
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 117.194.63.85

This content was downloaded on 29/06/2017 at 10:38

Please note that terms and conditions apply.

Counting 1/8-BPS dual-giants

View the table of contents for this issue, or go to the journal homepage for more

JHEP03(2007)031

(http://iopscience.iop.org/1126-6708/2007/03/031)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Counting wobbling dual-giants

Sujay K. Ashok and Nemani V. Suryanarayana

BPS electromagnetic waves on giant gravitons

Seok Kim and Kimyeong Lee

The Zamolodchikov-Faddeev algebra for open strings attached to giant gravitons

Changrim Ahn and Rafael I. Nepomechie

Classical open string integrability

Nelia Mann and Samuel E. Vázquez

Giant gravitons—with strings attached (II)

Robert de Mello Koch, Jelena Smolic and Milena Smolic

A study of open strings ending on giant gravitons, spin chains and integrability

David Berenstein, Diego H. Correa and Samuel E. Vázquez

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1126-6708/2007/03
http://iopscience.iop.org/1126-6708
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1126-6708/2009/05/090
http://iopscience.iop.org/article/10.1088/1126-6708/2005/10/111
http://iopscience.iop.org/article/10.1088/1126-6708/2008/05/059
http://iopscience.iop.org/article/10.1088/1126-6708/2007/04/065
http://iopscience.iop.org/article/10.1088/1126-6708/2007/09/049
http://iopscience.iop.org/article/10.1088/1126-6708/2006/09/065


J
H
E
P
0
3
(
2
0
0
7
)
0
3
1

Published by Institute of Physics Publishing for SISSA

Received: November 22, 2006

Revised: March 1, 2007

Accepted: March 1, 2007

Published: March 8, 2007

Counting 1/8-BPS dual-giants

Gautam Mandal

Department of Theoretical. Physics,

Homi Bhabha Road, Mumbai, 400005, India

E-mail: mandal@theory.tifr.res.in

Nemani V. Suryanarayana

Perimeter Institute for Theoretical Physics,

Caroline Street North, Waterloo, ON, N2L 2Y5, Canada

E-mail: vnemani@perimeterinstitute.ca

Abstract: We count 1/8-BPS states in type IIB string theory on AdS5 × S5 background

which carry three independent angular momenta on S5. These states can be counted by

considering configurations of multiple dual-giant gravitons up to N in number which share

at least four supersymmetries. We map this counting problem to that of counting the

energy eigenstates of a system of N bosons in a 3-dimensional harmonic oscillator. We

also count 1/8-BPS states with two independent non-zero spins in AdS5 and one non-

zero angular momentum on S5 by considering configurations of arbitrary number of giant

gravitons that share at least four supersymmetries.

Keywords: AdS-CFT Correspondence, D-branes.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep032007031/jhep032007031.pdf

mailto:mandal@theory.tifr.res.in
mailto:vnemani@perimeterinstitute.ca
http://jhep.sissa.it/stdsearch


J
H
E
P
0
3
(
2
0
0
7
)
0
3
1

Contents

1. Introduction 1

2. 1/8-BPS dual-giant configurations 3

2.1 The dual-giant solutions 3

2.2 Kappa projections 4

2.3 Necessity of the conditions (2.11) 6

2.4 Reduced phase space 7

2.5 Hamiltonian and charges 8

2.6 Interpretation of the solutions as maximal circles 9

3. Counting BPS states with (J1, J2, J3) 10

3.1 1
8 -BPS states 10

3.2 1
4 -BPS states 11

3.3 Comparison with gauge theory answers 12

4. 1/8-BPS states with (S1, S2, J1) 12

4.1 Supersymmetries of spinning giants 14

4.2 Quantization 14

5. Conclusions 15

1. Introduction

In the context of AdS/CFT correspondence [1] it is of interest to count the number of BPS

states for fixed charges and supersymmetries in both N = 4 U(N) SYM and in type IIB

string theory on AdS5 × S5 background with applications to black holes in mind. The

most interesting outstanding problem in this context is to count the microstates of the

supersymmetric black holes in AdS5. These black holes were first found by Gutowski and

Reall [2] (and were further generalized in [3, 4]) and when lifted to 10 dimensions preserve

just 2 supersymmetries [5]. This program of counting BPS states on both sides of the

AdS/CFT correspondence has only been achieved so far for the simplest case of half-BPS

states that carry one U(1) R-charge. A generic state in string theory on AdS5 × S5 can

be specified by giving the quantum numbers (E,S1, S2, J1, J2, J3) where E is the energy in

global AdS5, S1 and S2 are the two independent angular momenta in AdS5 and (J1, J2, J3)

are the three independent R-charges corresponding to angular momenta in S5.

In the case of half-BPS states from the string theory point of view one can count either

the multi-giant graviton states or multi-dual-giant graviton states [6]. A giant graviton is

– 1 –
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a half-BPS classical D3-brane configurations wrapping an S3 ⊂ S5 and rotating along one

of the transverse directions to it within S5 [7]. A dual-giant graviton is another half-BPS

D3-brane configuration that wraps an S3 ⊂ AdS5 and rotating along a maximal circle of

S5 [8, 9]. From the point of view of giants the stringy exclusion principle manifests itself

in the fact that the maximum angular momentum that a single giant graviton can carry is

N . The same stringy exclusion principle from the point of view of dual-giant gravitons is

that there is an upper limit on the number of dual-giants which is again given by N . From

the perspective of supergravity and probe branes this upper limit on the number of dual-

giants has to do with the way the 5-form RR-flux decreases inside each dual-giant by one

unit (see for instance [10, 6]). To count the half-BPS states one can consider an arbitrary

number of half-BPS giants, treated as bosons, in an N -level equally spaced spectrum. The

same half-BPS state counting can be done by counting configurations of multiple dual-giant

gravitons, treated as bosons, in an infinite equally spaced spectrum with an upper limit on

the dual-giants given by N .

Progress in counting BPS states with lower supersymmetry in the SYM has been

made difficult by the fact that the number of these states is known to jump from zero

YM coupling to non-zero coupling. In this note we aim to count a subclass of 1/8-BPS

states in type IIB string theory on AdS5 × S5 geometry that carry three independent

U(1) R-charges J1, J2 and J3 and have the energy (conjugate to the global AdS5 time)

E = J1 + J2 + J3. This subclass of 1/8-BPS states preserve the SO(4) invariance of

the S3 ⊂ AdS5. We will do the counting of 1/8-BPS states by considering all possible

multiple dual-giant graviton configurations which preserve a common set of at least 4

supersymmetries. Since we are interested in putting together half-BPS dual-giants to obtain

the 1/8-BPS states the argument that there should be an upper limit on the number of

dual-giants given by N continues to be valid.

