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Abstract: We consider BPS motion of dual giant gravitons on AdS5 × Y 5 where Y 5

represents a five-dimensional Sasaki-Einstein manifold. We find that the phase space for

the BPS dual giant gravitons is symplectically isomorphic to the Calabi-Yau cone over

Y 5, with the Kähler form identified with the symplectic form. The quantization of the
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an explicit correspondence between holomorphic wavefunctions of dual giants and gauge-

invariant operators of the boundary theory. We extend the discussion to dual giants in
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the phase space of the dual giants is symplectically isomorphic to the eight-dimensional

Calabi-Yau cone.
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1. Introduction

Supersymmetric giant gravitons [1 – 3] in AdSm × Sn have been studied extensively in the

literature. Some papers of relevance to the present work are [4 – 13]. Recently significant

progress has been made in quantizing these objects [10 – 13]. One of the main motivations

for these works is to understand the quantum states of the boundary theory in terms of

constructions in the bulk, which may also help in the crucial question of understanding

microstates of a black hole (e.g. the 1/16-BPS ones in [14] or the BTZ black hole) from

the bulk point of view. It has been found that for supersymmetries equivalent to 1/8-BPS

and higher, the quantum states of the boundary theory can be completely accounted for in

terms of giant gravitons or dual giant gravitons [11, 12, 15, 16]. Indeed, it appears that the

descriptions in terms of giants and dual giants are dual to each other. In case of 1/2-BPS

states, there is a precise isomorphism between the Fock spaces of giant gravitons, dual

giant gravitons and the boundary excitations (fermions) [13].

– 1 –
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It would be fruitful to extend the above correspondence to less supersymmetric back-

grounds in which case the boundary theories are more exotic. It may turn out that the

giant graviton analysis is more tractable than the gauge theory and can teach us something

about the latter, especially about finite N effects.

In this paper we will consider dual giant gravitons in AdSm × Y n where Y n is a

Sasaki-Einstein manifold. In section 2 we consider BPS dual giants in AdS5 × Y 5 where

Y 5 is a five-dimensional Sasaki-Einstein manifold. As in the case of AdS5 × S5, we find

that the coordinate space R+ × Y 5 reduces to a phase space with symplectic structure

identical to that of the Calabi-Yau cone over Y 5. In section 3 we use this result to perform

Kähler quantization of the BPS dual giant gravitons and find an explicit map between their

wavefunctions and gauge invariant operators in the corresponding boundary theory. We do

this analysis explicitly for T 1,1 and indicate how this generalizes to higher Y p,q spaces. In

section 4 we consider special motion of dual giant gravitons (arguably supersymmetric) in

AdS4×Y 7 and find again that the symplectic structure of the dual giant configuration space

R+ × Y 7 becomes identical to the Kähler structure of the eight-dimensional Calabi-Yau

cone over Y 7.

While this paper was being finished, two papers [17, 18] appeared which have material

related to the present paper. In particular [18] has substantial overlap with parts of the

present paper dealing with AdS5 × Y 5.

2. Dual giant gravitons on AdS5 × Y5

In this section we consider dual giant gravitons on AdS5 ×Y 5 where Y 5 is a 5-dimensional

Sasaki-Einstein manifold. We will consider for concreteness Y 5 = Y p,q, although the

method of calculation of section 4 for the seven-dimensional Sasaki-Einstein manifold Y 7

suggests that the results of this section should be generally valid (see section 4.2).

