
J
H
E
P
0
1
(
2
0
1
5
)
0
3
6

Published for SISSA by Springer

Received: November 6, 2014

Accepted: December 14, 2014

Published: January 9, 2015

The inside outs of AdS3/CFT2: exact AdS wormholes

with entangled CFT duals

Gautam Mandal, Ritam Sinha and Nilakash Sorokhaibam

Department of Theoretical Physics, Tata Institute of Fundamental Research,

Mumbai 400005, India

E-mail: mandal@theory.tifr.res.in, ritam@theory.tifr.res.in,

nilakashs@theory.tifr.res.in

Abstract: We present the complete family of solutions of 3D gravity (Λ < 0) with two

asymptotically AdS exterior regions. The solutions are constructed from data at the two

boundaries, which correspond to two independent and arbitrary stress tensors TR, T̄R,

and TL, T̄L. The two exteriors are smoothly joined on to an interior region through a

regular horizon. We find CFT duals of these geometries which are entangled states of

two CFT’s. We compute correlators between general operators at the two boundaries and

find perfect agreement between CFT and bulk calculations. We calculate and match the

CFT entanglement entropy (EE) with the holographic EE which involves geodesics passing

through the wormhole. We also compute a holographic, non-equilibrium entropy for the

CFT using properties of the regular horizon. The construction of the bulk solutions here

uses an exact version of Brown-Henneaux type diffeomorphisms which are asymptotically

nontrivial and transform the CFT states by two independent unitary operators on the two

sides. Our solutions provide an infinite family of explicit examples of the ER=EPR relation

of Maldacena and Susskind [1].

Keywords: AdS-CFT Correspondence, Black Holes

ArXiv ePrint: 1405.6695

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2015)036

mailto:mandal@theory.tifr.res.in
mailto:ritam@theory.tifr.res.in
mailto:nilakashs@theory.tifr.res.in
http://arxiv.org/abs/1405.6695
http://dx.doi.org/10.1007/JHEP01(2015)036


J
H
E
P
0
1
(
2
0
1
5
)
0
3
6

Contents

1 Introduction and summary 1

2 The solutions 4

2.1 The eternal BTZ geometry 5

2.2 Solution generating diffeomorphisms (SGD) 6

2.2.1 The metric in the coordinate chart EF1 6

2.2.2 The metric in the coordinate chart EF2 8

2.3 The full metric 8

2.3.1 Analogy with the Dirac monopole 9

2.3.2 Summary of this subsection: 10

2.4 Horizon 10

2.5 On the nontriviality of solution generating diffeomorphisms 11

2.5.1 Definition 12

3 The dual Conformal Field Theory 12

3.1 Correlators 13

3.2 Strategy for checking AdS/CFT 14

4 Holographic stress tensor 15

5 General two-point correlators 16

5.1 Boundary-to-boundary geodesics 16

5.2 General two-point correlators from CFT 18

6 Entanglement entropy 19

6.1 Dynamical entanglement entropy in a specific new geometry 21

7 Entropy 22

7.1 Equilibrium 22

7.2 New metrics: non-equilibrium entropy 23

8 Conclusion and open questions 25

8.1 ER=EPR 26

8.2 Generalizations and open questions 27

A Coordinate systems for the eternal BTZ geometry 28

A.1 Eddington-Finkelstein coordinates 28

A.2 Kruskal coordinates 31

A.3 Poincare 32

B The new metrics in the charts EF3 and EF4 33

– i –



J
H
E
P
0
1
(
2
0
1
5
)
0
3
6

C UV/IR cutoffs in EF coordinates 33

D An alternative to Banados’ metric 33

E Unitary realization of conformal transformation 35

1 Introduction and summary

It has been a matter of lively debate whether the standard description of a large black

hole with a smooth horizon is quantum mechanically consistent, and is, in fact, consistent

with AdS/CFT. While the firewall hypothesis [2, 3]1 argues against the validity of the

standard description, Maldacena and Susskind [1] have suggested that the region inside

the horizon is a geometric representation of quantum mechanical entanglement. Both the

above proposals, and related issues, are discussed in a number of papers; for a partial list,

related to the discussion in this paper, see [2, 3, 5–12]. The proposal of [1], summarized by

the symbolic equation ER = EPR,2 is illustrated by the eternal black hole geometry which

is dual to the thermofield state [13].3 It has been argued in several papers (see, e.g., [7, 12])

that although the proposal holds for this illustrative case, it does not hold in general. One

of the objectives of the present work is to explicitly construct a general class of two-sided

geometries4 which represent entangled CFT’s.

A useful approach to construct the geometric dual to a CFT state is by using a

Fefferman-Graham (FG) expansion, with boundary data provided by the CFT state. To

begin with, let us consider the case of a single CFT. Since we are primarily interested in

the metric, let us focus, for simplicity, on states in which only the stress tensor is excited.

The dual geometry would then be given by the solution to the appropriate Einstein equa-

tions subject to the boundary data provided by the stress tensor. This approach has been

particularly fruitful in the context of the AdS3/CFT2 duality where the Fefferman-Graham

expansion has been shown, for pure gravity, to terminate [16] , yielding the following ex-

act metric5

ds2 =
dz2

z2
− dx+dx−

(
1

z2
+ z2

L(x+)L̄(x−)

16

)
+

1

4

(
L(x+)dx

2
+ + L̄(x−)dx

2
−
)

(1.1)

The boundary data (z → 0) is represented by the following holographic stress tensors (we

choose −Λ = 1/ℓ2 = 1)

8πG3T++(x+) =
L(x+)

4
, 8πG3T−−(x−) =

L̄(x−)

4
(1.2)

1See also [4].
2Einstein-Rosen (wormhole) = Einstein-Podolsky-Rosen (entangled state).
3See [14] for an AdS/CFT check on the dynamical entanglement entropy which involves the wormhole

region, and [15] for generalization to include angular momentum and charge.
4By two-sided, we mean geometries which have two asymptotically AdS regions.
5In (1.1), x± = t± x, with x ∈ R. For L, L̄ constant, this corresponds to the BTZ black string.

– 1 –



J
H
E
P
0
1
(
2
0
1
5
)
0
3
6

The above metric becomes singular at the horizon

z = z0 ≡ 2
(
L(x+)L̄(x−)

)−1/4
, (1.3)

and therefore the metric (1.1), describes only an exterior geometry.6

How does one carry out such a construction with two boundaries, with two sets of

boundary data? Indeed, it is not even clear, a priori, whether simultaneously specifying

two independent pieces of boundary data can always lead to a consistent solution in the

bulk (this question has been raised in several recent papers, e.g. see [6]). A possible

approach to this problem is suggested by the fact that the eternal BTZ solution, which

contains (1.1) with constant stress tensors, admits a maximal extension with two exteriors,

which are joined to an interior region across a smooth horizon. The maximal extension

is constructed by transforming, e.g., to various Eddington-Finkelstein (EF) coordinate

patches (described in appendix A). A naive generalization of such a procedure in case

of variable L, L̄, of transforming the metric (1.1) to EF type coordinates, does not seem

to work since it leads to a complex metric in the interior region7. A second approach

could be to solve Einstein’s equations, by using the constant L, L̄ (eternal BTZ) solution

as a starting point and, incorporate the effect of variable L, L̄ perturbatively, either in a

derivative expansion or an amplitude expansion. While this method may indeed work, at

the face of it, it is far from clear how the variation in L, L̄ can be chosen to be different at

the two boundaries.

In this paper, we will use the method of solution generating diffeomorphisms (SGD). In

gauge theory terms, these are asymptotically nontrivial gauge transformations which cor-

respond to global charge rotations; the use of these objects was introduced in [18–20], and

used crucially by Brown and Henneaux [21] to generate ‘Virasoro charges’ through asymp-

totically nontrivial SGDs that reduced at the AdS boundary to conformal transformations.

(We discuss these in more detail in section 2). Brown and Henneaux had discussed only

the asymptotic form of the SGDs. We apply two independent, exact Brown-Henneaux

SGDs8 to different coordinate patches of the eternal BTZ geometry, yielding a black hole

spacetime with two completely general stress tensors on the two boundaries. In other

words, our strategy for solving the boundary value problem can be summarized as: given

arbitrary boundary data in terms of stress tensors TR, T̄R, and TL, T̄L, we (i) find the two

specific sets of conformal transformations (which we are going to call G+, G− and H+, H−)

which, when acting on a constant stress tensor, gives rise to these stress tensors, (ii) find

the SGD’s which reduce to these conformal transformations and (iii) apply the SGD’s to

the eternal BTZ metric.

This solves the boundary value problem we posed above.

6The inverse metric gMN blows up at the horizon, as in case of Schwarzschild geometry. However, unlike

there, here the other region z > z0 does not represent the region behind the horizon; rather it gives a second

coordinatization of the exterior region again. In this paper, we will use a different set of coordinate systems

to probe the interior and a second exterior region.
7Such a coordinate transformation has been discussed in [17] in an asymptotic series near the boundary.
8It has been shown by Roberts [22] that the exterior metric (1.1) can be obtained by an exact Brown-

Henneaux type diffeomorphism applied to the Poincare metric. See appendix D for a discussion on this and

a different, new, transformation which is closer to the ones we use in this paper.