In [11] Mikhailov described the most general 1/8-BPS giant gravitons as the inter-

sections of holomorphic complex surfaces in C
3 with S5. So for counting the 1/8-BPS

states one may try to quantize these giant graviton configurations and count them. We

have been informed that this has been recently achieved by Biswas, Gaiotto, Lahiri and

Minwalla [12]. Our results agree with theirs. The agreement for 1/8-BPS states suggests

that both Mikhailov’s giants and our dual-giants present dual descriptions of the same set

of states like in the half-BPS case.

We also consider 1/8-BPS states which carry non-zero (S1, S2, J1) and have E = S1 +

S2 + J1. This time we consider multiple giant graviton configurations which have angular

momenta in AdS5 part as well that share at least 4 supersymmetries.

The rest of this note is organized as follows. In section 2 we construct a class of dual-

giant solutions which share at least 4 supersymmetries. We show that this class of solutions

is the full set of 1/2-BPS dual-giants that share a given 4 supersymmetries with the rest in

their class. We find the solution space and a sympletic form on this space and quantize it.

In section 3 we give the partition function of the 1/8-BPS states with (J1, J2, J3) charges.

In section 4 we consider the problem of counting 1/8-BPS states with (S1, S2, J1) charges.

In section 5 we conclude with a summary and some remarks.

– 2 –
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2. 1/8-BPS dual-giant configurations

In this section we will find the most general dual-giant configurations which preserve a

given 4 supersymmetries in AdS5 ×S5. As mentioned in the introduction we put half-BPS

dual-giants together to make the lower supersymmetric configurations. A given half-BPS

dual-giant has momentum along one of the maximal circles of S5. A general dual-giant

configuration contains dual-giants rotating along different maximal circles. There is no a

priori guarantee that such a generic configuration preserves any supersymmetries. Below

we will look for a class of single dual-giant solutions which shares at least 4 supersymmetries

with the first one.

2.1 The dual-giant solutions

We regard S5 as a submanifold in C
3 with coordinates

(z1 = lµ1 ei ξ1 , z2 = lµ2 ei ξ2, z3 = l µ3 ei ξ3) (2.1)

as ziz̄i = l2 and (µ1, µ2, µ3) = (sin α, cos α sinβ, cos α cos β):

ds2|S5 = l2
(

dα2 + cos2 αβ2 + µ2
i dξ2

i

)

= dzidz̄i (2.2)

The vielbeins are

e0 = V 1/2(r) dt, e1 = V −1/2(r) dr, e2 = r dθ,

e3 = r ν1 dφ1, e4 = r ν2 dφ2, e5 = l dα,

e6 = l cos αdβ, e7 = l µ1 dξ1, e8 = l µ2 dξ2,

e9 = l µ3 dξ3.

(2.3)

where ν1 = cos θ, ν2 = sin θ, V (r) = 1 + r2/l2. The five form RR field strength is

F (5) = −4

l

[

e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4 + e5 ∧ e6 ∧ e7 ∧ e8 ∧ e9
]

. (2.4)

The 4-form potential can be written as

C(4) = r4 cos θ sin θ d(t/l)∧dθ∧dφ1∧dφ2 + l4 cos4 α sin β cos β dβ∧dξ1∧dξ2∧dξ3. (2.5)

The general embedding of a D3-brane wrapped on the S3 ∈ AdS5 is given by

t = σ0 = τ, r = r(τ), θ = σ1, φ1 = σ2, φ2 = σ3,

α = α(τ), β = β(τ), ξ1 = ξ1(τ), ξ2 = ξ2(τ), ξ3 = ξ3(τ).
(2.6)

The pull-back of C(4) onto the world-volume is C
(4)
σ0σ1σ2σ3 = l−1r4 cos θ sin θ. The DBI and

WZ lagrangian density is

L = − N

2π2 l4
r3 cos σ1 sin σ1

[

∆1/2 − r

l

]

(2.7)

where

∆ = V (r) − ṙ2

V (r)
− l2(α̇2 + cos2 α β̇2 + µ2

1 ξ̇2
1 + µ2

2 ξ̇2
2 + µ2

3 ξ̇2
3). (2.8)

– 3 –
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We can integrate over the angles σi to get Action =
∫

dt L where the effective point-particle

Lagrangian L is

L =

∫

dσ1 dσ2 dσ3 L = −N

l4
r3

[

∆1/2 − r

l

]

(2.9)

The conjugate variables of the classical mechanics model are

Pr =
N r3 ṙ

l4 V (r)∆1/2
, Pα =

N r3 α̇

l2 ∆1/2
, Pβ =

N r3 cos2 α β̇

l2 ∆1/2
,

Pξ1 =
N r3 µ2

1 ξ̇1

l2∆1/2
, Pξ2 =

N r3 µ2
2 ξ̇2

l2∆1/2
, Pξ3 =

N r3 µ2
3 ξ̇3

l2∆1/2

(2.10)

By looking at the equations of motion of the lagrangian in (2.9) it is easy to see that setting

ṙ = α̇ = β̇ = 0, |ξ̇1| = |ξ̇2| = |ξ̇3| = 1/l (2.11)

solves them.

2.2 Kappa projections

In this subsection we will show that the solutions in (2.11) are all supersymmetric. We

will see that depending on the signs of ξ̇i there are 8 disjoint sets of these supersymmetric

dual-giant solutions which do not share any common supersymmetries. Different dual-giant

solutions corresponding to different values of r, α, β and ξi(τ = 0) but with fixed signs for

ξ̇i preserve at least 4 common supersymmetries of the background AdS5 × S5 geometry.

To write down the kappa projection equation for the probe D3-brane we need the

world-volume gamma matrices, which are

γτ = V 1/2(r) Γ0 +
ṙ

V 1/2(r)
Γ1 + l (α̇ Γ5 + cos α β̇ Γ6 +

3
∑

i=1

ξ̇i µi Γ6+i)

γσ1 = r Γ2, γσ2 = r cos σ1 Γ3, γσ3 = r sin σ1 Γ4 (2.12)

where Γa are the 10-dimensional tangent space gamma matrices satisfying {Γa,Γb} = 2 ηab.

