bk δk−ŝ2
(1 − δk−ŝ1

) + b†k bk−1 δk−ŝ1−1

(

1 +
1 −

√
2√

2
δk−ŝ2−1

))

δν̂−2,

ψ†
k+nψk =

1√
2

[

b†nb0 δk−1 + b†n−1b
†
1b

2
0

(

1 +
1 −

√
2√

2
δn−2

)

δk

]

δν̂

+

[

b†k+n−1 bk−1 δk−ŝ1−1 +

( ∞
∑

l=2

b†nb0 δŝ1−n−l+1

+
n−1
∑

l=2

b†n−1 b0 b†n−l bn−l−1 δn−ŝ1−l−1
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+
1√
2
((b†n−1)

2b0 bn−2 δn−ŝ1−2 + δŝ1−nb†n b0) δk

]

δν̂−1

+

[

b†k+n−1 bk−1 δk−ŝ1−1 +

( ∞
∑

l=2

b†k+n bk δŝ1−k−n−l+1

+

n−1
∑

l=2

b†k+n−1 b†k+n−l bk+n−l−1 bk δk+n−ŝ1−l−1

+
1√
2
(b†k+n bk δŝ1−k−n + (b†k+n−1)

2 bk+n−2 bk δk+n−ŝ1−2) δk−ŝ2

]

δν̂−2 (5.12)

for n ≥ 2. The δÔ’s in these expressions are the same as the operator delta functions δ(Ô)

used for the first boson in section 2. Similar expressions hold for ψ†
kψk+n.

The fact that the N -fermion system is equivalent to two different bosonic systems

implies that the two bosonic systems are also equivalent to each other [12] (see [38] also).

As in case of the first boson, one can represent various states in this bosonic system by

specifying the corresponding phase space densities. One expects that the phase space here

is the same as that of a harmonic oscillator (i.e, R2) with the total number of particles

being equal to N . Since they are bosons, each Planck cell can again be occupied by more

than one particles.

Bosonized hamiltonian. We will consider, for simplicity, bosonized expressions for non-

interacting fermion hamiltonians of the type (2.22). The bosonic hamiltonian, for the N = 2

system, is

H ′
B =

∞
∑

k=0

E(k)[(δk + δk−1) δν̂ + (δk + δk−ŝ1−1) δν̂−1 + (δk−ŝ2
+ δk−ŝ1−1) δν̂−2] −

N−1
∑

k=0

E(k)

(5.13)

where ν̂ =
∑∞

n=1 b†nbn = N−b†0b0. The expression for general N is given in (6.4). Bosoniza-

tion of (2.28) a la the second bosonic system can also be worked out.

6. Applications to c = 1 matrix model

In this paper we will only report some preliminary observations on c = 1. Detailed results,

the full import of which are yet to be understood, will be presented elsewhere.

As emphasized before, our bosonization formulae do not depend on the choice of a

specific fermion hamiltonian. It can thus be applied to the c = 1 model for which the

fermion hamiltonian involves an upside down harmonic oscillator potential:

HF =
∑

n

E(n)ψ†
nψn =

1

2

∫

dx ψ†(x)

[

− 1

β2

d2

dx2
− x2 + A2

]

ψ(x) (6.1)

Here E(n) are the eigenvalues of the hamiltonian ĥ = [− 1
β2

d2

dx2 − x2 + A2] with an infinite

wall at x = ±A [39]. The spectrum E(n) and the corresponding eigenfunctions can be
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explicitly evaluated in terms of parabolic cylinder functions. In the scaling limit N →
∞, β → ∞, N/β → A2/(2π) one can obtain the following WKB estimate for energy levels

close to the Fermi surface:

E(N + m) − E(N) = cm + O(m2), c ≡ π

β log(
√

2βA)
(6.2)

For the first system of bosons, we get a bosonized hamiltonian using (2.23). In the scaling

limit and for states close to the fermi level in the fermionic description (corresponding to

bosonic states involving a small number of low energy bosonic excitations), the hamiltonian

(2.23) becomes, after a simple calculation using (6.2):

HB ≈ c

N
∑

k=1

N
∑

i=k

a†iai + const. = c

N
∑

k=1

ka†kak + const. (6.3)

We will shortly remark on the relation of this hamiltonian to that of the known relativistic

boson. The hamiltonian in terms of the second system of bosons can also be written down

(generalizing (5.13) to arbitrary N):

H ′
B =

N
∑

k=1

δ

( ∞
∑

n=1

b†nbn − k

)

k
∑

p=1

[E(ŝp + N − p) − E(N − p)] . (6.4)

where ŝp is defined in (5.6).

Remarks: 1. D0 branes:

(a) The bosonic operators d†n ≡ b†nb0 correspond to creation operators for D0-branes

in two dimensional bosonic string theory (D0 branes in two dimensional string theory were

first described in the matrix model language in [40, 41]). This can be verified as follows.