– 2 –



J
H
E
P
0
1
(
2
0
1
5
)
0
3
6

The results in this paper are organized as follows:

(1) The new solutions: in section 2 we describe the explicit solution generating diffeo-

morphisms (SGDs) and construct the resulting two-sided black hole geometries. The

diffeomorphisms reduce to conformal transformations at each boundary, parameter-

ized by functions G± on the right and H± on the left. The SGD parameterized by G±
is applied to the Eddington-Finkelstein coordinate chart EF1 (which covers the right

exterior and the black hole interior, see figure 1) and to EF4 (right exterior + white

hole interior), whereas the SGD parameterized by H± is applied to the Eddington-

Finkelstein coordinate chart EF2 (left exterior + black hole interior) and to EF3 (left

exterior + white hole interior). To cover the entire spacetime we also use a Kruskal

chart K5 which covers an open neighbourhood of the bifurcate Killing horizon; here

we leave the original Kruskal metric unaltered. The effect of the above SGDs is that

we have a description of different metric tensors in different charts. In section 2.3 we

show that all these can be pieced together to give a single (pseudo-)Riemannian man-

ifold; we prove this by showing that in the pairwise overlap of any two charts N1∩N2

the different metrics constructed above differ only by a trivial diffeomorphism (see

the definition 2.5.1); the full metric, specified with the help of the various charts, is

schematically represented in figure 3. An important manifestation of the asymptotic

nontriviality of the SGDs is to move and warp the infra-red regulator surface (see

figure 2); the change in the boundary properties, as found in later sections, can be

directly attributed to this.

The new spacetime so constructed inherits the original causal structure, with the

event horizon, the bifurcation surface, and the two exterior and interior regions (see

also footnotes 9 and 31). The horizon is, therefore, regular by construction. In

the new EF coordinates (the tilded coordinates) the horizon consists of smoothly

undulating surfaces (see figure 4).

(2) The CFT duals: in section 3 the fact that the SGDs reduce asymptotically to con-

formal transformations is used to infer that the CFT duals to our geometries are

given by conformal unitary transformations UL⊗UR to the thermofield double state.

The correspondence between various AdS and CFT quantities, implied by this, is

explicitly verified in the next few sections.

(3) The AdS/CFT checks: in section 4 we carry out this test for the stress tensor. We

compute the holographic stress tensor [23, 24] in the new geometry and show that it

exactly matches with the expectation value of the conformally transformed (including

the Schwarzian derivative) stress tensor in the thermofield double state. In section 5

we compare AdS and CFT results for both 〈OLOR〉 and 〈OROR〉 types of correlators.
The holographic two-point function is found by computing geodesic lengths in the

new geometries and we find that it correctly matches with the two-point function

of transformed operators. This can be regarded as an evidence for the ER=EPR

relation in the presence of probes.

– 3 –
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EF1 EF2 EF3 EF4

Figure 1. The (green parts of) the five figures on the right depict the five coordinate charts used

in this paper to cover the eternal BTZ solution.9The coordinate chart K5 is needed to cover the

“bifurcation surface” where the past and future horizons meet (it is a point in the Penrose diagram).

The leftmost diagram (in blue) represents the coordinate chart used in (1.1). Each of the coordinate

charts is shown, for facility of comparison, within a Penrose diagram where the parts not within

the chart are shown in gray.

(4) Entanglement entropy: as a further check, in section 6 we apply the above result for

two-point functions to show that the entanglement entropy EE in CFT matches the

holographic EE [25, 26] including when the Ryu-Takayanagi geodesic passes through

the wormhole. This constitutes a direct proof of the ER=EPR conjecture for the

entire class of geometries constructed in this paper. We work out the dynamical

entanglement entropy in an example (see fig 5).

(5) Holographic entropy from horizon: in section 7, we make crucial use of the existence

of smooth horizons on both sides to compute a holographic entropy along the lines

of [27]. We are able to compute the entropy in the CFT by using the Cardy formula

and an adiabatic limit (which allows the use of the ‘instantaneous’ energy eigenvalues

to compute degeneracies); the holographic entropy agrees with this. The entropy

turns out to be divergenceless, reflecting the dissipationless nature of 2D CFT. There

is, however, a nontrivial local flow of entropy (see fig 6).

(6) ER=EPR: in section 8 we discuss some implications of our solutions vis-a-vis the

ER=EPR relation of Maldacena and Susskind [1]. Our solutions establish an infinite

family of quantum states entangling two CFTs which are represented in the bulk by

wormhole geometries. We show, in particular, that out of a given set of quantum

states we consider, all characterized by the same energy, there are states with low

entanglement entropies, which nevertheless are still represented by wormhole geome-

tries; this is in keeping with the picture of geometric entanglement suggested in [1].

2 The solutions

In this section we obtain the new solutions by carrying out the procedure outlined in the

Introduction. As explained in section A, for constant L, L̄, the metric (1.1) represents a

BTZ black hole of constant mass and angular momentum (A.1). In that case, one can

9This is the entire geometry for the non-spinning BTZ; for spinning BTZ solutions, we do not attempt to

cover the region beyond the inner horizon, since in this paper we are interested in the asymptotic properties

in the two exteriors mentioned above. See also footnote 31.
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construct EF coordinates (see section A) to extend the spacetime to include the region

behind the horizon and a second exterior. We will, in fact, use five charts to cover the

extended geometry (see figure 1).

2.1 The eternal BTZ geometry

We will now briefly review some properties of the eternal BTZ geometry. The maximal ex-

tension of the eternal BTZ geometry, starting from (1.1) is described in detail in section A.

We will briefly reproduce some of the formulae relevant to the coordinate system (“EF1”)

describing the right exterior and the interior. The EF1 coordinates are obtained from the

coordinates of (1.1) by the transformations

z

z0
=

√
1

λ0

(
λ−

√
λ2 − λ20

)
(2.1)

x+ = v − 1

2
√
L
ln

(
λ− λ0
λ+ λ0

)
, x− = w − 1

2
√
L̄
ln

(
λ− λ0
λ+ λ0

)

The metric, in these coordinates, becomes

ds2 =
dλ2

4(λ+ λ0)2
+
L

4
dv2 +

L̄

4
dw2 − λ dvdw +

√
L

2(λ+ λ0)
dvdλ+

√
L

2(λ+ λ0)
dwdλ (2.2)

The event horizon λH , the inner horizon λi, and the singularity λs are at

λH = λ0 ≡
√
LL̄

2
, λi = −λ0, λs = −1

4
(L+ L̄) (2.3)

Note that for BTZ black holes without angular momentum L̄ = L and λi = λs. The

location of the event horizon corresponds to (1.3).

In order to regulate IR divergences coming from λ → ∞, we define a cut-off surface

ΣB at a constant large λ = λir; the metric (2.2) on ΣB turns out to be

λ = λir = 1/ǫ2 ⇒ ds2|ΣB
= −(1/ǫ2) dv dw(1 +O(ǫ2)) (2.4)

By the usual AdS/CFT correspondence the leading term defines the boundary metric (see

section C)

ds2bdry = −dv dw (2.5)

The subleading term in the metric corresponds to the normalizable metric fluctuation,

which gives the expectation value of the stress tensor; this is the holographic stress ten-

sor [23], and is given here by

8πG3Tvv(x+) =
L

4
, 8πG3Tww(x−) =

L̄

4
(2.6)

It is easy to see that we will get the same boundary metric and stress tensor from an

analysis of the coordinate chart EF4. It is also straightforward to derive similar results

for the left exterior (which represent a state with the same mass and angular momentum)

using EF2 and EF3.

– 5 –
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2.2 Solution generating diffeomorphisms (SGD)

We will now proceed to construct new solutions with arbitrary boundary data at the two

boundaries (represented by two arbitrary holographic stress tensors TR,µν(x) and TL,µν(x))

by applying the method of solution generating diffeomorphisms to the above geometry, as

explained in the introduction.

The solution generating diffeomorphisms can be described as follows. Suppose we start

with a certain metric gMN (x)dxMdxN ,10 in a certain coordinate chart UP containing a point

P. The new metric g̃MN , in this coordinate chart, is given in terms of a diffeomorphism

(active coordinate transformation) f : x̃M = x̃M (x), by the definition

g → g̃ ≡ f∗g : g̃MN (x̃) ≡ ∂xP

∂x̃M
∂xQ

∂x̃N
gPQ(x) (2.7)

In the above, f∗g is a standard mathematical notation for the pullback of the metric g under

the diffeomorphism f . For diffeomorphisms differing infinitesimally from the identity map:

x̃M = xM − ξM (x), we, of course, have the familiar relation

δgMN (x) = DMξN +DNξM (2.8)

Normally, a diffeomorphism is considered giving rise to a physically indistinguishable so-

lution; this, however, is not true when the diffeomorphism is non-trivial at infinity (this is

explained in more detail in section 2.5).

As explained in section A, we use five charts to cover the entire eternal BTZ geometry

(see figure 1). These charts are labelled as EF1, EF2, EF3, EF4 and K5. We use a nontrivial

diffeomorphism in each of EF1, EF2, EF3 and EF4, which overlap with the boundary and

the identity transformation in the Kruskal patch K5.