The world-volume gamma matrices of (2.2) satisfy {γm, γn} = 2 gmn. The kappa projection

matrix is:

Γ =
1

4!
√− det gmn

εmnpqγmnpq

= ∆−1/2

[

V 1/2(r) Γ0 +
ṙ

V 1/2(r)
Γ1 + l (α̇Γ5 + cos α β̇ Γ6 +

3
∑

i=1

ξ̇i µi Γ6+i)

]

Γ234

(2.13)

where ∆ is defined as before. With this the kappa projection on the Killing spinor ε of the

background AdS5 × S5 geometry is

Γ ε = i ε. (2.14)

The chirality convention for ε is

Γ0 · · ·Γ9ε = −ε. (2.15)

– 4 –
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The Killing spinor equations of AdS5 × S5 are:

Dµε +
i

1920
F (5)

ν1ν2ν3ν4ν5
Γν1ν2ν3ν4ν5Γµ ε = 0 (2.16)

The solution of these equations can be written as:

ε = e
i

2
α Γ5 γ̃ e

i

2
β Γ6γ̃ e

1
2
ξ1Γ57 e

1
2
ξ2Γ68 e

i

2
ξ3Γ9 γ̃

×e
i

2
sinh−1( r

l
) Γ1 γ e

i

2l
t Γ0 γ e

1
2
θ Γ12 e

1
2
φ1Γ13 e

1
2
φ2Γ24 ε0 ≡ M ε0. (2.17)

where γ = Γ01234 and γ̃ = Γ56789. The full kappa projection equation then reads

[

V 1/2(r) Γ0 − i∆1/2 Γ234 +
ṙ

V 1/2(r)
Γ1 + l (α̇ Γ5 + cos α β̇ Γ6 +

3
∑

i=1

ξ̇i µi Γ6+i)

]

Mε0 = 0

(2.18)

We now show that the solutions in (2.11) are supersymmetric. Let us first choose the signs

of ξi’s to be the same and positive. On the solution the kappa projection equation becomes

[

V 1/2(r0) Γ0 − i
r0

l
Γ234 + µ1 Γ7 + µ2 Γ8 + µ3 Γ9

]

Mε0 = 0 (2.19)

where r0 is the value of r in the solutions. Some useful intermediate steps in simplifying

this equation are:

Γ0M = M
[

V 1/2Γ0 − i
r0

l
e−i t

l
Γ0γ

(

cos θ e−φ1Γ13Γ1 + sin θ e−φ2Γ24Γ2

)

Γ0 γ
]

,

Γ2M = M
[

V 1/2e−i t

l
Γ0γ

(

cos θ e−φ2Γ24Γ2 − sin θ e−φ1Γ13Γ1

)

− i
r

l
e−φ1Γ13−φ2Γ24Γ12γ

]

,

Γ3M = M
[

V 1/2 e−φ1Γ13 e−i t

l
Γ0γΓ3 − i

r0

l

(

cos θ Γ1 + sin θ e−(φ1Γ13+φ2Γ24)Γ2

)

Γ3γ
]

,

Γ4M = M
[

V 1/2 e−φ2Γ24 e−i t

l
Γ0γΓ4 − i

r0

l

(

cos θ e−(φ1Γ13+φ2Γ24)Γ1 + sin θ Γ2

)

Γ4γ
]

,

Γ7M = M
[

cos α cos β e−ξ1Γ57 e−iξ3Γ9γ̃Γ7 − i cos α sin β e−ξ1Γ57e−ξ2Γ68Γ67γ̃ − i sin α Γ57γ̃
]

,

Γ8M = M
[

cos α cos β e−iξ3Γ9γ̃e−ξ2Γ68Γ8 − i cos α sin β Γ68γ̃ − i sin α e−ξ2Γ68e−ξ1Γ57Γ58γ̃
]

,

Γ9M = M
[

cos α cos β Γ9 − i cos α sin β e−iξ3Γ9γ̃e−ξ2Γ68Γ69γ̃ − i sin α e−iξ3Γ9γ̃e−ξ1Γ57Γ59γ̃
]

.

Let us also register the following identity:

Γ234M = M
[

V 1/2e−i t

l
Γ0γ

(

cos θ e−φ1Γ13Γ234 − sin θe−φ2Γ24Γ134

)

− i
r

l
Γ1234γ

]

= −M
[

V 1/2e−i t

l
Γ0γ

(

cos θ e−φ1Γ13Γ1 + sin θe−φ2Γ24Γ2

)

Γ0γ + i
r

l
Γ0

]

(2.20)

so that we have
[

V 1/2Γ0 − i
r

l
Γ234

]

ε = MΓ0ε0. (2.21)

Using these identities eq. (2.19) can be rewritten as

M
[

Γ0 − iµ1 µ2 e−ξ1Γ57−ξ2Γ68 γ̃(Γ67 + Γ58) + µ1 µ3 e−ξ1Γ57 e−iξ3Γ9γ̃(Γ7 − iΓ59γ̃) (2.22)

+µ2 µ3 e−iξ3Γ9γ̃ e−ξ2 Γ68 (Γ8 − iΓ69 γ̃) − iγ̃ (µ2
1 Γ57 + µ2

2 Γ68) + µ2
3 Γ9

]

ε0 = 0.

– 5 –
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This equation can be solved by imposing the following projections on ε0

(Γ67 + Γ58)ε0 = 0, (Γ7 − iΓ59 γ̃)ε0 = 0, (Γ8 − iΓ69 γ̃)ε0 = 0,

(Γ0 − iΓ57γ̃)ε0 = 0, (Γ9 + iΓ57 γ̃)ε0 = 0.
(2.23)

It is easy to see that out of these the independent projections are (as the second and the

fourth projections are equivalent and so are the third and the fifth)

(Γ0 − iΓ57γ̃)ε0 = 0, (Γ0 − iΓ68γ̃)ε0 = 0, (Γ0 + Γ9)ε0 = 0. (2.24)

By considering the special cases of setting two of ξ̇i to zero and finding the kappa projections

one recognizes these three projection conditions as the ones for half-BPS dual-giants which

rotate in z1, z2, z3 planes respectively. One can further see that different signs for ξ̇i result

in similar equations with different relative signs in eqs. (2.24) corresponding to reversing

the direction of motion of some of the three half-BPS dual-giants in their respective planes.

That is, for the solution with

(l ξ̇1, l ξ̇2, l ξ̇3) = (λ1, λ2, λ3), λi = ±1 (2.25)

we have

(Γ0 − i λ1 Γ57γ̃)ε0 = 0, (Γ0 − i λ2 Γ68γ̃)ε0 = 0, (Γ0 + λ3 Γ9)ε0 = 0. (2.26)

Thus we have seen that the solutions in (2.11) with all signs of ξ̇i being positive preserve at

least 4 supersymmetries consistent with the projections in (2.24) for any arbitrary values

of α, β and r. However one should note that for fixed values of α, β and r the projection

equation (2.22) can give 16 supersymmetries. This can be seen by redefining the tangent

space Γ-matrices appropriately.