We will take the AdS5 metric to be

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2(dχ2 + cos2 χdφ2

1 + sin2 χdφ2
2)

V (r) = 1 +
r2

l2
(2.1)

The Y p,q has a metric

1

l2
ds2 =

1 − y

6

(

dθ2 + sin2 θdφ2
)

+
1

w(y)q(y)
dy2 +

q(y)

9

(

dψ2 − cos θdφ
)2

+w(y) (dα + f(y)(dψ − cos θdφ))2 (2.2)

where

w(y) =
2(a − y2)

1 − cy
, q(y) =

a − 3y2 + 2cy3

a − y2
, f(y) =

ac − 2y + y2c

6(a − y2)
(2.3)

Non-zero values of c will be set to 1 by a rescaling of coordinates. The case c = 0 cor-

responds to Y 1,0 = T 1,1 which we will deal with separately. The parameter a can take a

countably infinite number of values between 0 and 1, specified by two integers p and q (see,

e.g. [20] for details). The coordinate y varies between the two smallest roots of q(y) = 0.

– 2 –



J
H
E
P
0
7
(
2
0
0
7
)
0
1
4

The five-form RR field strength is given by

F (5) = −4

l

[

e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4 + Ω(Y 5)
]

. (2.4)

The corresponding 4-form potential can be written as

C(4) = r4 cos χ sin χdt ∧ dχ ∧ dφ1 ∧ dφ2 + l4C
(4)
Y 5 (2.5)

The ei, i = 0, . . . , 4 represent vielbeins of AdS5 and will be taken to be

e0 = V 1/2(r) dt, e1 = V −1/2(r) dr, e2 = rdχ, e3 = r cos χdφ1, e
4 = r sin χdφ2 (2.6)

Ω(Y 5) represents the volume form of Y 5 and is written locally as dC
(4)
Y 5 ; its specific form

will not be important for us.

A dual giant graviton [2, 3, 12] is a D3-brane wrapped on the S3 ∈ AdS5. Its embedding

is given by

t = σ0 = τ, r = r(τ), χ = σ1, φ1 = σ2, φ2 = σ3,

y = y(τ), θ = θ(τ), φ = φ(τ), α = α(τ), ψ = ψ(τ) (2.7)

The pull-back of C(4) onto the world-volume is C
(4)
σ0σ1σ2σ3

= l−1r4 cos σ1 sin σ1. The DBI

plus WZ Lagrangian density is

L = − N

2π2 l4
r3 cos σ1 sin σ1

[

∆1/2 − r

l

]

(2.8)

where

∆ = V (r) − ṙ2

V (r)
− l2

[

1 − y

6

(

θ̇2 + sin2 θφ̇2
)

+
1

w(y)q(y)
ẏ2 +

q(y)

9

(

ψ̇ − cos θφ̇
)2

+ w(y)
(

α̇ + f(y)(ψ̇ − cos θφ̇)
)2

]

(2.9)

We can integrate over the angles σi to get Action =
∫

dt L where the effective point-particle

Lagrangian L is

L =

∫

dσ1 dσ2 dσ3 L = −N

l4
r3

[

∆1/2 − r

l

]

(2.10)

The conjugate variables of the classical mechanics model are

Pr =
N r3 ṙ

l4 V (r)∆1/2
, Py =

N r3 gyy ẏ

l4 ∆1/2
, Pθ =

N r3 gθθ θ̇

l4 ∆1/2
,

Pφ =
Nr3

l2∆1/2

[

1−y

6
sin2 θφ̇− 1

9
cos θq(y)

(

ψ̇−cos θφ̇
)

−w(y)f(y) cos θ
(

α̇+f(y)(ψ̇−cos θφ̇)
)

]

Pα =
N r3

l2∆1/2
w(y)

(

α̇ + f(y)(ψ̇ − cos θφ̇)
)

Pψ =
N r3

l2∆1/2

[

q(y)

9

(

ψ̇ − cos θφ̇
)

+ w(y)
(

α̇ + f(y)(ψ̇ − cos θφ̇)
)

]

(2.11)

– 3 –
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Henceforth we will put l = 1 for simplicity. In the following we will look at solutions of

the equation of motion which preserve supersymmetry. The simplest way to do this is to

consider motion along the so-called Reeb Killing vector field (we will explain the connection

to supersymmetry in section 2.2)

VR = 3
∂

∂ψ
− 1

2

∂

∂α
(2.12)