2.2.1 The metric in the coordinate chart EF1

The diffeomorphism in the EF1 coordinate chart is given by

λ =
λ̃

G′
+(ṽ)G

′
−(w̃)

, v = G+(ṽ), w = G−(w̃) (2.9)

The new metric g̃MN , written in terms of x̃M = (λ̃, ṽ, w̃), is

g̃MN (x̃)dx̃Mdx̃N ≡ ds2

=
1

B2

[
dλ̃2 +A2

+dṽ
2 +A2

−dw̃
2 + 2A+dṽdλ̃+ 2A−dw̃dλ̃

− λ̃

(
B2 + 2

(
A+

G′′
−(w̃)

G′
−(w̃)

+A−
G′′

+(ṽ)

G′
+(ṽ)

+ λ̃
G′′

+(ṽ)G
′′
−(w̃)

G′
+(ṽ)G

′
−(w̃)

))
dṽdw̃

]

(2.10)

where

A+ =
√
LG′

+(ṽ)(λ̃+ λ̃0)− λ̃
G′′

+(ṽ)

G′
+(ṽ)

,

A− =
√
L̄G′

−(w̃)(λ̃+ λ̃0)− λ̃
G′′

−(w̃)

G′
−(w̃)

, B = 2(λ̃+ λ̃0)

10Notation: xM = {λ, xµ}, xµ = {v, w}.
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EF(1+4)EF(2+3) Kruskal

Figure 2. This figure shows the IR cut-off (2.13) in the new geometries. The effect of the SGDs,

in the old (un-tilded) coordinates, is to deform the IR cut-off surfaces. The surface deformation on

the right exterior is given by the change from (2.4) to (2.15); there is a similar surface deformation

on the left exterior.

For infinitesimal transformations G±(x) ≡ x + ǫ±(x), this amounts to an asymptotically

nontrivial diffeomorphism ξM (see (2.8))11

ξv1 = ǫ+(v), ξ
w
1 = ǫ−(w), ξ

λ
1 = −λ

(
ǫ′+(v) + ǫ′−(w)

)
(2.11)

The behaviour of the metric (2.10) at a constant large λ surface is given by

ds2 = −λ̃ dṽdw̃ (1 +O(1/λ̃)) (2.12)

This, by following arguments similar to the previous case (see section 2.1), identifies the

IR cutoff surface as

λ̃ir = (1/ǫ2) (2.13)

and the boundary metric as

ds2bdry = −dṽdw̃ (2.14)

The subleading term in (2.12), as explored in section 4, gives the holographic stress tensor.

We will see there that the subleading term depends on the SGD functions G±; this feature

is what makes the SGD’s asymptotically nontrivial (see section 2.5 for a more detailed

discussion on this).

In terms of the old λ-coordinate, the surface (2.13) is

λ = 1/(ǫ2G′
+(ṽ)G

′
−(w̃)) (2.15)

Note that this surface is different from (2.4), and is nontrivially warped, as in figure 2. This

is another manifestation of the asymptotic non-triviality of the diffeomorphism (2.9), which

is responsible for nontrivial transformation of bulk quantities, such as geodesic lengths.

We note that the leading large λ̃ behaviour of (2.10) is that of AdS3

ds2 =
dλ̃2

4λ̃2
− λ̃ dṽ dw̃ + . . . (2.16)

As mentioned before, and will be explored in detail in section 4, the subleading terms,

represented by the ellipsis . . ., are nontrivially different from that of AdS3.

11The subscript in ξM1 refers to the chart EF1.
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2.2.2 The metric in the coordinate chart EF2

The diffeomorphism (SGD) used in the coordinate chart EF2 (see figure 1), which is inde-

pendent of the one above used in EF1, is given by

λ1 =
λ̃1

H ′
+(ũ)H

′
−(ω̃)

, u = H+(ũ), ω = H−(ṽ) (2.17)

which leads to the metric

ds2 =
1

B2

[
dλ̃21 +A2

+dũ
2 +A2

−dω̃
2 − 2A+dũdλ̃1 − 2A−dω̃dλ̃1

− λ̃1

(
B2 − 2

(
A+

H ′′
−(ω̃)

H ′
−(ω̃)

+A−
H ′′

+(ũ)

H ′
+(ũ)

− λ̃1
H ′′

+(ũ)H
′′
−(ω̃)

H ′
+(ũ)H

′
−(ω̃)

))
dω̃dũ

]
(2.18)

where

A+ =
√
LH ′

+(ũ)(λ̃1 + λ̃0) + λ̃1
H ′′

+(ũ)

H ′
+(ũ)

,

A− =
√
L̄H ′

−(ω̃)(λ̃1 + λ̃0) + λ̃1
H ′′

−(ω̃)

H ′
−(ω̃)

, B = 2(λ̃1 + λ̃0)

For infinitesimal transformations H±(x) = x + ε±(x), this implies a diffeomorphism

ξM2 where

ξu2 = −ε+(u), ξω2 = −ε−(ω), ξλ2 = −λ
(
ε′+(u) + ε′−(ω)

)
(2.19)

Note, once again, the asymptotic nontriviality of the above diffeomorphism.

2.3 The full metric

In a manner similar to the above, we apply the SGD characterized by G± on EF4 (which

shares the right exterior with EF1, see appendix A.1): and the SGD characterized by H±
on EF3 (which shares the left exterior with EF2):

EF4 : λ =
λ̃

G′
+(ũ1)G

′
−(ω̃1)

, u1 = G+(ũ1), ω1 = G−(ω̃1)

infinitesimally
(
ξλ4 , ξ

u1

4 , ξω1

4

)
=

(
−λ(ǫ′+(u1) + ǫ′−(ω1)), ǫ+(u1), ǫ−(ω1)

)

EF3 : λ =
λ̃1

H ′
+(ṽ1)H

′
−(w̃1)

, v1 = H+(ṽ1), w1 = H−(w̃1)

infinitesimally
(
ξλ4 , ξ

v1
4 , ξ

w1

4

)
=

(
−λ(ε′+(v1) + ε′−(w1)), ε+(v1), ε−(w1)

)

(2.20)

The infinitesimal transformations are similar to those in eqs. (2.11) and (2.19). As

mentioned above, we use the identity diffeomorphism of Kruskal patch K5 (with ξM5 = 0).

The expressions for the metric in various coordinate charts are given in (2.10), (2.18), (B.1),

(B.2) and (A.22).

– 8 –
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We will now show that the five different metrics in the five coordinate charts define

a single metric in the entire spacetime. To see this, note that although the SGD’s ap-

plied on the five charts are different, (equivalently, for infinitesimal transformations, the

diffeomorphisms ξMi in the five charts differ from each other), they satisfy the following

sufficient criteria:

(i) At both the right (and left) exterior boundary, the diffeomorphisms coincide. For

example, in case of the right exterior (see (A.18)), as λ → ∞, u1 → v, ω1 → w.

Hence ũ1 = G−1
+ (u1) → G−1

+ (v) = ṽ. In other words, for infinitesimal transformations

ξM4 (P ) → ξM1 (P ) for a given point P with λ→ ∞. This implies that the metric (2.10)

coincides at the right boundary with the similar metric(B.1) obtained by applying

the G± transformations on the coordinate chart EF4. Similarly, the metric (2.18)

obtained by the H± transformations in EF2 and the similar metric (B.2) obtained

by the H± transformations in EF3 coincide at the left exterior boundary.

(ii) Away from the boundary, the metrics obtained in the various EF coordinate charts

differ from each other only by trivial diffeomorphisms which become the identity

transformation at infinity. Since the physical content of each of these metrics is

represented only by the boundary data, the above point (i) ensures that all the

different metrics represent the same single spacetime metric in different charts (see

figure 3).

(iii) It is clear that the SGDs lead to a smooth metric in each chart, providedG±(x), H±(x)

are differentiable and invertible functions. In the rest of the paper, we will only

consider such functions. It can be verified that such a class of functions is sufficiently

general to generate (through transformations such as (4.3)) any pair of physically

sensible holographic stress tensors at both boundaries.

2.3.1 Analogy with the Dirac monopole

It is important to note that our new solutions can only be specified in terms of a different

metric in different coordinate charts which are equivalent to each other. This is analogous

to case of the Dirac monopole: the gauge field Aµ for a static U(1) magnetic monopole of

charge qm at the origin needs to be specified separately on two separate coordinate charts:

F = qm sin θ dθ dφ : AN = qm(1− cos θ) dφ, AS = qm(−1− cos θ) dφ (2.21)

Here R
3 − {0} is viewed as R × S2 where S2 is described by two coordinate charts NN

and NS (such as obtained by a stereographic projection on to the plane) which include

all points of S2 minus the south and north pole respectively. Aθ
N vanishes (and is hence

regular) at the north pole θ = 0, but develops a string singularity at the south pole θ = π

(for each r > 0). Similarly, AS is regular at the south pole, but has a string singularity

at the north pole. The important point to note is that in spite of appearances, AN and

AS describe the same gauge field in the region of overlap NN ∩ NS . This is because in

– 9 –
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Figure 3. A schematic illustration of metrics in our paper related by trivial and nontrivial dif-

feomorphisms (see the definition 2.5.1). The metrics (2.2), (A.11), (A.14) and (A.17), represented

by the blue lines, define the eternal BTZ geometry; they are all related by trivial diffeomorphisms,

which either do not extend to the boundaries or when they do, they become identity asymptotically.