In the fermionic language, d†n acting on the fermi sea kicks the fermion at the fermi level

up by n levels; such an excitation represents a D0 brane at the energy level N + n9. Note

that the number of d† excitations in any state of the bosonized theory is bounded by N ,

but the individual energy level of such an excitation is unbounded above (see section 5),

as expected of D0 branes.

(b) A localized D0 brane corresponds to an appropriate linear combination of d†n’s so as

to form a single-particle coherent state. Such D0 branes are unstable and the corresponding

“tachyon potential” [42] is described by the D0 brane hamiltonian (6.4). The “bottom”

of the tachyon potential is, of course, given by the “vacuum” state annihilated by all the

dn, n = 1, ..,∞ oscillators (in terms of the b, b† oscillators this state is (b†0)
N |vac〉, bn|vac〉 =

0, n = 0, 1, . . . ,∞). The energy difference ∆E between the initial energy and the bottom

9The occasional statements that D0 branes in 2D string theory correspond to fermions are somewhat

loose. Taken literally, they would imply that D0 branes cannot be created in a fixed-N theory, at least

before the double scaling limit. A more appropriate picture (emphasized in, e.g., [35]) is that D0 branes are

to be understood as fermion-antifermion pairs, since kicking a fermion from the fermi level upwards is such

an excitation. Our representation of the D0 brane in terms of the bosonic dn, d†
m oscillators is a precise

formulation of this idea.
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of the potential can be easily computed using (6.4), and for a D0 brane described by d†k,
∆E = E(N + k) − E(N).

(c) The hamiltonian (6.4) describes a nonperturbative interacting hamiltonian for D0

branes, thus playing the role of a hamiltonian for open string field theory.

(d) The d-oscillators are composites of the b-oscillators and do not have simple Heisen-

berg commutators. Although [d†m, d†n] = [dm, dn] = 0, [dn, d†m] = b†0b0δmn − b†mbn. It will

be interesting if this represents interesting statistics among D0 branes.

2. Holes: The operators a†i represent bosonic excitations corresponding to creation of

holes (analogues of the LLM giant gravitons). In the finite N theory these are again related

to D0 branes, just as for LLM the giant gravitons provide a dual description of the dual

giant states (see section 5). It will be interesting, however, to understand these statements

in the double scaling limit, where these holes are distinguished from the “particles” and

represent some new states [43]. This may provide some nontrivial hints about the double

scaling limit as well as the new states.

3. Tachyons: It is interesting to understand the double-scaled limit of our bosonization

formulae to find the relation of these bosons with the tachyon of two-dimensional string

theory. This problem is similar to the problem of connecting the graviton to the a- and

the b-oscillators in the LLM case. It turns out that for small fluctuations around the

Fermi vacuum, the hamiltonian (6.3) as well as the creation/annihilation operators (a†i , aj)

coincide with those for the well-known relativistic [16, 17, 19, 18] bosons and hence get

connected to the massless closed string tachyon in the double-scaled limit. Details of this

will be presented elsewhere.

7. Discussion

We list below the main results and some comments:

1. We have found exact operator bosonizations of a finite number of fermions which

can be described by states in a countable Hilbert space.

2. There are two systems of bosons. In the first system of bosons, the number of

bosonic particles is not constrained but each bosonic particle moves in a finite dimensional

Hilbert space, the dimensionality being the number of fermionic particles. In the second

systems of bosons, the number of bosonic particles has an upper bound which is the number

of fermions and the single-particle Hilbert space is the same as that of the fermions.

3. In the LLM example, the first kind of bosons correspond to giant gravitons in the

and the second kind of bosons correspond to dual giant gravitons.

4. In the c = 1 example, the second kind of bosons correspond to unstable D0 branes.

The interpretation of the first kind of bosons, which represent holes in the Fermi sea, is

not clear.

5. The finite number of bosonic energy levels in case of the first bosonization implies

a fuzzy compact phase space (equivalently, bosons on a lattice). In the LLM case, it has

the important implication that finite rank of the boundary SYM theory corresponds to NC

geometry in the bulk, where the fundamental quanta describing such geometry are giant

gravitons rather than the perturbative gravitons.
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6. The description of c = 1 in terms of a finite number of bosonic modes suggests a

similar NC structure, although whether it survives in the double-scaled limit, and if so in

what form, remains an open question.

7. The system of fermions on a circle, described in section 2, is closely related to

the problem of formation of baby universes as described in [44]. It would be interesting to

investigate whether in this example also our bosons are related to microscopic gravitational

degrees of freedom, as in the LLM case.

It is interesting to speculate whether the NC geometry in the LLM example is a

property only of the specific half-BPS sector of type IIB theory or if it is more general.

One of the points of emphasis in this paper is that a finite number of modes in the bulk

can imply noncommutative gravity. Whether this feature survives in the full theory is an

important question that needs further investigation.