See, e.g. [20, 21] for various properties of this vector field. The corresponding dynamical

trajectory is

ṙ = ẏ = θ̇ = 0

φ̇ = 0, ψ̇ = 3, α̇ = −1

2
(2.13)

Note that on this trajectory

ḟ(r, y, θ, φ, ψ, α) = 3
∂

∂ψ
f − 1

2

∂

∂α
f = VR(f) (2.14)

for any function f . It is a lengthy but straightforward calculation to check that (2.13)

actually solves the equations of motion coming from the Lagrangian in (2.10).

The reverse trajectory

ṙ = ẏ = θ̇ = 0, φ̇ = 0, ψ̇ = −3, α̇ =
1

2
(2.15)

is also a solution, with the opposite momenta. This solution also turns out to be super-

symmetric.

2.1 Reduced phase space

The equations (2.13) translate to the following constraints on the 12-dimensional phase

space:

Pr = Py = Pθ = 0

Pφ = −Nr2

3
(1 − y) cos θ, Pα = −2Nr2y, Pψ =

Nr2

3
(1 − y) (2.16)

Obtaining the second line involves significant amount of algebra. A useful identity is

q(y) +
w(y)

4
(6f(y) − 1)2 = 1 (2.17)

The constraints (2.16) reduce the original 12 dimensional phase space to a six dimensional

phase space which can be parametrized by the six coordinates ζa = (r, y, θ, φ, α, ψ).

– 4 –
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2.1.1 Symplectic structure

We would like to derive the symplectic form on the reduced phase space. This can be done

by treating (2.16) as Dirac constraints (Ci, i = 1, . . . , 6). Calculation of Dirac brackets

among the six independent coordinates proceeds as in the AdS5 ×S5 case [12, 10, 9]. Thus

{ζa, ζb}DB = {ζa, ζb}PB − {ζa, Ci}PB M−1
ij {Cj, ζb}PB

M ij ≡ {Ci, Cj}PB (2.18)

Note that ζa are coordinates and hence their PB’s are zero. However, the Dirac brackets

are non-zero: the supersymmetry constraints transform the coordinate space into a phase

space, as in the case of AdS5 × S5.

The symplectic form is defined as

ω = ωabdζa ∧ dζb,

(ω−1)ab ≡ {ζa, ζb}DB (2.19)

The result of this exercise is that

ω = dφ ∧ d

[

−Nr2

3l2
(1 − y) cos θ

]

+ dψ ∧ d

[

Nr2

3l2
(1 − y)

]

+ dα ∧ d

[

−N2
r2

l2
y

]

(2.20)

Let us compare this with the Kähler form of the Calabi Yau cone. The cone is defined by

a Kähler metric

ds2
6 = dρ2 + ρ2ds2

Y 5 (2.21)

with the Kähler form1

J = dφ ∧ d

[

ρ2

6l2
(1 − y) cos θ

]

+ dψ ∧ d

[

− ρ2

6l2
(1 − y)

]

+ dα ∧ d

[

ρ2

l2
y

]

(2.22)

Thus, we obtain one of our main results:

ω = NJ, provided ρ2 ≡ 2r2 (2.23)

The factor of N is similar to that in the case of AdS5 × S5 [12, 9, 10], and corresponds to

1/~ (note that the Dirac bracket ω−1);e.g., note the factor of N in Eqns (3.22) and (3.23)

of [10].

2.2 Hamiltonian, R-charge and supersymmetry

The hamiltonian on the reduced subspace is

H = ζ̇aPζa − L =
1

l

(

3Pψ − 1

2
Pα

)

(2.24)

1Our convention differs in sign from [20]. We choose this sign to ensure that H = 3Pψ′ is positive (see

(2.27)).