The metrics (2.10), (2.18), (B.1) and (B.2), represented by the green lines, define our new solution

characterized by the functions G±, H±. These are also all related by trivial diffeomorphisms, which

satisfy the same criteria as above. The two sets however represent physically different metrics since

they are related to each other by nontrivial diffeomorphisms; for instance, (2.2) and (2.10) are

related by a diffeomorphism, schematically represented by their separation, which does not vanish

(become identity) asymptotically.

this region, AN = AS + dχ where χ = 2qmdφ represents a pure gauge transformation for

appropriately quantized qm (Dirac quantization condition).

In the present case the metric (2.10) written in EF1, although non-singular on the

future horizon, is singular on the past horizon for general G±. In order to describe the

metric in a neighbourhood of the past horizon, we must switch to the metric in EF4.

Similarly, in order to describe the diffeomorphism at the bifurcation surface, we must use

the metric (A.22) in the K5 coordinate chart.

2.3.2 Summary of this subsection:

the metrics (2.10), (2.18), (B.1), (B.2) and (A.22), valid in the coordinate charts EF1,

EF2, EF3, EF4 and K5 respectively, define a spacetime with a regular metric. The metrics

are asymptotically AdS3 at both the right and left boundaries; the subleading terms in

the metric are determined by the solution generating diffeomorphisms G±, H± and can be

chosen to fit boundary data specified by arbitrary holographic stress tensors. A schematic

representation of our solution is presented in figure 3.

2.4 Horizon

In section 2.2 we viewed the SGDs as a coordinate transformation. Alternatively, however,

we can also view the diffeomorphism as an active movement of points: xM → x̃M =

– 10 –
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Figure 4. The figure on the right shows the location of the horizon on the right in the λ̃, ṽ, w̃

coordinates. The figure on the left shows the location of the horizon on the left in the λ̃1, ũ, ω̃

coordinates. These are described by (2.22). These surfaces are diffeomorphic to the undeformed

horizon (2.3) depicted in figure 2. Although the horizon has an undulating shape in our coordi-

nate system, the expansion parameter, measured by the divergence of the area-form, vanishes (see

eq. (7.11)).

xM + ξM . In this viewpoint, the future horizon λ = λH = λ0 (see (2.3)) on the right

moves to

λ̃H = G′
+(ṽ) G

′
−(w̃)λ0, λ̃1,H = H ′

+(ũ) H
′
−(ω̃)λ0 (2.22)

Similar statements can be made in the other coordinate charts. The horizons repre-

sented this way are smooth but undulating (see figure 4).

The geometry of warped horizons in [27, 28] was used to yield a holographic prescription

for computing local entropy current of a fluid. In section 7 we use a similar technology to

compute a holographic entropy in our case.

2.5 On the nontriviality of solution generating diffeomorphisms

It is natural to wonder how a metric such as (2.10) provides a new solution since it is

obtained by a diffeomorphism from (2.2); however, the fact that the diffeomorphism (2.9)

is asymptotically nontrivial makes the new solution physically distinct. Thus, in (2.9) λ̃

remains different from λ in the asymptotic region. Indeed, as we will see, the first subleading

term in the metric (2.10) carries nontrivial data about a holographic stress tensor (4.3) on

the right boundary.

Asymptotically AdS3 diffeomorphisms were first discussed by Brown and Henneaux [21]

who showed that such transformation led to an additional surface contribution to conserved

charges of the system. These observations were preceded by a general discussion of such

surface charges in the context of gauge theories and gravity in [18–20]. These authors iden-

tified asymptotically non-vanishing pure gauge transformations as global charge rotations.

In the current AdS/CFT context, the surface charges are encapsulated by the holo-

graphic stress tensors on the two boundaries. As we will see shortly, they change nontriv-

ially under the solution generating diffeomorphisms (SGD’s). In fact, the SGD’s reduce

to conformal transformations on the boundary. As a result, the ‘global charge rotations’

mentioned above correspond to a conformal transformation of the stress tensor. The im-

portant point is that starting from a given constant stress tensor on each boundary, the two

– 11 –
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independent SGD’s can generate two independent and completely general stress tensors by

this method.

We should note that the diffeomorphisms define a new theory in which the appropriate

choice of the IR cutoff surface is (2.13). In this description, the horizon becomes an

undulating surface as in figure 4. An equivalent (‘active’) viewpoint is to describe the

new geometry in terms of the old coordinates (2.2), but to change the IR-cutoff surface

from (2.4) to (2.13). In either case, the holographic stress tensor changes.

We conclude this section with the following definition of a nontrivial diffeomorphism,

which has been implicit in much of the above discussion.

2.5.1 Definition

A local diffeomorphism which does not extend to either boundary (left or right), or a

diffeomorphism which extends to a boundary but asymptotically approaches the identity

diffeomorphism there, is called a ‘trivial’ diffeomorphism. Contrarily, a diffeomorphism

which extends to a boundary where it does not approach the identity diffeomorphism, is

called ‘nontrivial’. Quantitatively, a nontrivial diffeomorphism (f) is one under which the

holographic stress tensor computed from the existing metric g at the boundary is different

from that computed from the pulled back metric f∗g.

3 The dual Conformal Field Theory

As we saw above, the SGD’s reduce to conformal transformations at the boundary. We

will construct the CFT-dual to the new solutions using the above idea.

Note that the eternal BTZ black hole geometry, described by (2.2) and (A.11), corre-

sponds to the following thermofield double state [13–15, 26]

|ψ0〉 = Z(β+, β−)
−1/2

∑

n

exp[−β+E+,n/2− β−E−,n/2]|n〉|n〉 (3.1)

The states |n〉 ∈ H denote all simultaneous eigenstates of H± = (H±J)/2 with eigenvalues

E±,n. |ψ0〉 here is a pure state in H ⊗ H obtained by the ‘purification’ of the thermal

state (3.2).12

Z(β+, β−) = Trρβ+,β− with ρβ+,β− = exp[−β+H+ − β−H−] = exp[−β(H +ΩJ)]

(3.2)

represents the grand canonical ensemble in H with inverse temperature β and angular

velocity Ω (which can be viewed as the thermodynamic conjugate to the angular momentum

J). Also β± = β(1± Ω).13

Note that |ψ0〉 is a pure state inH⊗H , and is a ‘purification’ of the thermal state (3.2).

12For definiteness, we will sometimes call the two Hilbert spaces HL and HR, where L,R represent ‘left’

and ‘right’, corresponding to the two exterior boundaries of the eternal BTZ. Indeed, L,R also have an

alternative meaning. The left/right boundary of the eternal BTZ geometry maps to the left/right Rindler

wedge of the boundary of Poincare coordinates, respectively.
13The thermal state ρβ+,β

−

(see (3.2)) implies a field theory geometry where the light cone directions

have periods β±.
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The non-spinning BTZ: the CFT dual for the more familiar case of non-spinning

eternal BTZ black hole (Ω = 0 = J) is the standard thermofield double:

|ψ0,0〉 = Z(β)−1/2
∑

n

exp[−βEn/2]|n〉|n〉 (3.3)

where |n〉 now denotes all eigenstates of H.14

CFT duals of our solutions: following the arguments above (3.1), we claim that the

CFT-duals to the new solutions described in section 2.3 are described by the following pure

states in H⊗H:

|ψ〉 = ULUR|ψ0〉 = Z(β+, β−)
−1/2

∑

n

exp[−β+E+,n/2− β−E−,n/2]UL|n〉UR|n〉 (3.4)

where UR is the unitary transformation which implements the conformal transformations

on the CFT on the right boundary (characterized by G±), and UL is the unitary transfor-

mation which implements the conformal transformations on the CFT on the left boundary

(characterized by H±). See appendix E for an explicit construction of a unitary transfor-

mations UR.

In the following sections, we will provide many checks for this proposal. However, first

we shall discuss how to compute various correlators in the above state (3.4).

3.1 Correlators

Let us first consider correlators in the standard thermofield double state (3.1). It is known

that correlators of one-sided CFT observables, say OR, satisfy an AdS/CFT relation of

the form15

〈ψ0|OR(P1)OR(P2) . . . OR(Pn)|ψ0〉 ≡ Tr
(
ρβ+,β−OR(P1)OR(P2) . . . OR(Pn)

)

= Gbulk(P1,P2, . . .Pn) (3.5)

where the bulk correlator Gbulk is computed from the (right exterior region of) a dual black

hole geometry with temperature T = 1/β and angular velocity Ω. Two-sided correlators,

similarly, satisfy a relation like

〈ψ0|OR(P1)OR(P2) . . . OR(Pm)OL(P
′
1) . . . OL(P

′
n)|ψ0〉 = Gbulk(P1,P2, . . .Pm;P′

1, . . . ,P
′
n)

(3.6)

where the bulk correlator on the r.h.s. is computed from the two-sided geometry of the

eternal BTZ black hole [13–15, 26], represented in this paper by (2.2) and (A.11). The

bold-faced label P above represents an image of the field theory point P on a cut-off

surface in the bulk under the usual AdS/CFT map. E.g. in the coordinates of (2.2), the

map is given by

P 7→ P ≡ (λ = λir = 1/ǫ2, P ) (3.7)

where ǫ is the UV cut-off in the CFT, cf. (2.4)). There is a similar map for the left boundary.