In the next subsection we will prove the converse, namely that these are all the dual-

giant solutions which preserve at least these four given supersymmetries.

2.3 Necessity of the conditions (2.11)

In this subsection, unlike the previous one, we will not assume the solutions (2.11) to

begin with. We will rather show that these solutions (with signs (2.25)) follow uniquely if

we demand the kappa projections (2.14),(2.13) on the 1/8-th supersymmetric subspace of

spinors ε defined by (2.17),(2.26). This will therefore show that those solutions are the full

set of solutions consistent with the specified set of 4 supersymmetries.

To begin, we rewrite the supersymmetry projections (2.24) (we will assume all λi’s to

be +1, the generalization to arbitrary signs being straightforward)

(Γ0 − iΓ57γ̃) ε0 = 0, (Γ0 − iΓ68γ̃) ε0 = 0, (Γ0 + Γ9) ε0 = 0. (2.27)

We can use these to simplify the full expression (2.17) of the Killing spinor on AdS5 × S5

to

ε = ×e
i

2
sinh−1( r

l
) Γ1 γ e

i

2
( t

l
+ξ1+ξ2+ξ3) Γ0 γ e

1
2
θ Γ12 e

1
2
φ1Γ13 e

1
2
φ2Γ24

e
i

2
α Γ5 γ̃ e

i

2
β Γ6γ̃ ε0 ≡ M̂ ε0. (2.28)

– 6 –
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To simplify the kappa projection equations (2.18) we will need

Γ1 M̂ = M̂ e−i t

l
Γ0γ [cos θ e−φ1 Γ13Γ1 + sin θ e−φ2 Γ24 Γ2],

Γ5 M̂ = M̂ [cos β Γ5 + i sin β Γ56 γ̃]

Γ6 M̂ = M̂ [cos α Γ6 − i sin α cos β Γ56γ̃ + sinα sin β Γ5],

Γ7 M̂ = M̂ [µ3 Γ7 − i µ2 Γ67 γ̃ − i µ1 Γ57 γ̃]

Γ8 M̂ = M̂ [µ3 Γ8 − i µ2 Γ68 γ̃ − i µ1 Γ58 γ̃]

Γ9 M̂ = M̂ [µ3 Γ9 − i µ2 Γ69 γ̃ − i µ1 Γ59 γ̃] (2.29)

along with Γ0 M and Γ234 M relations from the earlier section. Since we want to demand

the projections in (2.27) to be valid at every point of the world-volume of the D3-brane

and so for convenience we can set τ = 0 and σ1 = σ2 = 0. Then the first three terms in

eq. (2.18) can be simplified to

[V 1/2Γ0+
ṙ

V 1/2
Γ1−i∆1/2Γ234]M̂ = M̂ [(V − r

l
∆1/2)Γ0+

ṙ

V 1/2
+iΓ01γV 1/2(

r

l
−∆1/2)] (2.30)

The last five terms in eq. (2.18) can be simplified to

[α̇ Γ5 + cos α β̇ Γ6 +
3

∑

i=1

µi ξ̇i Γ6+i] M̂ = M̂ [(cos β α̇ + sin α cos α sin β β̇) Γ5 (2.31)

+Γ6 cos2 α β̇ + iΓ56 γ̃ (sin β α̇ − sin α cos α cos β β̇) + iΓ59 γ̃ µ1 µ2 (ξ̇1 − ξ̇3)

−iΓ58 γ̃ µ1µ2 (ξ̇2 − ξ̇1) − iΓ69 γ̃ (ξ̇2 − ξ̇3) − i µ2
1 ξ̇1 Γ57γ̃ − i µ2

2 ξ̇2 Γ68 γ̃ + µ2
3 ξ̇3 Γ9]

Thus the full kappa projection equation (2.18) is a linear combination of various products

of 10-dimensional γ-matrices for the tangent space acting on a constant spinor ε0 which

is arbitrary but for the projection equations (2.27). Recall that a linearly independent

basis of these 32 × 32 matrices is given by Γm n ···’s. Since ε0 is arbitrary only upto the

projections in eq. (2.27) we have to use them to eliminate operators which kill ε0 and then

put the coefficients of the remaining independent Γm n ··· to zero. Doing this we see that

β̇ = 0 as the coefficient of Γ6 (which does not appear anywhere else), which then implies

α̇ = 0. Next notice that Γ58, Γ59 and Γ69 would not occur anywhere else and so we have

to set ξ̇1 = ξ̇2 = ξ̇3 ≡ ω/l. Note that these are not absolute values - unlike in the analysis

of equations of motion. Since ṙ appears with Γ1 and Γ1 does not occur anywhere else

ṙ = 0. The coefficient of Γ01γ has to be set to zero too and this implies ω = ±1. Finally

using the projection equations (2.27) we can convert Γ57γ̃, Γ68 γ̃ and Γ9 into Γ0. Using the

relations obtained so far and then setting the coefficient of Γ0 to zero requires ω = 1. That

completes the proof that the set of solutions we found is complete.

2.4 Reduced phase space

The supersymmetry constraints (2.27) translate to the following in terms of the canonical

momenta (see (2.10))

Pr = 0, Pα = 0, Pβ = 0,

Pξ1 − N
l2

r2 µ2
1 = 0, Pξ2 − N

l2
r2 µ2

2 = 0, Pξ3 − N
l2

r2 µ2
3 = 0

(2.32)
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Thus, the original 12-dimensional phase space is reduced to a six-dimensional one. We

will see below that the reduced phase space can be described entirely by the coordinates

r, α, β, ξ1, ξ2, ξ3 or by the complex coordinates (2.34). The symplectic structure on the

reduced phase space can be derived by the following Dirac brackets:

{qi, qj}DB = {qi, qj}PB − {qi, fa}PB M−1
ab {fb, qj}PB

Mab = {fa, fb}PB (2.33)

where qi refers to one of the six coordinates r, α, β, ξ1, ξ2, ξ3 and fa refers to one of the six

constraints (2.32).