One of the intriguing aspects of our exact bosonization (the first system of bosons) is

that the symmetries of the fermion system (even the number of spacetime dimensions) are

rather intricately hidden in the bosonic theory. Although at first sight this feature may not

appear to be particularly welcome, it may hint at a more abstract description of spacetime

in which the latter is a derived or emergent concept. In this context, it might be useful to

study the application of this bosonization to fermion systems in higher dimensions along

the lines briefly outlined in section 2.1.3.
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A. Details of computations: the first bosonization

In this appendix we have put together details of some of the computations summarized in

the main text. We will begin by explaining in the first subsection how we arrived at the

first bosonization described in section 2. In the second subsection we will give proof of the

algebra (2.4) for the oscillators which are defined in (2.15) and (2.16) by their action on

arbitrary fermion states. In the third subsection, we will give an expression for the general

fermion bilinear, ψ†
n+m ψn, in terms of the bosonic oscillators and indicate some details

of its derivation. In the fourth subsection we will prove that this expression satisfies the

W∞ algebra for small values of m for arbitrary N . Finally, in the last subsection we will

use the expression for the bilinear for N = 2 to prove that it satisfies the W∞ algebra for

arbitrary m.

A.1 Origin of the bosonization formulae

Here we will describe the steps involved in deducing the bosonization formulae given in

section 2 from the map (4.2). Consider first the action of oscillator creation operators a†k
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for k < N on a general fermi state. We have,

a†k |f1, . . . , fN 〉 = a†k |r1, . . . , rk, . . . , rN 〉
=

√
rk + 1 |r1, . . . , rk + 1, . . . , rN 〉.

=
√

fN−k+1 − fN−k |f1, . . . , fN−k, fN−k+1 + 1, . . . , fN + 1〉 (A.1)

The first and last equalities above follow from the state map (4.2) and the second follows

from the definition of the creation operator. Similarly, for a†N we get

a†N |f1, . . . , fN 〉 = a†N |r1, . . . , rN 〉
=

√
rN + 1 |r1, . . . , rN + 1〉.

=
√

f1 + 1 |f1 + 1, . . . , fN + 1〉 (A.2)

These are exactly the expressions given in equation (2.15). Expressions for annihilation

operators can be obtained similarly and these coincide with those given in (2.16).

Consider now the fermion bilinear ψ†
m ψn. Let us first set m = n. Acting on a general

fermion state, we get

ψ†
n ψn |f1, . . . , fN 〉 =

N
∑

k=1

δ(fk − n) |f1, . . . , fN 〉

=

N
∑

k=1

δ

( k
∑

i=1

rN−k+i + k − 1 − n

)

|r1, . . . , rN 〉

=
N

∑

k=1

δ

( N
∑

i=k

a†i ai + N − k − n

)

|f1, . . . , fN 〉. (A.3)

The first equality is a simple consequence of the fact that ψ†
n ψn kills the state unless

one of the fermions is occupying the level n. The second and last equalities then follow

from the state map (4.2). The last expression coincides with the first line of (2.21). The

bosonized formula for the general bilinear given below in (A.8) can be obtained by similar

manipulations of the state map. The calculation is essentially elementary, though longer

and more tedious.

A.2 Proof of the oscillator algebra

Let us consider the first of the equations in (2.15). Applying al, l < k, on both sides of

this equation and using (2.16), we get

ala
†
k |f1, . . . , fN 〉 =

√

fN−k+1 − fN−k al |f1, . . . , fN−k, fN−k+1 + 1, . . . , fN + 1〉
=

√

(fN−k+1 − fN−k)(fN−l+1 − fN−l − 1) ×
|f1, . . . , fN−k, fN−k+1 + 1, . . . , fN−l + 1, fN−l+1, . . . , fN 〉. (A.4)

Reversing the order, starting with the first of the equations in (2.16) and applying a creation

operator on both sides, we get

a†kal |f1, . . . , fN 〉 =
√

fN−l+1 − fN−l − 1 a†k |f1, . . . , fN−l, fN−l+1 − 1, . . . , fN − 1〉
=

√

(fN−k+1 − fN−k)(fN−l+1 − fN−l − 1) ×
|f1, . . . , fN−k, fN−k+1 + 1, . . . , fN−l + 1, fN−l+1, . . . , fN 〉. (A.5)
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The right-hand side of this equation is identical to that of (A.4). It follows that [al, a
†
k] = 0

for l < k. One can similarly prove this for l > k. For l = k, however, we get

aka
†
k |f1, . . . , fN 〉 =

√

fN−k+1 − fN−k ak |f1, . . . , fN−k, fN−k+1 + 1, . . . , fN + 1〉
= (fN−k+1 − fN−k) |f1, . . . , fN 〉, (A.6)

and

a†kak |f1, . . . , fN 〉 =
√

fN−k+1 − fN−k − 1 a†k |f1, . . . , fN−k, fN−k+1 − 1, . . . , fN − 1〉
= (fN−k+1 − fN−k − 1) |f1, . . . , fN 〉. (A.7)

If follows that [ak, a
†
k] = 1. Combining with the above result, we see that our bosonic

operators satisfy the standard oscillator algebra [al, a
†
k] = δlk.