14An entanglement entropy for this state was calculated in [14] and matched with a bulk geodesic calcu-

lation. This was generalized to the spinning eternal BTZ black hole in [15]
15We will mostly use unprimed labels, P1, P2, . . . for points on the spacetime of the ‘right’ CFT, and

primed labels, P ′
1, P

′
2, . . . for the space of the ‘left’ CFT.

– 13 –



J
H
E
P
0
1
(
2
0
1
5
)
0
3
6

In particular, the holographic correspondence for the two point functions of scalar

operators can be written simply as [29]:

〈ψ0|OR(P )OR(Q)|ψ0〉 = Tr(ρβ+,β−OR(P )OR(Q)) = exp[−2hL(P,Q)]

〈ψ0|OR(P )OL(Q
′)|ψ0〉 = exp[−2hL(P,Q′)] (3.8)

where L(P,Q) is the length of the extremal geodesic connecting P and Q (similarly

with L(P,Q′)).

It is easy to see that correlators in the new, transformed, state |ψ〉 (3.4) can be under-

stood as correlators of transformed operators in the old state |ψ0〉, i.e.

〈ψ|OR(P1) . . . OR(Pm)OL(P
′
1) . . . OL(P

′
n)|ψ〉

= 〈ψ0|ÕR(P1) . . . ÕR(Pm)ÕL(P
′
1) . . . ÕL(P

′
n)|ψ0〉 (3.9)

where

ÕR(P ) ≡ U †
ROR(P )UR, ÕL(P

′) ≡ U †
LOL(P

′)UL (3.10)

For a primary field OR with conformal dimensions (h, h̄), the conformally transformed

operator satisfies the relation

ÕR(ṽ, w̃) = OR(v, w)

(
dv

dṽ

)h(dw
dw̃

)h̄

(3.11)

3.2 Strategy for checking AdS/CFT

To check the claim that the states (3.4) are CFT-duals to the new bulk geometries found

in section 2.3, we need to show a relation of the form (cf. (3.6))

〈ψ0|ÕR(P1) . . . ÕR(Pm)ÕL(P
′
1) . . . ÕL(P

′
n)|ψ0〉 = G̃bulk(P̃1, P̃2, . . . P̃m; P̃′

1, . . . , P̃
′
n) (3.12)

where the r.h.s. is computed in the new geometries. Here P̃ represents the image of the

CFT point P , under AdS/CFT, on the cut-off surface (2.13) in the new geometry. In the

language of (2.10), the map is

P 7→ P̃ = (λ̃ = λ̃ir = 1/ǫ2, P ) (3.13)

Two-point correlators: in the particular case of two-point functions

〈ψ0|ÕR(P )ÕR(Q)|ψ0〉 = Tr(ρβ+,β−ÕR(P )ÕR(Q)) = exp[−2hL̃(P̃, Q̃)]

〈ψ0|ÕR(P )ÕL(Q
′)|ψ0〉 = exp[−2hL̃(P̃, Q̃′)] (3.14)

where L̃(P̃, Q̃) is the length of the extremal geodesic connecting P and Q in the new

geometry (similarly with L̃(P̃, Q̃′)). The discerning reader may justifiably wonder how a

geodesic length in the new geometry can be different from that in the original, eternal BTZ

black hole geometry, since the former is obtained by a diffeomorphism from the latter; the

point is that the bulk points P̃, given by (3.13) are not the same as the bulk points P given

– 14 –
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by (3.7). For example, a geodesic with endpoints at a fixed IR cut-off λ̃ = 1/ǫ2 (both on

the right exterior) corresponds, in the eternal BTZ black hole, to a geodesic with two end-

points at (2.15) λ = 1/(ǫ2G′
+(ṽ)G

′
−(w̃)). As we will see below, it is this shift which ensures

the equality in (3.14). This is one more instance of how our geometries are nontrivially

different from the original BTZ solution although they are obtained by diffeomorphisms

(see section 2.5 for more detail).

4 Holographic stress tensor

In this section we will discuss our first observable O: the stress tensor. We will first

consider the stress tensor of the boundary theory on the right. The generalization to the

stress tensor on the left is trivial. The equation (3.12) now implies that we should demand

the following equality

〈ψ|Tvv(P )|ψ〉 ≡ Tr
(
ρβ+,β−U

†
RTvv(P )UR

)
= T̃bulk,ṽṽ(P̃) (4.1)

and a similar equation for the right-moving stress tensor Tww(w).

Bulk. The r.h.s. of this equation is simply the holographic stress tensor, computed in the

new geometry (2.10). We use the definition of holographic stress tensor in [23, 24]:16

8πG3Tµν = lim
ǫ→0

(Kµν −Khµν − hµν) (4.2)

where hµν is the induced metric on the cut-off surface Σ : λ̃ = λ̃ir = 1/ǫ2, chosen in

accordance with (3.13) which is the natural one in the new geometry (note that it is

different from the cut-off surface implied by (3.7)). Kµν andK are respectively the extrinsic

curvature and its trace on Σ. It is straightforward to do the explicit calculation; we find that

8πG3Tṽṽ =
L

4
G′

+(ṽ)
2 +

3G′′
+(ṽ)

2 − 2G′
+(ṽ)G

′′′
+(ṽ)

4G′
+(ṽ)

2
,

8πG3Tw̃w̃ =
L̄

4
G′

−(w̃)
2 +

3G′′
−(w̃)

2 − 2G′
−(w̃)G

′′′
−(w̃)

4G′
−(w̃)

2
(4.3)

This clearly looks like a conformal transformation of the original stress tensor (2.6). We will

explicitly verify below that it agrees with the CFT calculation. The generalization to Tww

and to the stress tensors of the second CFT is straightforward.This clearly has the form

of a conformal transformation of the original stress tensor (2.6). We will explicitly verify

below in the CFT that it indeed is precisely a conformal transformation, as demanded

by (4.1). The generalization of (4.3) to the stress tensors Tũũ, Tω̃ω̃ of the second CFT

is straightforward.

In this paper, we will sometimes use the notation TR, T̄R for Tṽṽ, Tw̃,w̃, and TL, T̄L,
17 for

Tũũ, Tω̃ω̃ respectively. It is clear that by appropriately choosing the functions G± and H±,

any set of boundary stress tensors TR,L, T̄R,L can be generated. This is how our solutions

described in section 2.3 solve the boundary value problem mentioned in the Introduction.

16We drop the subscript bulk from the bulk stress tensor, as it should be obvious from the context whether

we are talking about the CFT stress tensor or the holographic stress tensor.
17TR, T̄R represent the left-moving and right-moving stress tensors on the Right CFT; similarly for TL, T̄L.
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CFT. The unitary transformation in the l.h.s. of (4.1), implements, by definition,

the following conformal transformation (see appendix E for more details) on the

quantum operator

U †
RTvv(P )UR =

(
∂ṽ

∂v

)−2[
Tṽṽ(ṽ)−

c

12
S(v, ṽ)

]
(4.4)

From (2.9), the relevant conformal transformation here is v = G+(ṽ). Using this, the

definition (E.2) of the Schwarzian derivative S(v, ṽ), and the identification [21]

G3 = 3/(2c), (4.5)

we find that (4.4) exactly agrees with (4.3).

This proves the AdS-CFT equality (4.1) for the stress tensor.

5 General two-point correlators

In this section we will discuss general two-point correlators, both from the bulk and CFT

viewpoints following the steps outlined in section 3.1.

5.1 Boundary-to-boundary geodesics

As mentioned in (3.8), the holographic calculation of a two-point correlator reduces to com-

puting the geodesic length between the corresponding boundary points. We will first cal-

culate correlators in the thermofield double state (3.1), which involves computing geodesics

in the eternal BTZ geometry (2.2).

In the eternal BTZ geometry:

• RL geodesic: let us consider a geodesic running from a point P(1/ǫ2R, v, w) on the

right boundary to a point Q′ = (1/ǫ2L, u, ω) on the left boundary.18 As shown in

section A.3 (see [14]) both the right exterior (⊂ EF1) and the left exterior (⊂ EF2)

can be mapped to a single coordinate chart in Poincare coordinates. Let the Poincare

coordinates for P and Q′, be (X+R, X−R, ζR) and (X+L, X−L, ζL) respectively. By

using the coordinate transformations given in (A.33) and (A.34), we find, upto the

first subleading order in ǫR and ǫL,

X+R = e
√
Lv, X−R = −e−

√
Lw + Lǫ2Re

−
√
Lw, (5.1)

ζ2R = Lǫ2R e
√
L(v−w)

X+L = −e
√
Lu + Lǫ2Le

√
Lu, X−L = e−

√
Lω,

ζ2L = Lǫ2L e
√
L(u−ω)

18For the calculation at hand we need to put ǫL = ǫR = ǫ; however, we keep the two cutoffs independent

for later convenience.
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with L = L̄.19 The geodesic in Poincare coordinates is given by

X+ = A tanh τ + C, X− = B tanh τ +D, ζ =

√
−AB

cosh τ

where τ is the affine parameter, which takes the values τR and τL at P and Q′ re-

spectively. The constants A,B,C,D, τL and τR are fixed by the endpoint coordinates

given above. In the limit ǫR, ǫL → 0, we obtain

τR = log


e

−(
√
Lv+

√
Lω)/2

√
2

√
(e

√
Lv + e

√
Lu)(e

√
Lw + e

√
Lω)

λ0ǫ2R




τL = − log


e

−
√
L(u+w)/2

√
2

√
(e

√
Lv + e

√
Lu)(e

√
Lw + e

√
Lω)

λ0ǫ2L




where λ0 = L/2 (see (2.3)). The geodesic length is now simply given by the affine

parameter length

L(P,Q′) = τR − τL = log

[
4 cosh[

√
L(v − u)/2] cosh[

√
L(w − ω)/2]

LǫRǫL

]
(5.2)

For comparison with CFT correlators in the thermofield double, we will put, in the

above expression, ǫL = ǫR = ǫ, where ǫ is the (real space) UV cut-off in the CFT.