The calculation of the Dirac brackets on the supersymmetric subspace is a straightfor-

ward generalization of the half-BPS giant [13] and dual-giant [14] gravitons. To proceed

with the calculations, let us define the complex coordinates

ζi = rie
iξi , (r1, r2, r3) ≡ r(sinα, cos α sinβ, cos α cos β) = r(µ1, µ2, µ3), (2.34)

In terms of the coordinates ri, ξi and their conjugate momenta, the constraints become

fi ≡ Pri
= 0, f3+i ≡ Pξi

− N

l2
r2
i = 0, i = 1, 2, 3 (2.35)

The non-zero elements of the matrix Mab are given by

{fi, f3+j}PB =

{

Pri
,−N

l2
r2
j

}

PB

=
2N

l2
rjδij

Thus, for example,

{ξ1, r1}DB = −{ξ1, f4}PB

l2

2Nr1
{f1, r1}PB =

l2

2Nr1
(2.36)

The Dirac brackets are summarized by

{ξi, r
2
j}DB =

l2

N
δij =⇒

{

ζi, ζ̄j

}

DB
= −i

l2

N
δij (2.37)

Symplectic structure: The conclusion of this subsection is that the reduced phase

space is simply C
3 with the symplectic form

ω = i
N

l2
dζi ∧ dζ̄i (2.38)

2.5 Hamiltonian and charges

Since translations along ξi are symmetries of the D3-brane action the momenta Pξi
are

conserved charges. The canonical hamiltonian, with Pα = Pβ = Pr = 0, becomes

H =
1

l

√

√

√

√

√





√

√

√

√

3
∑

i=1

P 2
ξi

µ2
i

+
Nr4

l4





2

+
r2

l2





√

√

√

√

3
∑

i=1

P 2
ξi

µ2
i

− Nr2

l2





2

− Nr4

l5
(2.39)
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After imposing the remaining three constraints from (2.32) it reduces to

H =
Nr2

l3
=

N

l3
ζiζ̄i =

1

l
(Pξ1 + Pξ2 + Pξ3) (2.40)

which is simply the Hamiltonian of a 3-dimensional simple harmonic oscillator.

As expected, the BPS constraint equations automatically satisfy the equations of mo-

tion. The solutions to (2.32) and (2.40) are

r(t) = r0,

zk(t) = l µ
(0)
k ei(ξ

(0)
k

+ t

l
) (2.41)

for k = 1, 2 and 3. The motion is obviously periodic with period ∆t = 2πl. Thus we have a

6-dimensional space of solutions parametrized by: (µ
(0)
k , ξ

(0)
k , r0). It is well-known that the

space of solutions of a dynamical system (modulo time-evolution) can be identified with

its phase space. Folowing section 2.4, this six-dimensional space of solutions, viewed as a

symplectic space, is C
3. We will show in the next subsection that the motion in S5 (second

line of (2.41)) are all in maximal circles in S5 which are related to the one in z1-plane by

U(3) rotations.

2.6 Interpretation of the solutions as maximal circles

Let us now try to understand the full solution set of dual-giants which preserve at least 4

common supersymmetries. A maximal circle on S5 can be parametrized by 8 parameters.

To see this note that every maximal circle can be obtained by intersecting S5 with an

R
2 passing through the origin in R

6 in which S5 is embedded. The space of these planes

has a dimension of SO(6)
SO(4)×SO(2) which is 8. Let us consider a subspace of maximal circles

parametrized as ~z(θ) = (z1(θ), z2(θ), z3(θ)) = ei θ~z(0), θ ∈ (0, 2π] where zi are complex

coordinates in C
3 in which we embed the S5 by |z1|2 + |z2|2 + |z3|2 = l2. Any such circle

can be obtained by a U(3) rotation (defined upto a U(2)) on a reference circle, for example,

~z(θ) ≡ Ueiθ(l, 0, 0), (2.42)

where we can take U to be

U =







eiξ1 sin α −eiξ1 cos α 0

eiξ2 cos α sin β eiξ2 sin α sin β eiξ2 cos β

eiξ3 cos α cos β eiξ3 sin α cos β −eiξ3 sinβ






V. (2.43)

Here V ∈ U(2) is an arbitrary matrix that leaves the column vector (l, 0, 0) invariant.

Therefore the space of these circles can be identified with U(3)
U(2) . This space has five real

dimensions and gives the parameterization (2.1) of the vector ~z = (l, 0, 0). We can choose

the representation (2.1) for zi. The time-dependence of a half-BPS dual-giant on the circle

(2.42) is given by putting θ = t/l. Hence after the U(3)-rotation (2.43), the motion on the

generic maximal circle coincides with the generic S5-motion of 1/8-BPS dual-giants (see

second line of (2.41)). We conclude that every dual-giant (of a given size r0) in the full set

of 1/8-BPS dual-giant solutions is simply related to every other by a U(3) rotation.
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3. Counting BPS states with (J1, J2, J3)

3.1 1
8 -BPS states

We found in section 2.4 that classically the reduced single-particle phase space is sim-

ply C
3, with the symplectic form (2.38) and a 3-dimensional simple harmonic oscillator

Hamiltonian, (2.40).

Since the semiclassical quantization of a simple harmonic oscillator is exact, quantum

mechanically the single-particle Hilbert space is given by 3-dimensional simple harmonic

oscillator eigenstates, viz.

|n1, n2, n3〉 =
∏

i=1,2,3

(a†i )
ni

√
ni!

|0〉 (3.1)

The hamiltonian and the charges are given by

Pξi
≡ Ji = ni, i = 1, 2, 3

lH = n1 + n2 + n3 (3.2)

Here the classical phase space variables ζi, ζ̄j are quantized as (l/
√

N) ζi → ai, (l/
√

N) ζ̄j

→ a†j . The operator ordering of the charges has been obtained by generalizing from the

half-BPS case [15]; in the Hamiltonian we have dropped the zero point energy which is

not important for our purposes. We note that the conserved momenta (Pξ1 , Pξ2 , Pξ3) by

construction correspond to the three angular momenta (J1, J2, J3) of SO(6). In what

follows we will use the notation Ji in stead of Pξi
.

As we have argued earlier, putting any number of particles in this reduced Hilbert

space is consistent with 1/8 supersymmetry. Since they are BPS objects (with respect to

each other) the total energy is given by the sum of the individual energies (like in the case

of half-BPS states). Further we can have more than one dual-giants with exactly the same

quantum number and so they can be treated as bosonic objects. Since each dual-giant being

an S3 inside AdS5 acts as a domain wall and therefore considerations of [10, 6] apply. This

restricts the maximum number of dual-giants to N . The total angular momenta should

also be given by the sum of those for the individual dual-giants:

Ji =
N

∑

k=1

J
(k)
i for i = 1, 2, 3. (3.3)

From (3.2) it is easy to see that the partition function for the dual-giant graviton system,

consistent with 1/8 supersymmetries, is given by that for N bosons in a 3-dimensional

simple harmonic oscillator. Here we can identify these bosons with dual-giant gravitons.