A.3 Derivation of the bosonized expression for generic fermion bilinear

We will first give the bosonized expression for the fermion bilinear and then indicate the

key steps in its derivation. The expression given below is valid only for m > 0. The

expression for m < 0 can be obtained from it by conjugation. We have,

ψ†
n+m ψn =

N−1
∑

k=1

[

σm
k σ†

k+1

m
θ+(a†kak − m) −

∞
∑

rk=0

σm−1−rk

k−1 σ†
k

m−2−rk
σrk

k σ†
k+1

rk+1

× θ−(a†kak − m + 1) θ+(a†k−1ak−1 + a†kak − m + 1) δ(a†kak − rk)

+

k−1
∑

j=2

(−1)j
∞

∑

rk−j+1=0

∞
∑

rk−j+2=0

· · ·
∞
∑

rk=0

σ
m−j−Pj

i=1
rk−j+i

k−j

× σ†
k−j+1

m−j−1−
Pj

i=1
rk−j+i

σ
rk−j+1

k−j+1 σ†
k−j+2

rk−j+1 · · · σrk−1

k−1 σ†
k

rk−1

× σrk

k σ†
k+1

rk+1
θ−

( j
∑

i=1

a†k−j+i ak−j+i − m + j

)

× θ+

( j
∑

i=0

a†k−j+i ak−j+i − m + j

)

Πj
i=1δ(a

†
k−j+i ak−j+i − rk−j+i)

+ (−1)k
∞
∑

r1=0

· · ·
∞

∑

rk=0

σ†
1

m−1−k−
Pk

i=1 ri
σr1

1 σ†
2

r1 · · · σrk−1

k−1 σ†
k

rk−1

× σrk

k σ†
k+1

rk+1
θ−

( k
∑

i=1

a†iai − m + k

)

Πk
i=1δ(a

†
iai − ri)

]

× δ

( N
∑

i=k+1

a†iai − n + N − k − 1

)

+σ†
1

m
δ

( N
∑

i=1

a†iai − n + N − 1

)

. (A.8)
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Let us now explain the main steps in the derivation of this expression. Consider the action

of the fermion bilinear on a generic state. The result is zero unless the level n is occupied,

that is

ψ†
n+m ψn |f1, . . . , fN 〉 =

N
∑

k=1

δnfk
ψ†

f1
· · · ψ†

fk−1
ψ†

n+m ψ†
fk+1

· · · ψ†
fN

|0〉F

(A.9)

Furthermore, the right-hand side above vanishes unless the level (n + m) is unoccupied.

Assuming this is the case, we must consider several possibilities, depending on the exact

value of m. This is done by rewriting the above equation as follows:

ψ†
n+m ψn |f1, . . . , fN 〉 =

N−1
∑

k=1

δnfk

[fk+1−1
∑

l=fk+1

δfk+m,l ψ†
f1

· · · ψ†
fk−1

ψ†
l ψ†

fk+1
· · · ψ†

fN
|0〉F

−
fk+2−1
∑

l=fk+1+1

δfk+m,l ψ†
f1

· · · ψ†
fk−1

ψ†
fk+1

ψ†
l ψ†

fk+2
· · · ψ†

fN
|0〉F

+ · · · · · · · · · · · · · · · · · ·

+(−1)N−k
∞
∑

l=fN+1

δfk+m,l ψ†
f1

· · · ψ†
fk−1

ψ†
fk+1

· · · ψ†
fN

ψ†
l |0〉F

]

+ δnfN
ψ†

f1
· · · ψ†

fN−1
ψ†

fN+m |0〉F . (A.10)

The first term in the square brackets above corresponds to the possibility that (n + m) =

(fk + m) lies between (fk + 1) and (fk+1 − 1), the second term to the possibility that it

lies between (fk+1 + 1) and (fk+2 − 1) and so on. The term outside the square brackets

corresponds to k = N , that is to the possibility that n = fN . We can write the above

equivalently as

ψ†
n+m ψn |f1, . . . , fN 〉 =

N−1
∑

k=1

δnfk

[fk+1−1
∑

l=fk+1

δfk+m,l|f̃1 = f1, . . . , f̃k−1 = fk−1,

f̃k = l, f̃k+1 = fk+1, . . . , f̃N = fN 〉

−
fk+2−1
∑

l=fk+1+1

δfk+m,l |f̃1 = f1, . . . , f̃k−1 = fk−1,

f̃k = fk+1, f̃k+1 = l, f̃k+2 = fk+2, . . . , f̃N = fN〉
+ · · · · · · · · · · · · · · · · · ·

+(−1)N−k
∞
∑

l=fN+1

δfk+m,l |f̃1 = f1, . . . , f̃k−1 = fk−1,

f̃k = fk+1, f̃k+1 = fk+2, . . . , f̃N−1 = fN , f̃N = l〉
]