• RR geodesic: if we take the two boundary points on the same exterior region, say

on the right, P1(1/ǫ
2
1, v1, w1) and P2(1/ǫ

2
2, v2, w2), then the corresponding Poincare

coordinates are (using (A.33))

X+1 = e
√
Lv1 , X−1 = −e−

√
Lw1 + Lǫ21e

−
√
Lw1 , ζ21 = Lǫ21 e

√
L(v1−w1) (5.3)

X+2 = e
√
Lv2 , X−2 = −e−

√
Lw2 + Lǫ22e

−
√
Lw2 , ζ22 = Lǫ22 e

√
L(v2−w2)

Following steps similar to above, we have, in the ǫ1, ǫ2 → 0 limit,

τ1 = log

[
e−(v1+w2)/2

√
2

√
(ev1 − ev2)(−ew1 + ew2)

λ0ǫ21

]

τ2 = − log

[
e−(v1+w1)/2

√
2

√
(−ev1 + ev2)(ew1 − ew2)

λ0ǫ22

]

The geodesic length is then

L(P1,P2) = τ+1 − τ+2 = log

[
4 sinh[(v1 − v2)/2] sinh[(w1 − w2)/2]

Lǫ1ǫ2

]
(5.4)

For comparison with CFT, we will put ǫ1 = ǫ2 = ǫ.

19For simplicity, we present the calculation here for L = L̄; the generalization to the spinning BTZ is

straightforward.
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In the new geometries. As explained in section 2, the IR boundary in the new solutions,

obtained by the SGDs, is given by the equation (2.13) or equivalently by (2.15), and

analogous equations on the left. This is encapsulated by the CFT-to-bulk map (3.13). In

case of the RL geodesic, the CFT endpoints (P,Q′) now translate to new boundary points

(P̃, Q̃′) with the following new values of the old (λ, λ1) coordinates:

λ ≡ 1

ǫ2R
=

1

ǫ2G′
+(ṽ)G

′
−(w̃)

, λ1 ≡
1

ǫ2L
=

1

ǫ2H ′
+(ũ)H

′
−(ω̃)

(5.5)

which just has the effect of conformally transforming the boundary coordinates// ǫR =

ǫ → ǫR = ǫ
√
G′

+(ṽ)G
′
−(w̃), ǫL = ǫ → ǫL = ǫ

√
H ′

+(ũ)H
′
−(ω̃). Using these new values of

ǫL,R, we get

L(P̃, Q̃′) = log

[
4 cosh[

√
L(G+(ṽ)−H+(ũ))/2]√
Lǫ

√
G′

+(ṽ)H
′
+(ũ)

cosh[
√
L(G−(w̃)−H−(ω̃))/2]√
Lǫ

√
G′

−(w̃)H
′
−(ω̃)

]
(5.6)

Similarly,

L(P̃1, P̃2) = log

[
4 sinh[

√
L(G+(ṽ1)−G+(ṽ2))/2]√
Lǫ

√
G′

+(ṽ1)G
′
+(ṽ2)

sinh[
√
L(G−(w̃1)−G−(w̃2))/2]√
Lǫ

√
G′

−(w̃1)G′
−(w̃2)

]

(5.7)

5.2 General two-point correlators from CFT

In the thermofield double state:

• RL correlator: for the eternal BTZ string, the coordinate transformations from the

EF to Poincare (see appendix A.3) reduce, at the boundary, to a conformal trans-

formation from the Rindler to Minkowski coordinates, so that the boundary of the

right (left) exterior maps to the right (left) Rindler wedge [14]. It is expedient to

compute the CFT correlations first in the Minkowski plane, and then conformally

transform the result to Rindler coordinates. Using this method of [14], we get the

following result

〈ψ0|O(X+R, X−R)O(X+L, X−L)|ψ0〉

=
(
√
Le

√
Lv)h(

√
Le−

√
Lw)h̄(−

√
Le

√
Lu)h(−

√
Le−

√
Lω)h̄

( e
√
Lv+e

√
Lu

ǫ )2h(−e−
√
Lw−e−

√
Lω

ǫ )2h̄

=

(
4 cosh [

√
L(v − u)/2] cosh [

√
L(w − ω)/2]

Lǫ2

)−2h

where the operator O is assumed to have dimensions (h, h̄) and we have used a real

space field theory cut-off ǫ. We have related the temperature of the CFT to L(= L̄)

by the equation
√
L = 2π/β.

It is easy to see that this correlator satisfies the relation (3.8)

〈ψ0|O(X+R, X−R)O(X+L, X−L)|ψ0〉 = e−2hL(P,Q) (5.8)

where in the expression on the right hand side for the geodesic length (5.2), we use

ǫR = ǫL = ǫ as explained before.
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• RR correlator: by following steps similar to the above, the two-point correlator be-

tween the points (5.3) is given by

〈ψ0|O(X+1, X−1)O(X+2, X−2)|ψ0〉

=
(
√
Le

√
Lv1)h(

√
Le−

√
Lw1)h̄(

√
Le

√
Lv2)h(

√
Le−

√
Lw2)h̄

( (e
√
Lv1−e

√
Lv2

ǫ )2h(−e−
√
Lw1+e−

√
Lw2

ǫ )2h̄

=

(
4 sinh [

√
L(v1 − v2)/2] sinh [

√
L(w1 − w2)/2]

Lǫ2

)−2h

It follows, therefore, that

〈ψ0|O(X+1, X−1)O(X+2, X−2)|ψ0〉 = e−2hL(P1,P2) (5.9)

where, again, the geodesic length on the right hand side is read off from (5.6) with

ǫ1 = ǫ2 = ǫ.

In the new states. As explained in (3.9), correlators in the state |ψ〉 (3.4) can be

computed by using a conformal transformation (3.11) of the operators. The new correlator

is, therefore, found from the old one (5.8) by a conformal transformation of the boundary

coordinates and an inclusion of the Jacobian factors. The latter has, in fact, the effect

of the replacement ǫ2 → ǫ2
√
G′

+(ṽ)G
′
−(w̃)H

′
+(ũ)H

′
−(ω̃). With these ingredients, it is

straightforward to verify that (3.14) is satisfied. Similar arguments apply to RR and

LL correlators.

6 Entanglement entropy

We define an entangling region A = AR ∪ AL, where AR is a half line (v − w)/2 > xR on

the right boundary at ‘time’ (v + w)/2 = tR and AL is a half line (u − ω)/2 > xL of the

left boundary at ‘time’ (u + ω)/2 = tL. The boundary of the region A consists of a point

P (v∂A, w∂A) on the right and a point Q′(u∂A, ω∂A) on the left, with coordinates

P : v∂A = tR + xR, w∂A = tR − xR (6.1)

Q′ : u∂A = tL + xL, ω∂A = tL − xL

Bulk calculations:

• In the BTZ geometry: we calculate the entanglement entropy SA of the region A

using the holographic entanglement formula of [25, 26]. The HEE is given in terms

of the geodesic length L(P,Q′). The geodesic length, as calculated in (5.2), is

L(P,Q′) = log

[
4 cosh[

√
L(v∂A − u∂A)/2] cosh[

√
L(w∂A − ω∂A)/2]

Mǫ2

]

(6.2)
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The HEE is then given by SA = L(P,Q′)/4G3. Using (4.5), we get

SA =
c

6
log

[
4 cosh[

√
L((tR+xR)−(tL+xL))/2] cosh[

√
L((tR−xR)−(tL−xL))/2]

Mǫ2

]

(6.3)

Note that for xR = xL = 0 and t = tR = −tL (which correspond to a non-trivial time

evolution in the geometry) the HEE (6.3) reduces to

SA =
c

3
log

[
cosh

2πt

β

]
+
c

3
log

[
β/π

ǫ

]
(6.4)

which reproduces the result for the HEE in [14].20

• In the new geometries: the HEE corresponding to the conformally transformed state

(3.4) is given by the length L(P̃, Q̃′) connecting the end-points P and Q′ in the

new geometries described in section 2.3. Working on lines similar to the derivation

of (5.4), the HEE is given by

SA =
c

6
log

[
4 cosh[

√
L(G+(t̃R + x̃R)−H+(t̃L + x̃L))/2]

√
Lǫ

√
G′

+(t̃R + x̃R)H ′
+(t̃L + x̃L)

cosh[
√
L(G−(t̃R − x̃R)−H−(t̃L − x̃L))/2]

√
Lǫ

√
G′

−(t̃R − x̃R)H ′
−(t̃L − x̃L)

]
(6.5)

CFT calculations:

• In the thermofield double state: the technique of calculating the entanglement entropy

in the thermofield double state is well-known [30]. The Renyi entanglement entropy

S
(n)
A of the region A (6.1) is given by the trace of the nth power of the reduced density

matrix ρnA. The latter can be shown to be a Euclidean path integral on an n-sheeted

Riemann cylinder. This can then be calculated in terms of the two point correlator,

on a complex plane, of certain twist fields O, with conformal dimensions

h =
c

24
(n− 1/n), h̄ =

c

24
(n− 1/n)

(6.6)

inserted at the end-points (P,Q′) of A. The two-point correlator is given by a calcu-

lation similar to that in the previous section. Thus,

S
(n)
A = 〈OR(v∂A, w∂A)OL(u∂A, ω∂A)〉

=
(
√
L)2h+2h̄

(4 cosh[
√
L((tR+xR)−(tL+xL))/2]/ǫ)

2h(cosh[
√
L((tR−xR)−(tL−xL))/2]/ǫ)2h̄

20The UV cutoff in [14] is half of the cutoff, ǫ used here.
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The entanglement entropy SA = −∂nS(n)
A |n=1 is

SA =
c

6
log

[
4 cosh[

√
L((tR+xR)−(tL+xL))/2] cosh[

√
L((tR−xR)−(tL−xL))/2]

Lǫ2

]

(6.7)

This proves that the CFT entanglement entropy and holographic entanglement en-

tropy (6.3) are equal.