– 5 –
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This follows simply, because L = 0. It is useful to make the change of variable (α,ψ) →
(α′, ψ′) = (α + 1

6ψ,ψ); in these coordinates

α̇′ = 0, ψ̇′ = {ψ′,H} = {ψ′, 3Pψ/l} =
3

l
(2.25)

The Reeb vector now is simply

VR = 3
∂

∂ψ′
(2.26)

It is easy to see that

H =
3

l
Pψ′ (2.27)

Since the momentum along the Reeb Killing vector is dual to the R-charge [20, 21] in the

boundary field theory, eq. (2.27) is a BPS relation and therefore (2.13) must represent BPS

dual giant gravitons. An independent verification of this fact could be done by checking

the kappa-symmetry projection; we will not do this here.2

Besides the Reeb vector 3∂/∂ψ′, there are two other Killing vectors ∂/∂α′, ∂/∂φ. These

correspond to (linear combinations of) the “toric” T 3 action on these manifolds and are

dual to the three U(1) charges in the dual field theory.

2.3 The case of T 1,1

In this case the metric is [23]

ds2|T 1,1 =
1

6
(dθ2

1 + sin2 θ1dφ2
1 + dθ2

2 + sin2 θ2dφ2
2) +

1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)

2 (2.28)

The Kähler cone with the above base is given by the metric

ds2
6 = dρ2 + ρ2ds2|T 1,1 (2.29)

and a Kähler form [24]

J =
ρ2

6
(sin θ1dθ1 ∧ dφ1 + sin θ2dθ2 ∧ dφ2) −

1

3
ρdρ ∧ (dψ + cos θ1dφ1 + cos θ2dφ2) (2.30)

Once again the symplectic form ω obtained from quantizing BPS dual giant gravitons

satisfies (2.23). The hamiltonian is given by (2.27). Since the angle ψ (equivalently, ψ′)

has a range (0, 4π), it is customary to define an angle ν = ψ/2 [20]. In terms of this, the

classical BPS relation (2.27) becomes

H =
3

2l
Pν (2.31)

2.4 Summary of this section

We find that the phase space for the BPS dual giant gravitons moving in AdS5 × Y 5 is

symplectically isomorphic to the Calabi-Yau cone (2.21), with the identification (2.23).

2It has been shown in [18] that the kappa-symmetry projection equation is indeed satisfied for the motion

(2.25).

– 6 –
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3. Quantization: counting BPS dual giants

3.1 The case of T 1,1

To get oriented, we will discuss the case of T 1,1 first. The cone (2.29) is given by the

following equation in C4

wiwi = 0, ~w ∈ C4 (3.1)

The Kähler form is obtainable from the following Kähler potential [24]

f =
3

2
(wiw̄i)

2/3 ≡ ρ2 (3.2)

The classical hamiltonian is given by (see (2.16))

H =
3

l
Pψ′ =

N

l3
r2 =

N

2l3
ρ2 (3.3)

Since the symplectic form for BPS dual giants is the same as the Kähler form for the

cone (2.29) or (3.1), we can quantize this space according to the standard procedure of

geometric quantization of Kähler manifolds [25, 26]. According to this method, we define

the quantum Hilbert space in terms of holomorphic functions ψ(w) with a norm defined

by the restriction of that on C4 to the surface (3.1). The operator corresponding to (3.3)

is given by [26]

Ĥ = −i~XH + 〈θ,XH〉 + H (3.4)

where θ is the symplectic potential which we can define as θ = i∂f . XH denotes the

symplectic (Hamiltonian) flow of H. It turns out that the last two terms cancel each other,

as in the case of a simple harmonic oscillator (except that the algebra is more complicated)

and we are left with just the first term which corresponds to the classical symplectic flow

for H. This gives (identifying ~ of (3.4) with 1/N , see remarks below (2.23)

Ĥ =
3

2l
R̂, R̂ ≡ wi

∂

∂wi
(3.5)

where R̂ is the operator form for the R-charge. The operator form is determined by the

fact that the R-charge each wi is 1 [24, 22]. Comparing (2.31) with (3.5), we get

P̂ν = R̂ (3.6)

which expectedly identifies the momentum along the Reeb vector with the R-charge at the

boundary, as already mentioned in the previous section.