+ δnfN
|f̃1 = f1, . . . , f̃k−1 = fk−1, f̃k = fk+1,

f̃k+1 = fk+2, . . . , f̃N−1 = fN , f̃N = fN + m〉. (A.11)
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Using the state map (4.2), the right-hand side can be re-expressed in terms of the bosonic

oscillator states and the oscillator numbers that refer to them. We get,

ψ†
n+m ψn |f1, . . . , fN 〉

=
N−1
∑

k=1

δ

( k
∑

i=1

rN−k+i − n + k − 1

)[

θ+(rN−k − m) ×

|r̃1 = r1, . . . , r̃N−k−1 = rN−k−1, r̃N−k = rN−k − m,

r̃N−k+1 = rN−k+1 + m, r̃N−k+2 = rN−k+2 · · · , r̃N = rN 〉
−θ−(rN−k − m + 1) θ+(rN−k−1 + rN−k − m + 1) ×

|r̃1 = r1, . . . , r̃N−k−2 = rN−k−2, r̃N−k−1 = rN−k−1 + rN−k − m + 1,

r̃N−k = m − 2 − rN−k, r̃N−k+1 = rN−k+1 + rN−k + 1,

r̃N−k+2 = rN−k+2 · · · , r̃N = rN 〉
+ · · · · · · · · · · · · · · · · · ·

+(−1)N−kθ−

(N−k
∑

i=1

ri − m + N − k

)

×

|r̃1 =

N−k
∑

i=1

ri − m + N − k, r̃2 = r1, . . . , r̃N−k = rN−k−1,

r̃N−k+1 = rN−k+1 + rN−k + 1, r̃N−k+2 = rN−k+2, . . . , r̃N = rN 〉
]

+δ

( N
∑

i=1

ri − n + N − 1

)

|r̃1 = r1 + m, r̃2 = r2, . . . , r̃N = rN 〉. (A.12)

Now, using the bosonic creation and annihilation operators it is easy to re-express every

bosonic state appearing on the right-hand side above in terms of the state |r1, . . . , rN 〉 to

which the fermionic state |f1, . . . , fN 〉 corresponds under the state map (4.2). This results

in the bosonized operator expression for the fermi bilinear which is given in (A.8).

A.4 Proof of W∞ algebra for small values of m for arbitrary N

Consider the bilinears ψ†
n+1 ψn and ψ†

n+2 ψn+1. From the W∞ algebra (B.6), we get

[ψ†
n+2 ψn+1, ψ

†
n+1 ψn] = ψ†

n+2 ψn. (A.13)

It is clear from this equation that we can generate bosonized expressions for ψ†
n+m ψn for

any m merely from the knowledge of bosonized expression for ψ†
n+1 ψn by using the W∞

algebra. However, here we will use the expressions given in (2.21) for m = 0, 1 and 2,

which are special cases of (A.8), to compute the commutator and verify that the result

agrees with the right-hand side.

To compute the commutator we will need to use the following identities, in addition

to those given in (2.9):

g(a†kak) σ†
k = σ†

k g(a†kak + 1), g(a†kak) σk = σk g(a†kak − 1) θ+(a†kak − 1), (A.14)
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where g is any function of the number operator. We are now ready to do the computation

using the second of (2.21) in the commutator. All terms in the commutator involve products

of two delta-functions and several vanish because these are incompatible. The surviving

terms are

[ψ†
n+2 ψn+1, ψ

†
n+1 ψn]

= σ†
1 δ

( N
∑

i=1

a†iai − n + N − 2

)

σ†
1 δ

( N
∑

i=1

a†iai − n + N − 1

)

+σ†
1 δ

( N
∑

i=1

a†iai − n + N − 2

)

σ1 σ†
2 θ+(a†1a1 − 1) δ

( N
∑

i=2

a†iai − n + N − 2

)

−σ1 σ†
2 θ+(a†1a1 − 1) δ

( N
∑

i=2

a†iai − n + N − 2

)

σ†
1 δ

( N
∑

i=1

a†iai − n + N − 2

)

+

N−1
∑

k=1

σk σ†
k+1 θ+(a†kak − 1) δ

( N
∑

i=k+1

a†iai − n + N − k − 2

)

× σk σ†
k+1 θ+(a†kak − 1) δ

( N
∑

i=k+1

a†iai − n + N − k − 1

)

−
N−1
∑

k=2

σk σ†
k+1 θ+(a†kak − 1) δ

( N
∑

i=k+1

a†iai − n + N − k − 1

)

× σk−1 σ†
k θ+(a†k−1ak−1 − 1) δ

( N
∑

i=k

a†iai − n + N − k − 1

)

(A.15)

The first term comes from the commutator of the first term in the bosonized expression

for the bilinear. The next two terms come from the cross-commutator between the first

term and k = 1 piece of the second term (which involves sum over k). The last two terms

are from the commutator of the second term; this survives only when the same k is picked

from the two sums or if the k’s differ by 1. Further simplification requires the use of the

relations (A.14), (2.9) and θ+(a†a − 1) = θ+(a†a) − δ(a†a) = 1 − δ(a†a). The result is

precisely the expression on the right-hand side of the of the last of (2.21).