• In the new states: the EE of the region A, computed in the new state (3.4), is given

in terms of the conformally transformed two-point function described in (3.9). The

conformally transformed points are given by

v∂A = G+(ṽ∂A) = G+(t̃R + x̃R), w = G−(w̃∂A) = G−(t̃R − x̃R)

u∂A = H+(ũ∂A) = H+(t̃L + x̃L), ω = H−(ω̃∂A) = H−(t̃L − x̃L)

It follows that the entanglement entropy is

SA,CFT =
c

6
log

[
4 cosh[

√
L(G+(t̃R + x̃R)−H+(t̃L + x̃L))/2]

ǫ
√
L
√
G′

+(t̃R + x̃R)H ′
+(t̃L + x̃L)

cosh[
√
L(G−(t̃R − x̃R)−H−(t̃L − x̃L))/2]

ǫ
√
L
√
G′

−(t̃R − x̃R)H ′
−(t̃L − x̃L)

]
(6.8)

which matches with the HEE (6.5).

6.1 Dynamical entanglement entropy in a specific new geometry

We now compute the entanglement entropy in an illustrative geometry specified by a par-

ticular choice of the functions G± and H±. In this example, we take

xR = 0, tR = t, xL = 0, tL = −t

For simplicity, we consider G± and H± which satisfy

G+(x) ≡ G−(x) ≡ G(x), H+(x) ≡ H−(x) ≡ H(x)

With the transformations given above, we have

x̃R = 0, ṽ∂A = w̃∂A = t̃R = t̃, x̃L = 0, ũ∂A = ω̃∂A = t̃L = −t̃ (6.9)

The expression for the HEE (6.5) then reduces to

SA =
c

3
log


2 cosh[

√
L(G(t̃) +H1(t̃))/2]

ǫ
√
L
√
G′(t̃)H ′

1(t̃)


 (6.10)

where we have defined the notation −H(−t̃) = H1(t̃).
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Figure 5. Time evolution of HEE. The red-line represents the linear growth of HEE for a region

consisting of spatial half-lines of both sides of a constant 2-sided BTZ geometry. The blue-line

represents the HEE growth of the region consisting of half-lines of both sides of the SGD transformed

geometry, for G(t̃) = t̃+ 1

6
cos(3t̃) and H1(t̃) = t̃+ 3

5
sin(t̃). The undulating curve can be explained

in terms of the quasiparticle picture of [31]; the entanglement entropy departs from its usual linear

behaviour as the quasiparticle pairs locally go out and back in to the entangling region as the region

is subjected to a conformal transformation.

7 Entropy

As discussed in previous sections, our solutions of section 2.3 are characterized by a smooth,

albeit undulating, horizon (see figure 4). This allows us, following [27], to define a holo-

graphic entropy current. We will first review the equilibrium situation (static black string),

and then describe the calculation for the general, time-dependent solution. We will include

a comparison with CFT calculations in both cases.

7.1 Equilibrium

Bulk calculation: in case L = L̄ = constant, our solutions represent BTZ black

strings (2.2) with a horizon at λ = λ0. The horizon H is a two-dimensional null surface,

described by the metric

ds2|H ≡ Hµνdx
µdxν =

(√
Ldv/2−

√
L̄dw/2

)2
(7.1)

Since the normal to H at any point, given by nM = ∂Mλ(M = {λ, v, w}), also lies on H,

H possesses a natural coordinate system (τ, α) where α labels the one-parameter family of

null geodesics, and τ measures the affine distance along the geodesics. In such a coordinate

system, we get, by construction

ds2|H = gdα2 (7.2)
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The area 1-form and the entropy current on the horizon are defined by the equations [27],21

a ≡ 4G3ǫµνJ
µ
Sdx

ν =
√
gdα, (7.3)

By inspection, from (7.1) and (7.2), we find the following expressions for the area-form and

the entropy current

a =
√
Ldv/2−

√
L̄dw/2

Jv
s =

1

8G3

√
L̄, Jw

S =
1

8G3

√
L (7.4)

The holographic entropy current on the boundary B is obtained by using a map f : B → H
and pulling back the area-form (or alternatively the entropy current JS,µ) from the horizon

to the boundary. It turns out22 that the natural pull back retains the form of the area-form

or entropy current, namely the expressions (7.4) still hold at the boundary.

To find the entropy density, we define the boundary coordinates t = (v + w)/2, x =

(v−w)/2 (see section 6), (so that (2.5) has the canonical form −dt2 + dx2). With this the

entropy density becomes

s ≡ JT
S =

1

8G3

(√
L+

√
L̄
)

(7.5)

CFT calculation: the entropy density from the Cardy formula is23

s =
√
cπTvv/3 +

√
cπTww/3 (7.6)

Using the identification (4.5) and (2.6), we can easily see that the two expressions (7.5)

and (7.6) exactly match.

7.2 New metrics: non-equilibrium entropy

Bulk calculation: we will now follow a similar procedure as above, for the general

solution in section 2.3. We find that (in coordinate chart EF1)

ds2|H =
1

4
dα2 =

1

4
(
√
LG′

+(ṽ)dṽ −
√
L̄G′

−(w̃)dw̃)
2 (7.7)

leading to the following area one form on the horizon

a =
1

2

√
LG′

+(ṽ)dṽ −
1

2

√
L̄G′

−(w̃)dw̃ (7.8)

Note that this could alternatively be obtained from the area form in (7.4) by a diffeomor-

phism. The resulting expression for the entropy current, following the steps above, is

J̃ ṽ
s =

1

8G3

√
L̄G′

−(w̃), J̃
w̃
S =

1

8G3

√
LG′

+(ṽ) (7.9)

21Our convention for ǫµν is ǫvw = −1.
22The map f is defined by shooting ‘radial’ null geodesics inwards from the boundary, and is found to be

of the form f : (λir, v, w) 7→ (λir, v + C1, w + C2).
23Recall that both Tvv, Tww are constant in this case. The more familiar form of (7.6), for a circular

spatial direction of length 2π, is obtained by putting S = 2πs, L0 = 2πTvv, and L̄0 = 2πTww, which gives

S = 2π(
√

cL0/6 +
√

cL̄0/6).
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Figure 6. The undulating horizon of figure 2 leads to the non-trivial entropy current (7.10). In

this figure, we plot the entropy density s̃ as a function of ṽ, w̃ for the right CFT. Note that although

the entropy density fluctuates, the entropy flow here is such that there is no net entropy production

(or destruction) (see eq. (7.11)).

Let us define, as before, the spacetime coordinates as x̃, t̃ with (ṽ, w̃) = t̃± x̃. The entropy

density is then given by

s̃ = J̃ t̃
S =

1

4G3

(
1

2

√
LG′

+(ṽ) +
1

2

√
L̄G′

−(w̃)

)
(7.10)

Note that the entropy current is divergenceless

∂µJ̃
µ
S = ∂ṽJ̃

ṽ
S + ∂w̃J̃

w̃
S = 0 (7.11)

This has two implications:

1. No dissipation: we have entropy transfers between different regions with no net

entropy loss or production (see figure 6).

2. Total entropy is not changed by the conformal transformation: the other implication

is that the integrated entropy over a space-like (or null) slice Σ

S̃ =

∫

Σ
ǫµνJ

µ
Sdσ

ν (7.12)

is independent of the choice of the slice. In particular, choosing the slice to be

Σ0 : t = v + w = 0, we get

S̃ =
1

8G3

∫

Σ0

(√
LG′

+(ṽ)dṽ −
√
L̄G′

−(w̃)dw̃
)
=

1

8G3

∫

Σ0

(√
Ldv −

√
L̄dw

)
(7.13)

=
1

8G3

∫
dx

(√
L+

√
L̄
)
=

∫
dx s = S (7.14)

Hence although the entropy density is clearly transformed, the total entropy is not

changed by the conformal transformation.