3.1.1 Wavefunctions

It is easy to solve the eigenvalue problem of R̂ (which is equivalent to solving the eigenvalue

problem of Ĥ, because of (3.5)). The solutions can be expressed in a basis of monomials

R̂ ψ~j(~w) = jψ~j(~w), ψ(w) = wj1
1 . . . wj4

4 , j1 + . . . + j4 = j (3.7)

– 7 –
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For multiple dual giants, we will have

R̂ ψ(w(a)) =
∑

a

w
(a)
i

∂ψ

∂w
(a)
i

=
∑

a

j(a)ψ(w(a)) (3.8)

where the wavefunctions are obtained by taking symmetrized product of monomials as in

(3.7), e.g.

ψ~j1,~j2(~w1, ~w2) =
1

2

(

ψ~j1(~w1)ψ~j2(~w2) + ψ~j1(~w2)ψ~j2(~w1)
)

(3.9)

3.1.2 Explicit counting

Clearly the spectrum of (3.7) is integral and the eigenfunctions are monomials in wi (modulo

the relation (3.1)). Some examples are:

• Wavefunctions of degree 1 (corresponding to R-charge =1 operators in the boundary

theory):

There are 4 eigenfunctions given by

ψ(w) = w1, w2, w3, w4 (3.10)

or alternatively, by using a linear change, the wavefunctions are

ω1 = w3 + iw4, ω2 = w1 − iw2, ω3 = w1 + iw2, ω4 = −w3 + iw4 (3.11)

eq. (3.1) now becomes

ω1ω4 = ω2ω3 (3.12)

In the boundary theory also, there are precisely 4 gauge invariant operators of R-

charge 1, namely

Tr(W1), T r(W2), T r(W3), T r(W4) (3.13)

where [23]

W1 = A1B1,W2 = A1B2,W3 = A2B1,W4 = A2B2 (3.14)

• Wavefunctions of degree 2 (corresponding to R-charge 2 in the boundary theory):

There are 19 wavefunctions, out of which 10 are two-particle wavefunctions

ψ(~ω(1), ~ω(2)) = ω
(1)
i ω

(2)
j + ω

(1)
j ω

(2)
i , i ≤ j, i, j = 1, 2, 3, 4 (3.15)

Recall that the dual giant gravitons are bosonic. The remaining 9 are one-particle

wavefunctions:

ψ(~ω) = ωiωj, i ≤ j, i, j = 1, 2, 3, 4 (3.16)

where we have used (3.12).

Again the counting matches with the boundary theory for R-charge 2, where we have

10 double trace operators

Tr(Wi)Tr(Wj), i ≤ j, i, j = 1, 2, 3, 4 (3.17)

– 8 –
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in precise correspondence with (3.15) and 9 single-trace operators

Tr(WiWj), i ≤ j, i, j = 1, 2, 3, 4 (3.18)

in precise correspondence with (3.16). The relation (3.12) corresponds to (see [23])

W1W4 = A1B1A2B2 = A1B2A2B1 = W2W3 (3.19)

The above discussion suggests the correspondence

ωi ↔ Wi (3.20)

• Wavefunctions of degree 3 (corresponding to R-charge 3 in the boundary theory):

Counting the same way as before, we find that there are 16 1-particle, 36 2-particle

and 4 3-particle wavefunctions. Similarly in the gauge theory there are 16 single

trace, 36 double trace and 4 triple trace operators.