Another test of the W∞ algebra comes from the use of the bosonized expression of the

fermion bilinear conjugate to ψ†
n+1 ψn. We have,

ψ†
n ψn+1 =

(

ψ†
n+1 ψn

)†
= σ1 δ

( N
∑

i=1

a†iai − n + N − 2

)

+

N−1
∑

k=1

σk+1 σ†
k δ

( N
∑

i=k+1

a†iai − n + N − k − 2

)

. (A.16)

From the W∞ algebra we see that

[ψ†
n+1 ψn, ψ†

l ψl+1] = δnl(ψ
†
n+1 ψn+1 − ψ†

n ψn). (A.17)
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Using the bosonized expressions in the commutator, we get

[ψ†
n+1 ψn, ψ†

l ψl+1]

= δnl

{

θ+(a†1a1 − 1) δ

( N
∑

i=1

a†iai − n + N − 2

)

− δ

( N
∑

i=1

a†iai − n + N − 1

)

+

N−1
∑

k=1

[

θ+(a†k+1ak+1 − 1) δ

( N
∑

i=k+1

a†iai − n + N − k − 2

)

−θ+(a†kak − 1) δ

( N
∑

i=k+1

a†iai − n + N − k − 1

)]}

(A.18)

Now, let us replace θ+(a†a − 1) by the equivalent expression (1 − δ(a†a)) in all the three

places. All the terms containing double delta-functions mutually cancel, except the one

coming from k = (N−1) of the first term in square brackets. But this has two incompatible

delta-functions and so vanishes. The result for the right-hand side is

δnl

N
∑

k=1

[

δ

( N
∑

i=1

a†iai − n + N − k − 1

)

− δ

( N
∑

i=1

a†iai − n + N − k

)]

, (A.19)

which is precisely the bosonized expression one gets by using the first of (2.21) in the the

right-hand side of (A.17). We see that for this test to work out, delicate cancellations

between various terms were required.

A.5 Proof of W∞ algebra for all m for N = 2

For N = 2, bosonized expressions for the bilinear for all values of m have been given in

(2.20). This is the first nontrivial, yet calculationally manageable case. We have checked

that in this case the W∞ algebra is satisfied. Here we will indicate the main steps in the

calculation. Like in the above calculations, delicate cancellations between various terms in

the commutator are required for the algebra to work out, as we shall see.

We will be interested in the commutator

[ψ†
n+m ψn, ψ†

l+p ψl] = δl+p,n ψ†
l+p+m ψl − δn+m,l ψ†

n+m+p ψn, (A.20)

for m ≥ p > 0. Other cases can be treated similarly.

There are three terms in the bosonized expression for the fermion bilinear given in

(2.20). It is easy to see that the self-commutator of the first two terms reproduces the

first two terms required by the bosonized expression for the right-hand side of (A.20). To

prove that the bosonized expressions satisfy the (A.20), we then need to show that the self-

commutator of the third term, together with all the cross-commutator terms, reproduces

the required third term on the right-hand side. The self-commutator of the third term

works out to be

σ†
1

m−p
σ†

2

p
θ+(p + l − n − 1) δ(a†1a1 − n + l + 1) δ(a†2a2 − l)

−σm−p
1 σ†

2

m
θ+(p + l − m − n − 1) θ+(m + n − l − 1)

×δ(a†1a1 − l + n + 1) δ(a†2a2 − n), (A.21)

– 34 –



J
H
E
P
0
1
(
2
0
0
6
)
1
1
8

while the cross-commutator of the first two terms gives

σm−p
1 σ†

2

m
[θ+(p + l − m − n − 1) − θ+(l − n − m − 1)]

×δ(a†1a1 − l + n + 1) δ(a†2a2 − n)

−σ†
1

m−p
σ†

2

p
θ−(n − p − l − 1) δ(a†1a1 − n + l + 1) δ(a†2a2 − l). (A.22)

The contributions in (A.21) and (A.22) are very similar and can be combined. Thus the

first term of (A.21) can be combined with the second term of (A.22) using θ+(p + l − n −
1)−θ−(n−p−l−1) = −δp+l,n. Simplifying in this way gives the net combined contribution

−δp+l,n σ†
1

m−p
σ†

2

p
δ(a†1a1 − p + 1) δ(a†2a2 − l)

+δm+n,l σm−p
1 σ†

2

m
δ(a†1a1 − m + 1) δ(a†2a2 − n), (A.23)

Finally, the cross-commutator between the first two terms and the third term gives

[

−δp+l,n

p−2
∑

r1=0

σ†
1

m+p−2−r1

σr1

1 σ†
2

r1+1
δ(a†1a1 − r1) δ(a†2a2 − l)

+δm+n,l

p−2
∑

r1=0

σ†
1

p−2−r1

σr1+m
1 σ†

2

r1+m+1
δ(a†1a1 − r1 − m) δ(a†2a2 − n)

]

−
[

m ↔ p, n ↔ l

]

. (A.24)