By including the Ji = 0 state we may simply count all states with a total of N bosons with

some of them sitting at the zero energy state. This takes care of the configurations with

less than N dual-giants. The grand canonical partition function is, therefore,

Z(ζ, q1, q2, q3) ≡ Tr exp[−µN − βiJi] =
∞
∏

n1=0

∞
∏

n2=0

∞
∏

n3=0

(1 − ζqn1
1 qn2

2 qn3
3 )−1 (3.4)
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The chemical potentials qi ≡ e−βi are conjugate to the charges Ji and the ‘fugacity’ ζ = e−µ

is conjugate to number N of dual-giants:

Z(ζ, q1, q2, q3) =

∞
∑

N=0

ζNZN (q1, q2, q3) (3.5)

with

ZN (q1, q2, q3) =

∞
∑

J1,J2,J3=0

ΩN (J1, J2, J3)q
J1
1 qJ2

2 qJ3
3 . (3.6)

Some special configurations however have enhanced supersymmetries to either 1/4 or half-

BPS states and so we may choose to subtract them out. For this a useful way to think

about this counting is the following. A generic state can be specified by N identical bosonic

particles sitting on the 3-dimensional lattice with each lattice point coordinates n1, n2, n3

which take integer values. The half-BPS states again are the configurations of points on this

3-dimensional lattice where all N points fall on a single line going through the origin. The

1/4-BPS states are those for which all N points fall on a single 2-plane going through the

origin again. We will discuss counting of 1/4-BPS states separately in the next subsection.

3.2 1
4 -BPS states

As stated above, dual-giant configurations for which all N dual-giants have the same specific

α and β preserve 1/4 of the supersymmetries (eight supersymmetries). In terms of the

bosons on a 3-dimensional lattice these are the configurations for which all bosons lie on

the same 2-plane passing through the origin. The choice of which eight supersymmetries

we want to preserve fixes the values of α and β (and therefore fixes a plane in the 3-d

lattice). For the purpose of counting, we may choose this plane to be the µ3 = 0 plane

(β = π/2), which in turn fixes Pξ3 = 0. Classically,

Pξ1 =
Nr2

l2
sin2 α, Pξ2 =

Nr2

l2
cos2 α. (3.7)

Repeating the same steps as in section 2.4, we can now find a four-dimensional phase space

with the symplectic structure of C
2, expressed by the following Dirac brackets

{

ξ1, r
2 sin2 α

}

DB
=

l2

2N
,

{

ξ2, r
2 cos2 α

}

DB
=

l2

2N
. (3.8)

As before, for fixed α they preserve 16 supersymmetries. But if we put together dual-giants

with various values of α that configuration preserves only 8 supersymmetries.

Quantization proceeds in a manner similar to the 1/8-BPS case. The conserved mo-

menta (Pξ1 , Pξ2) are identified as the quantized angular momenta (J1, J2). Counting the

1/4-BPS states goes as follows. To make a 1/4-BPS state we need to have at least two

dual-giants in that configuration with different values of α. The specific values of α should

be such that we get integer values for J1 and J2. The other constraint is that one can have

a total of no more than N dual-giant gravitons.

So the 1/4-BPS states can be counted by considering the number of ways, ΩN (J1, J2),

in which one can distribute N identical bosons on a 2-dimensional lattice of integers (n1, n2),
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such that the sum of their individual n1’s is J1 and the sum of the individual n2’s is J2. A

partition function which generates this number is

Z(ζ, q1, q2) =

∞
∏

n1,n2=0

(1 − ζ qn1
1 qn2

2 )−1 =

∞
∑

N=0

ZN (q1, q2)ζ
N (3.9)

The above counting includes states which preserve at least 1/4 of the supersymetries. To

exclude the special states which preserve 1/2 of the supersymmetries one needs to exclude

configurations in which all particles lie on a straight line passing through the origin. Each

line passing through the origin in a 2-dimensional lattice can be uniquely specified by a pair

of relatively prime integers, say (n1, n2) = (r, s). This line (r, s) corresponds to the points

(n1, n2) = k (r, s), k = 1, . . . ,∞. So to eliminate the contribution from the states with

enhanced supersymmetries one should simply subtract the contribution of configurations

in which all N particles lie on the same line from ZN (q1, q2) defined in (3.9).

3.3 Comparison with gauge theory answers

Single trace 1/4-BPS operators of N = 4 SYM with SU(N) gauge group have been con-

structed in the literature [16 – 18]. These states belong to the [p, q, p] representation of

SU(4) which has (J1, J2) = (p + q, p). More generally, an index for N = 4 Yang-Mills the-

ories has recently been calculated [19] (see also [20]) which counts 1/8-, 1/4- and 1/2-BPS

states of the kind we discussed above. Our results (3.4) and (3.9) agree with their result.

In case of the 1/8-BPS states, the dual-giant graviton states we constructed above are to

be identified with gauge-invariant operators which do not involve the fermionic fields.

4. 1/8-BPS states with (S1, S2, J1)

In this section we consider a different counting problem, namely that of configurations

of multiple giant gravitons which carry non-zero (S1, S2, J1) charges and preserve at least

4 supersymmetries. Similar configurations have been considered in the literature before

in [21, 22]. We work in the coordinates that we used in the earlier sections and consider

configurations of D3-branes of the type:

t = τ, , r = r(τ), θ = θ(τ), φ1 = φ1(τ), φ2 = φ2(τ),

α = α(τ), β = σ1, ξ1 = ξ1(τ), ξ2 = σ2, ξ3 = σ3
(4.1)

The pull-back of the RR 4-form is C
(4)
τσ1σ2σ3 = −l4 cos4 α sinσ1 cos σ2 ξ̇1. Then the D3-

brane Lagrangian becomes

L = −N cos3 α

l

[

∆1/2 − l cos α ξ̇1

]

(4.2)

where

∆ = V (r) − ṙ2

V (r)
− r2 (θ̇2 + cos2 θ φ̇2

1 + sin2 θ φ̇2
2) − l2(α̇2 + sin2 α ξ̇2

1) (4.3)
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Notice the change of sign for the Chern-Simons term. The reason for this is we have chosen

here an anti-D3-brane rather than a D3-brane so as to find a solution with positive sign of

ξ̇1. It is easy to see that the following configurations satisfy the equations of motion