The above pattern continues for higher R-charges as well. The main point here3 is that

the operators Wi all commute (as a consequence of F-term equations of motion) and hence

gauge invariant operators written in terms of these commuting operators are in one-to-one

correspondence with wavefunctions of the variables ωi. Hence, dual giant states are in

one-to-one correspondence with gauge-invariant operators in the boundary theory. In other

words,
∏

i

ωni

i ↔ Tr

(

∏

i

W ni

i

)

(3.21)

where the l.h.s. corresponds to all wavefunctions of the dual giant gravitons and r.h.s.

corresponds to all gauge-invariant operators of the boundary theory at large N .

3.1.3 Finite N

The above correspondence was argued for at large N , where in the boundary theory we

could treat traces of arbitrary high powers as independent and, correspondingly in the

bulk, we could consider arbitrary number of particles. As we argued in case of AdS5 ×S5,

let us assume that the maximum number of giant gravitons is given by N , the rank of the

gauge group. Like in case of 1/8-BPS dual giants of AdS5 × S5 [12], the correspondence

mentioned above appears to work for finite N here as well. e.g. if we choose N = 2 in

the degree 3 case above, we lose 4 states in the bulk and 4 operators in the boundary

theory. It would be interesting to construct a general proof of the finite N correspondence

for arbitrary multiparticle states and for general Y p,q.

3.2 Higher Y p,q’s

We will only sketch the argument here, leaving details for later. The Calabi Yau cone will

again be described by some number r of relations Ra(ω) = 0, a = 1, . . . , r, among n complex

coordinates ωi, i = 1, 2, . . . , n. The Kähler polarization is described by analytic functions

3This has been emphasized to us by Shiraz Minwalla.

– 9 –
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in the ωi. Since the symplectic form in the phase space of the dual giant gravitons agrees

with the Kähler form, by the rules of geometric quantization wavefunctions will again be

given by monomials in these ωi modulo the relations. It has been shown in [19] that in the

gauge theory there are exactly n commuting adjoint operators Wi, i = 1, 2, . . . n satisfying

the same r relations and the monomials
∏

i ωni

i correspond, in a one-to-one fashion, to

Tr(
∏

i W
ni

i ) (these gauge invariant operators exclude operators which can be written using

the invariant epsilon tensor of SU(N)). Hence the argument used for T 1,1 will again apply,

establishing a one-to-one correspondence between the dual giant states and gauge invariant

operators.

4. AdS4 × Y7

In this section we will consider dual giant gravitons in a second setting, namely AdS4×Y 7

backgrounds of M-theory, where we will take Y 7 to be a Sasaki-Einstein manifold. The

basic steps are similar; so we will be brief.

In [27, 28] a recursive procedure is presented for constructing 2n + 3 dimensional

Sasaki-Einstein manifolds Y 2n+3, given a 2n + 1 dimensional Sasaki-Einstein manifold

Y 2n+1. Thus, the metric of Y 7 is given by (our R is the ρ of [27])

ds2
7 = ds2

6 +
(

dψ′ + σ
)2

ds2
6 =

dR2

u(R)
+ R2u(R)(dτ − A(x))2 + R2ds2

4 (4.1)

The five-dimensional Sasaki-Einstein manifold, not explicitly written, is a circle fibration

(the circle is parametrized by τ) over a 4-dimensional Kähler manifold

ds2
4 = gij(x)dxidxj (4.2)

The Kähler forms J6, J4 for ds2
6, ds2

4 are given by

J6 =
1

2
dσ, J4 =

1

2
dA (4.3)

A Ricci-flat Kähler metric can be constructed on the Calabi-Yau cone over Y 7, given by

the metric

ds2
8 = dρ2 + ρ2ds2

7 (4.4)

and a Kähler form

J8 = ρdρ ∧ (dψ′ + σ) + ρ2J6 (4.5)

The AdS4 metric will be given by

ds2|AdS4
= −V (r)dt2 +

dr2

V (r)
+ r2dΩ2

2, V (r) = 1 +
r2

l̃2
(4.6)

The AdS4 radius of curvature l̃ can be determined from the special case of the AdS4 × S7

(see eq. (3) of [2]): l̃ = l/2 = 1/2 (we are using l = 1 units).
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The dual giant graviton this time is an M2-brane wrapped on the 2-sphere of AdS4

whose center of mass is free to move along the radial direction r and along Y 7. The

Lagrangian is given by (cf. [2])

L = −4Ñ [r2
√

∆ − 2r3] (4.7)

where ∆ has an expression analogous to (2.9):

∆ = V (r) − ṙ2/V (r) − gabϕ̇aϕ̇b (4.8)

Here ϕa, a = 1, . . . , 7 denote the coordinates of Y 7. Ñ denotes the flux through the two-

sphere of AdS4.