Notice that by changing the summation variable from r1 to (r1 + m) in the second term

in the first square brackets, we get a summand that is similar to the first term, but with

a summation range for the new variable from m to (m + p − 2). This nicely combines

with the first term in the second square brackets to give an overall summation range for

r1 from 0 to (m + p − 2), as is required if W∞ algebra is to be satisfied by the bosonized

expressions. To be precise, the summation range in the first term in the second square

brackets is from 0 to (m− 2) only, so the contribution for r1 = (m− 1) is missing from the

extended summation range. Fortunately, the terms in (A.23) precisely supply this missing

contribution. Taking this into account and simplifying, we find that the net result of the

commutator calculation is

−δp+l,n

m+p−2
∑

r1=0

σ†
1

m+p−2−r1

σr1

1 σ†
2

r1+1
δ(a†1a1 − r1) δ(a†2a2 − l)

+δm+n,l

m+p−2
∑

r1=0

σ†
1

m+p−2−r1

σr1

1 σ†
2

r1+1
δ(a†1a1 − r1) δ(a†2a2 − n). (A.25)

This is exactly the third term in the bosonized form of the right-hand side of (A.20). Hence

we have proved that our bosonization satisfies the W∞ algebra for N = 2.

B. Quantum phase space distributions and star products

Some assorted references carrying more detailed versions of formulae in this appendix

are [45, 28, 29, 46, 30, 47, 48, 34, 49].
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B.1 Single particle

Consider the (infinite-dimensional) Hilbert space of a particle in one dimension, carrying a

representation of the Heisenberg algebra [x̂, p̂] = i~. The Wigner phase space distribution

of the particle in a wavefunction |ψ〉 is given by

W (q, p) ≡
∫

dη e−ipη/~ ψ†(q − η/2) ψ(q + η/2) = 〈ψ|ĝq,p|ψ〉, ĝq,p ≡ ei qp̂+px̂

~ (B.1)

There are other choices for the phase space distribution, e.g. the Husimi distribution, given

by

H(z, z̄) ≡ |〈z|ψ〉|2 =

∫

dq′dp′

2π~
W (q′, p′)e−

1

2~
[(q′−q)2+(p′−p)2], z ≡ q + ip (B.2)

Using Wigner phase space distribution one can define a map between operators and func-

tions, with an associated star product:

Ô 7→ Ow(q, p) ≡ Tr(Ôgq,p), 〈ψ|Ô|ψ〉 =

∫

dqdpOw(q, p)W (q, p)

ÂB̂ 7→ Aw(q, p) ∗w Bw(q, p) ≡ ei~[∂p∂q′−∂p′∂q](Aw(q, p)Bw(q′, p′))|q′ = q, p′ = p

(B.3)

The inverse map Ow → Ô corresponds to Weyl operator ordering of the function Ow. The

above star product ∗w is called the Moyal star product.

The corresponding definitions for Husimi distribution are

Ô 7→ Oh(z, z̄) ≡ 〈z|Ô|z〉, 〈ψ|Ô|ψ〉 =

∫

dqdpOh(q, p)H(q, p)

ÂB̂ 7→ Ah(z, z̄) ∗h Bh(z, z̄) ≡ ei~[∂z∂z̄′−∂z′∂z̄ ](Aw(z, z̄)Bw(z′, z̄′))|z′ = z (B.4)

where ∗h is called the Voros star product.

Example of the harmonic oscillator (3.1):

The Wigner and Husimi distributions for the wavefunction |j〉, j = 0, 1, . . . ,∞, are

Wj(q, p) =
(−1)j

π~
e−

q2+p2

~ Lj(
2(p2 + q2)

~
)

Hj(z, z̄) =
1

2π~(j!)
e−|z|2|z|2j (B.5)

B.2 Second quantization

Fermions: Consider a system of N fermions, as in section 2.

The operators Φmn = ψ†
mψn (see eq. (2.3))) satisfy the W∞ algebra [DMW]

[Φmn,Φm′n′ ] = δm′nΦmn′ − δmn′Φm′n (B.6)

Φmn are the basic operators in any one dimensional fermion field theory in a given fermion

number sector. A basis free notation is

Φ =
∑

m,n

Φmn|n〉〈m| (B.7)
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The second quantized Wigner phase space density ŴF (q, p) is a linear combination of Φmn

ŴF (q, p) = Tr(Φgq,p) =

∫

dη e−ipη/~ ψ†(q − η/2) ψ(q + η/2) (B.8)

The expectation value of ŴF (q, p) in the fermi state (2.2) is the sum of the single-particle

distributions,
∑

m Wfm
(q, p). The second quantized Husimi phase space density ĤF (q, p)

is given by

ĤF (z, z̄) = Tr(Φ|z〉〈z|) =
∑

m,n

ψ†
mψn(χm(z))∗χn(z), χn(z) = 〈z|n〉 (B.9)

Bosons: The second quantized phase space distributions for bosons are given by similar

formulas,

ŴB(q, p) = Tr(ΦBgq,p) =

∫

dη e−ipη/~ φ†(q − η/2) φ(q + η/2), ΦB = φ†
iφj |i〉〈j|

ĤB(z, z̄) = Tr(Φ|z〉〈z|) =
∑

i,j

φ†
iφj(χi(z))∗χj(z), χi(z) = 〈z|i〉 (B.10)

C. New bosonic oscillator representation of U(K)

We begin by noting that the W∞ algebra (B.6), generated by ψ†
mψn,m, n = 0, 1, . . .∞, has

the following nested subalgebras

U(1) ⊂ U(2) ⊂ U(3) · · · ⊂ W∞ (C.1)

where the subalgebra U(K),K = 1, . . . ,∞ is generated by the finite ψ†
mψn, m,n =

0, 1, . . . ,K−1. The structure constants in (B.6) are easily seen to be the structure constants

of U(K).