α̇ = ṙ = θ̇ = 0, |φ̇1| = |φ̇2| = ξ̇1 = 1/l (4.4)

In fact these configurations saturate a Bogomolny bound and the Hamiltonian reads (for

positive values of l φ̇1, l φ̇2)

H =
1

l
(Pφ1 + Pφ2 + Pξ1) (4.5)

where

Pξ1 = N cos2 α,Pφ1 = (r2/l2)Pξ1 cos2 θ, Pφ2 = (r2/l2)Pξ1 sin2 θ. (4.6)

We will show in the next subsection that the configurations (4.4) share at least 4 super-

symmetries for arbitrary values of r, θ and α. In terms of the canonical variables, the

supersymmetry conditions (4.4) imply the following constraints

Pr = 0, Pθ = 0, Pα = 0,

Pφ1 − r2

l2
N cos2 α cos2 θ = 0, Pφ2 − r2

l2
N cos2 α sin2 θ = 0, Pξ1 − N cos2 α = 0.

(4.7)

As for the case of the dual-giant gravitons earlier, we can define

(r1, r2, r3) = (r cos α cos θ, r cos α sin θ, l cos α)

and

ζ1 = r cos α cos θ eiφ1 , ζ2 = r cos α sin θ eiφ2 , ζ3 = l cos αei ξ1

Because of the six constraints (4.7) the 12-dimensional phase space of the ζi, ζ̄i and their

conjugate momenta gets reduced to a six-dimensional phase space. The problem of finding

the Dirac brackets in the reduced phase space is similar to the previous case and we get

{

ζi, ζ̄j

}

DB
= −i

l2

N
δij (4.8)

which gives the same symplectic form, eq. (2.38), as before.

The main difference of this solution space from the earlier one is that |ζ3| ≤ l. So the

phase space is really C2 ×D with the symplectic form (2.38) inherited from C3. Note that

the boundary is a null curve of the symplectic form which is as it should be.

In terms of the new variables, (4.6) reads

Pφ1 =
N

l2
|ζ1|2, Pφ2 =

N

l2
|ζ2|2, Pξ1 =

N

l2
|ζ3|2 (4.9)

and the Hamiltonian written in these coordinates becomes

l H =
N

l2

3
∑

i=1

ζiζ̄i (4.10)

Eqs. (4.10), (4.8) imply that the system is again a 3-dimensional simple harmonic oscillator

(the implication of bounded |ζ3| for quantization will be discussed shortly).

– 13 –



J
H
E
P
0
3
(
2
0
0
7
)
0
3
1

4.1 Supersymmetries of spinning giants

The world-volume gamma matrices are

γτ = V 1/2 Γ0 +
ṙ

V 1/2
Γ1 + r θ̇ Γ2 + r (φ̇1 Γ3 cos θ + φ̇2 Γ4 sin θ) + l (α̇ Γ5 + sin α ξ̇1 Γ7),

γσ1 = l cos α Γ6, γσ2 = l µ2 ξ̇2 Γ8, γσ3 = l µ3 ξ̇3 Γ9. (4.11)

The kappa projection equations for an anti-D3-brane are
[

V 1/2 Γ0 +
ṙ

V 1/2
Γ1 + r θ̇ Γ2 + r (φ̇1 Γ3 cos θ + φ̇2 Γ4 sin θ)

+l (α̇ Γ5 + sin α ξ̇1 Γ7) − i∆1/2 Γ689

]

ε = 0 (4.12)

On the solutions ṙ = 0, θ̇ = 0, α̇ = 0, φ̇1 = φ̇2 = ξ̇1 = 1/l this reduces to
[

V 1/2 Γ0 +
r

l
(Γ3 cos θ + Γ4 sin θ) + Γ7 sin α − iΓ689 cos α

]

ε = 0. (4.13)

To simplify this equation we use the following identity

(sin αΓ7 − i cos α Γ689)M = −iM Γ57γ̃ (4.14)

Then the killing spinor equation can be rewritten as

M [V Γ0 +
r

l
V 1/2 cos θ e−φ1 Γ13−i t

l
Γ0 γ(Γ3 + iΓ01 γ)

+
r

l
V 1/2 sin θ e−φ1 Γ24−i t

l
Γ0 γ(Γ4 + iΓ02 γ) − i

r2

l2
(cos2 θ Γ13 + sin2 θ Γ24)γ

−i
r2

l2
cos θ sin θ (Γ23 + Γ14) γ e−φ1 Γ13−φ2 Γ24 − iΓ57 γ̃] ε0 = 0. (4.15)

Since we are interested in having configurations of multiple giant gravitons with generically

different values of (r, θ, α) we may impose the projections

(Γ0 − iΓ13γ) ε0 = 0, (Γ0 − iΓ24γ) ε0 = 0, (Γ0 − iΓ57 γ̃) ε0 = 0. (4.16)

with which the killing spinor equation is satisfied. So the solutions we have found share at

least 4 supersymmetries.

Using methods similar to the ones used in section (2.3) one may show that the full set

of solutions given the projections in (4.16) is the one considered above.

Further one can interpret the solutions as all those obtained by U(1, 2) rotations act-

ing on the homomorphic coordinates (Φ0,Φ1,Φ2) of C
1,2 (in which AdS5 is embedded as

−|Φ0|2 + |Φ1|2 + |Φ2|2 = −l2) on the original half-BPS giant graviton.

4.2 Quantization

The phase space is C
2 × D where D represents the Disc |ζ3| ≤ 1.

The D part of the phase space (with the symplectic form and the Hamiltonian) is

identical to that of the half-BPS giant gravitons [15]. The semiclassical quantization cor-

responds to a fuzzy disc and the exact single-particle quantum mechanics is described by
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H1,N which is an N-dimensional Hilbert space consisting of the first N levels of a simple

harmonic oscillator [15].

H1,N = Span{|n〉, n = 1, 2, . . . , N} (4.17)

We have omitted the n = 0 state from the spectrum of giant gravitons since the minimum

angular momentum of a half-BPS giant graviton is unity. The single-particle quantum

mechanics corresponding to C
2 is given by the states of a 2-dimensional simple harmonic

oscillator of arbitrarily high quantum numbers:

H′ = Span{|l,m〉, l,m = 0, 1, . . . ,∞} (4.18)

The full single-particle Hilbert space of the giant gravitons is given by H1 = H1,N ×H′.

The three angular momenta (4.6) are identified now as the three charges (S1, S2, J1)

where the first two correspond to angular momenta in AdS5 and J1 correspond to angular

momentum in S5.