As in the case of AdS5 × Y 5 we will focus on motions along a special Killing vector

(see [27], eq. (4.1) and the comments immediately preceding it)

V =
∂

∂ψ′
(4.9)

which will play the role of (2.26) in the present case.

Motion of a dual giant along this vector field implies the following condition on the

eight velocities:

ψ̇′ = 1, ẋi = τ̇ = Ṙ = ρ̇ = 0 (4.10)

These constraints boil down to eight conditions on the sixteen-dimensional phase space:

Pρ = PR = 0

Pψ′ = 2r, Pτ = 2r(3/4 − R2)

Pxi = 2rR2Ai(x) (4.11)

The reduced phase space of dimension eight can be entirely parametrized by the eight

coordinates. One can find the symplectic structure of the reduced phase space again by

computing the Dirac brackets. We simply quote the final result (in l = 1 units):

ω = ÑJ8, provided ρ2 ≡ 4r (4.12)

The reduced hamiltonian is given by

H = Pψ′ = 2r (4.13)

Thus we find that the conclusions of section 2.4 generalize to the present case, namely, the

symplectic form for the dual giants agrees with the Kähler form for the eight-dimensional

Calabi-Yau cone under the above identification (4.12) of AdS4 radial coordinate with the

radial coordinate ρ of the cone. Because of this, the dual giant gravitons in this special

subspace of motions can be quantized again using Kähler quantization.

4.1 Supersymmetry

The relation H = Pψ′ strongly suggests supersymmetry. However, since we are not aware

of any explicit connection between Pψ′ and an R-charge, the only way to make sure of the

supersymmetry is to check the kappa-symmetry projection equation. We hope to come

back to this elsewhere.
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4.2 Back to more general Y 5

Note that the methods in this section do not make any specific assumption about the Sasaki-

Einstein manifold in arriving at the main result (4.12). Applying a similar calculation to

section 2 it should be possible to generalize the results of that of that section to a general

Sasaki-Einstein space in five dimensions.

5. Conclusions

In this paper we considered BPS dual giant gravitons in the type IIB string theory on

AdS5 ×Y 5 where Y 5 is a five-dimensional Calabi-Yau manifold. We considered the case of

Y p,q spaces explicitly in section 2 and indicated the more general calculation in section 4.

We computed the symplectic structure of the dual giant phase space R+ × Y 5 and showed

that the space becomes symplectically isomorphic to the Calabi-Yau cone (with its Kähler

form identified as the symplectic form). The radial coordinate of AdS5 gets identified with

the radial coordinate of the cone.

Using the above result, the problem of quantizing BPS dual giant gravitons became

that of quantizing the cone as a Kähler manifold. We worked out the case of T 1,1 explicitly

and showed that the wavefunctions correspond to monomials of the embedding complex

coordinates wi which corresponded in a one-to-one fashion to gauge invariant operators.

We showed, using results of [19], how to generalize this construction to Y p,q. We discussed

examples of this correspondence at finite N .

We also discussed dual giant gravitons in AdS4 times a seven-dimensional Sasaki-

Einstein manifold Y 7. Once again we found that the for a special subspace of motions,

presumably supersymmetric, the symplectic structure of the dual giant configuration space

R+ × Y 7 coincided with the Kähler structure of the eight-dimensional Calabi-Yau cone

over Y 7.
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