The representation of the subalgebra U(K), provided by FK
N , defined as the Hilbert

space of N fermions in the first K levels m = 0, 1, . . . ,K − 1, is the rank-N antisymmetric

tensor representation (dimension KCN ).

We will bosonize FK
N and its operators, using (A.8) and its special cases and in the

process will obtain novel10 bosonic representations of U(K).

We will start with the simplest examples of small N .

C.1 The N = 1 example

Here FK
N = HK , the single-particle Hilbert space of fermions, truncated to the first K

levels. We rewrite the equations of (2.19) involving the first K of fermionic oscillators. For

m,n = 0, 1, . . . ,K − 1,

ψ†
mψm = Pm ≡ δ(a†a − m)

ψ†
mψn = (σ†)m−nPn, m > n

ψ†
mψn = Pm(σ)n−m, m < n (C.2)

10different from Schwinger representations where the generators are bilinears in bosonic oscillators.
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Here Pm = |m〉〈m|, the projection operator. a, a† denote a1, a
†
1 and σ, σ† are defined as in

(2.8).

Now, although a, a†, and consequently σ, σ†, are infinite dimensional matrices (Heisen-

berg algebra can only have infinite dimensional representations), the operators on the r.h.s.

of (C.2) have the matrix form (in the basis (a†)m

√
m!

|0〉)
(

A 0

0 0

)

(C.3)

where A is a K × K matrix.

Since the operator map (2.19) ensures that algebra of fermion bilinears is reproduced

by the bosonic expressions, the right hand side of (C.2) provides a bosonic representation

of U(K). We will consider some explicit, small K, examples below.

The case K = 2: bosonic representation of U(2) or SU(2). For K = 2 Φmn generate

the U(2) algebra. The bosonic versions of the generators are P0, P1, a
†P0, P0a. These

correspond to matrices of the form (C.3), where A is a 2×2 matrix, assuming the following

values, respectively

P0 →
(

1 0

0 0

)

, P1 →
(

0 0

0 1

)

, a†P0 →
(

0 1

0 0

)

, P0a →
(

0 0

1 0

)

(C.4)

These provide a bosonic construction of the spin-1/2 representation of SU(2) (P0 + P1

represents the trace part of U(2) algebra).

K = 3: bosonic representation of U(3) or SU(3). (C.2) now gives the following

bosonic generators of U(3): P0, P1, P2, a
†P0,

1√
2
(a†)P1, (a

†)2P0, P0a, 1√
2
P1a, P0a

2. P0+P1+

P2 represents the trace part and the rest provide the fundamental representation 3 of SU(3).

The matrix representations are of the form (C.3) with A equal to standard 3 × 3 SU(3)

matrices.

For general K (N = 1) we get a bosonic construction of the fundamental (dim K)

representation of SU(K).

C.2 The N = 2 example

The relevant bosonization formulae are (2.20). The bosonic Hilbert space is a linear com-

bination of states |mn〉 =
(a†

1
)m(a†

2
)n

√
m!n!

|00〉. Let us define projectors Pmn = |mn〉〈mn| =

δ(a†1a1 − m)δ(a†2a2 − n).

We will start with examples of small K. The first non-trivial case is K = 3, for which

(2.20) gives

ψ†
0ψ0 =

∞
∑

m=0

Pm0, ψ
†
1ψ1 = P00 +

∞
∑

m=1

Pm1, ψ
†
1ψ1 = P01 + P10 +

∞
∑

m=0

Pm2

ψ†
1ψ0 = σ1σ

†
2

∞
∑

m=0

Pm0, ψ
†
2ψ0 = (σ1σ

†
2)

2
∞
∑

m=0

P2m − σ†
2P00, ψ

†
2ψ1 = σ†

1P00 + σ1σ
†
2

∞
∑

m=1

Pm1
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The bosonic operators are infinite dimensional matrices, but are of a triangular form (cf.

(C.3))
(

A A′

0 A′′

)

(C.5)

where A is a 3 × 3 matrix, corresponding to the subspace H3 = Span{|00〉, |01〉, |10〉}.
The matrices A can be worked out and they correspond to an irrep. of SU(3) (viz. the

representation 3̄).

C.3 Bosonization of N fermions in a K-level system

We will now give the result for general N,K which is straightforward to derive:

• The bosonization formulae (A.8) can be applied to bosonize N fermions in a K-level

system.

• The bosonization formulae (A.8) give a novel bosonic construction of the general

rank-N antisymmetric tensor rep of SU(K) in terms of N bosonic oscillators.
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