Z(q1, q2, q3) =
∞
∏

l,m=0

N
∏

n=1

1

1 − ql
1 qm

2 qn
3

=
∞
∑

S1,S2,J1=0

ΩN (S1, S2, J1) qS1
1 qS2

2 qJ1
3 (4.19)

Similar to the situation in the 1/8-BPS states with (J1, J2, J3) one has configurations in

this partition function which have more than 4 supersymmetries. For example whenever

there is just one giant graviton making up a state, since it can be obtained by an isometry

of AdS5 acting on the standard half-BPS giant graviton it is expected to preserve 16

supercharges [22] (see also [21]). Further whenever all the giants in a given state have the

same value of r that state is expected to preserve 8 supercharges. Again if one wishes

one can systematically exclude the contribution of these states from (4.19) to get the

degeneracies of exactly 1/8 or 1/4 supersymmetric states.

5. Conclusions

In this paper we considered the counting problem of quantum states in the type IIB string

theory on AdS5 × S5 background that preserve at least 4 supercharges (1/8-BPS). Two

types of states have been considered:

• those with non-zero (J1, J2, J3) with E = J1+J2+J3 where E is their energy conjugate

to the time coordinate in global coordinates and Ji are the three independent angular

momenta on S5,

• those with non-zero (S1, S2, J1) with E = S1 +S2 +J1 where Si are the two indepen-

dent angular momenta on S3 ⊂ AdS5.

For the first set we considered N -particle states of dual-giant gravitons rotating along

arbitrary maximal circles of S5 that share at-least four supersymmetries. The result can

be expressed quite simply in terms of the degeneracy of states of an N -boson system in a

three-dimensional harmonic oscillator potential.
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For the second set of 1/8-BPS states we considered configurations containing an ar-

bitrary numbers of giant gravitons having angular momenta in the AdS5 directions which

share at least 4 supersymmetries. The result for the counting problem for this set of states

can again be mapped onto that of a 3-dimensional harmonic oscillator, but this time with

an arbitrary number of bosons representing the giant gravitons and with one of the three

quantum numbers of the 3-dimensional harmonic oscillator bounded above by N .

The first type of 1/8-BPS states can also be given by the classification of giant gravi-

tons of [11]. Recently [12] have counted these 1/8-BPS giant graviton configurations by

quantizing Mikhailov’s solutions (See also [28]). The counting problem in terms of giant

gravitons appears to be significantly more complicated since the giant gravitons wrap dif-

ferent 3-surfaces within the S5 which can have complicated intersections and quantization

involves quantizing the space of these 3-surfaces. The dual-giant gravitons, however, have

a much simpler description since their world-volume, at any given time, is a three-sphere of

a given size inside AdS5 and their motion is that of point particles on the S5. Remarkably,

both these descriptions give the same counting of 1/8-BPS states. This points to some

duality between the giant graviton and the dual-giant graviton descriptions.

It is pertinent to recall at this point [6, 15] that in case of half-BPS states there is

an explicit duality between giant graviton states and dual-giant graviton states. If we

specify a multi-giant graviton state by (r1, r2, · · · , rN ) where ri denotes the number of

giant gravitons with angular momentum J1 = i and a multi-dual-giant graviton state by

(s1, s2, · · · , sN ) where si is the angular momentum of the ith (counting from the dual-giant

with largest J1) then the duality map is given by

si =
∑

k=i

rk (5.1)

Thus, the number of dual-giants becomes the number of single-particle energy levels for

giants. Also, the occupied energy levels (si) of dual-giants get related (5.1) to occupation

numbers (rk) of individual levels in the giant graviton system. It will be very interesting

to explore if this type of a duality exists for the 1/8-BPS states with (J1, J2, J3) quantum

numbers considered here and in [11, 12]. Further in the half-BPS sector the duality between

giants and dual-giants follows form a unified description of the system [23, 24] in terms

of N fermions in a harmonic oscillator potential. It will be interesting to see if such a

unified picture can be given for lower supersymmetric cases too. It is possible that such a

description arises in the solution of matrix models proposed in [25] to capture the physics

of 1/8-BPS states.

Similar to the description of giant gravitons in [11] one can describe a dual-giant

graviton as a three surface obtained by the intersection of Φ0 = ϕ
(0)
0 and Z1 = ζ

(0)
1 ,

Z2 = Z3 = 0 with C
1,2 ×C

3 and −|Φ0|2 + |Φ1|2 + |Φ2|2 = −l2 and
∑3

i=1 |Zi|2 = l2 evolving

in time as Φ0 → Φ0 ei t

l and Z1 → Z1 ei t

l where (Φ0,Φ1,Φ2) are holomorphic coordinates

on C
1,2 and (Z1, Z2, Z3) are holomorphic coordinates on C

3 and ϕ
(0)
0 , ζ

(0)
1 are arbitrary

complex numbers. This can be generalized to ‘wobbling dual-giants’ [26]

g(Φ0,Φ1,Φ2) = 0, Z1 = ζ
(0)
1 , Z2 = Z3 = 0 (5.2)
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with the time evolution Φi → Φi e
i t

l and Z1 → Z1 ei t

l . These states carry non-zero

(S1, S2, J1) generically and can be shown to preserve at least 1/8 of the supersymmetries

of the background [26]. One should be able to quantize the space of these ‘wobbling dual-

giants’ and count the 1/8-BPS states using the methods of [12]. It will be interesting to

see if there exists a duality between our giant graviton configurations and these wobbling

dual-giants in which case our counting results give a prediction for the dual-giant counting.

In both types of 1/8-BPS states we considered here preserve SO(4) symmetry (coming

from isometries of S3 ⊂ AdS5 for the states with (J1, J2, J3) charges and from S3 ⊂ S5

for those with (S1, S2, J1) charges). So different giants in a given state form concentric

three-spheres and never intersect (and whenever they do they actually coincide). Usually

D-branes which intersect are expected to split and rejoin and therefore the degeneracies of

such states can change. But in our case since they do not intersect we suggest that their

degeneracies should not receive any quantum corrections. It will be interesting to see if one

can give a description of the full set of 1/8-BPS states with given charges in our language

by turning on some bosonic or fermionic zero modes on the world-volume of the probe

branes that break the SO(4) invariance but not supersymmetry.

It is of interest to find an exact orthonormal basis of states in the dual N = 4 U(N)

SYM for the 1/8-BPS states considered here. For half-BPS states an orthonormal basis of

operators in SYM was provided in [27]. See [22] for some comments on the dual operators

for the states with non-zero (S1, S2, J1).
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