– 24 –



J
H
E
P
0
1
(
2
0
1
5
)
0
3
6

CFT calculation: in a non-equilibrium situation, there is no natural notion of an en-

tropy. However under the adiabatic approximation, the instantaneous eigenstates of a

time-dependent Hamiltonian are a fair representation of the actual time-dependent wave

functions. The consequent energy level density can thus be used to define an approxi-

mate time-dependent entropy. Generalizing this principle to slow time and space varia-

tions, and applying this to the stress tensor, one expects a space-time dependent version

of (7.6), namely

s̃ =

√
πc

3
T̃ṽṽ +

√
πc

3
T̃w̃w̃ (7.15)

where the stress tensors are given by (4.3). Since we have made the adiabatic approxima-

tion, we expect the above formula to be valid only up to the leading order of space and

time derivatives. Under this approximation, we have

8πG3Tṽṽ =
L

4
G′

+(ṽ)
2, 8πG3Tw̃w̃ =

L̄

4
G′

−(w̃)
2 (7.16)

which exactly agrees with the holographic entropy density in (7.10).24

Total entropy for HR is unchanged by the conformal transformation: under

the conformal transformation (3.10), the reduced density matrix ρR is changed by a uni-

tary transformation:

ρR = TrHL
|ψ〉〈ψ| = UR ρ0,R U

†
R, ρ0,R = TrHL

|ψ0〉〈ψ0| (7.17)

The total entropy of the system after the transformation is given by the von Neumann

entropy S̃ = −TrρR ln ρR which, therefore, is equal to the entropy before; it is unchanged

by the unitary transformation.

8 Conclusion and open questions

In this paper we have solved the boundary value problem for 3D gravity (with Λ < 0)

with independent boundary data on two asymptotically AdS3 exterior geometries. The

boundary data, specified in the form of arbitrary holographic stress tensors, yields space-

times with wormholes, i.e. with exterior regions connected across smooth horizons. The

explicit metrics are constructed by the technique of solution generating diffeomorphisms

(SGD) from the eternal BTZ black string. By using the fact that the SGD’s reduce to

conformal transformations at both boundaries, we claim that the dual CFT states are spe-

cific time-dependent entangled states which are conformal transformations of the standard

thermofield double. We compute various correlators and a dynamical entanglement en-

tropy, in the bulk and in the CFT, to provide evidence for the duality. We also arrive at

an expression for a non-equilibrium entropy function from the area-form on the horizon of

these geometries.

Our work has implications for a number of other issues. We briefly discuss two of them

below; a detailed study of these is left to future work.

24Note that throughout this paper, we have not used the adiabatic approximation anywhere else. Thus, it

is unsatisfactory to use this approximation here. It is, in fact, tempting to believe that the entropy density

in (7.10), and not that in (7.15), actually gives the CFT entropy in general; however, this requires more

investigation.
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8.1 ER=EPR

As mentioned above, our work constructs an infinite family of AdS-CFT dual pairs in

which quantum states entangling two CFTs are holographically dual to spacetimes con-

taining a wormhole region which connects the two exteriors. Both the quantum states and

the wormhole geometries are explicitly constructed (see eqs. (3.4) and (2.10), (2.18)). Our

examples generalize the construction in [13–15]25 (for other remarks on unitary transfor-

mations of the thermofield double and related geometries see [5, 7, 10–12]) and provide an

infinite family of examples of the relation ER=EPR, proposed in [1]. Since this relation

has been extensively discussed and debated in the literature ([5, 10–12]), we would like to

make some specific points pertaining to some of these discussions.

RR correlators vs RL correlators. It has been argued in [5, 12] and [10] that for

typical entangled states connecting two CFTs, HR and HL, correlators involving operators

on the left and the right are suppressed relative to those involving operators all on the

right. In particular, according to [12], correlators of the form 〈OROL〉 are of the order

e−S〈OROR〉, where S is the entropy of the right sided Hilbert space.

In section 5 we have computed general two-point functions, both of the kind

〈OR(P )OR(Q)〉 and 〈OR(P )OL(Q
′)〉.26 In case of the eternal BTZ (dual to the standard

thermofield double), an inspection of (5.2) and (5.4) suggests that as the boundary point

P goes off to infinity, the cosh and sinh factors tend to be equal, thus L(P,Q) ≈ L(P,Q′),

thus there is no extra suppression in the two-sided correlator 〈OROL〉. Of course, such a

statement, regarding the standard thermofield double, has been regarded as somewhat of

a special nature.

We are therefore naturally led to ask: what happens in case of the new solutions

found in this paper? The geodesic lengths L(P,Q) and L(P,Q′) are now given by (5.6)

and (5.7). Once again, if the point P goes off towards the boundary of the Poincare

plane, ṽ → ∞. Hence G+(ṽ) → ∞ (since G+ is a monotonically increasing function).

Hence, both the geodesic lengths approach each other. Thus, we do not see any peculiar

additional suppression, even for our general entangled state, arising when the second point

of the correlation function is moved from the right to the left CFT.

On the genericity of our family of examples. We start with the following Lemma.

Lemma. Any state ∈ H ⊗H,

|Ψ〉 =
∑

i,j

Cij |i〉|j〉, Cij ∈ C, (8.1)

can be expressed in the form

|Ψ〉 =
∑

i,j,n

e−λnUL,inUR,jn|n〉|n〉 (8.2)

where UR, UL are two unitary operators and λn ≥ 0.

25See [1, 5, 10].
26We use unprimed labels for operators on the right and primed labels for those on the left.
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Proof. Using the canonical map H ⊗H → H⊗H∗, we can regard the above state |Ψ〉 as
an operator Ψ in H, with matrix elements Cij . Using the singular value decomposition

theorem on a general complex matrix, we can write C = ULDU
†
R where D is a diagonal

matrix with real, non-negative entries. By denoting D as diag[e−λn ], we get (8.2).

The state (8.2) can be regarded as a thermofield double with Hamiltonian

H =
∑

n λn/β|n〉〈n| transformed by unitary operators UL on the left and by UR on the

right. Thus, the above Lemma suggests that the most general entangled state (8.1) can be

written as a unitary transformation of some thermofield double state.

Now, note that the state (8.2) is of the same general form as that of (3.4) discussed

in this paper. However, while the unitary operators appearing in (8.2) are arbitrary, the

UL,R’s we use in (3.4) are made of Virasoro generators,27 hence although the states (3.4)

constitute a large class of states, they represent a subset of the most general entangled

states (8.1).

Weakly entangled states. To assess the genericity of our states, we ask a different

question now: do our set of states (3.4), which are all explicitly dual to wormholes, include

those with a very small entanglement entropy S for a given energy E?28 The answer to this

question turns out to be yes. As we have noted in the remarks around (7.14) and (7.17),

the entropy S, which is actually the entanglement entropy of the right Hilbert space, is the

same for all our states. However, the same manipulations as in (7.14) shows that the energy

of these states are not the same; indeed by choosing the derivatives G′
± to be large, we

can make the energy of the transformed state to be much larger than that of the standard

thermofield double. Stated in another way, for states of a given energy, our set of states

includes states with entanglement entropy much less than that of the thermofield double.

This is consistent with the proposal of [1] that even a small entanglement is described by

a wormhole geometry.

8.2 Generalizations and open questions

It would be interesting to rephrase the results in this paper in terms of the SL(2, R) ×
SL(2, R) Chern-Simons formulation [35] of three-dimensional gravity. By the arguments

in [35], all diffeomorphisms (together with appropriate local Lorentz rotations) can be

understood as gauge transformations of the Chern-Simons theory. The Chern-Simons for-

mulation has been extended to the gauge group SL(N,R) × SL(N,R) to describe higher

spin theories [16, 36]. It would be interesting to see whether the nontrivial gauge transfor-

mations in our paper generalizes to these higher gauge groups, and hence to higher spin

theories. A possible application of our methods in this case would be to compute HEE by

27If a CFT dual to pure gravity were to exist, then our states (3.4) in such a theory would indeed be the

most general state of the form (8.1). However, such a unitary theory is unlikely to exist [32, 33], although

chiral gravity theories which are dual to CFTs with only the Virasoro operator have been suggested (see,

e.g. [34]). We would like to thank Justin David for illuminating discussions on this point.
28This question was suggested to us by Sandip Trivedi.
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the prescriptions in [37] and [38] in the nontrivial higher spin geometries.29 We hope to

come back to this issue shortly.

The solutions presented in this paper are generated by SGDs which can be regarded

as forming a group (Ṽir × Ṽir)L ×(Ṽir × Ṽir)R. Here the first Ṽir denotes a group of

SGDs which is parametrized by the function G+, and so on. As we emphasized in (7.17),

the reduced density matrix on the right ρR undergoes a unitary transformation under this

group of transformations, leaving the entropy unaltered. The family of pure states (3.4)

considered in this paper can, therefore, be considered as an infinite family of purifications

of the class of density matrices ρR; it would be interesting to see if these can be regarded as

‘micro-states’ which can ‘explain’ the entropy of ρR. We hope to return to this issue shortly.

It would also be interesting to use our work to explicitly study various types of holo-

graphic quantum quenches involving quantum states entangling two CFTs.30 It would be

of particular interest to study limiting cases of our solutions which correspond to shock-

wave geometries.
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A Coordinate systems for the eternal BTZ geometry

As we explained in the Introduction, the metric (1.1) describes only the region exterior

to the black hole horizon (1.3). As is well-known, for constant (L, L̄), (1.1) describes a

standard BTZ black hole with mass M and angular momentum J given by

L = 8G3(M + J), L̄ = 8G3(M − J) (A.1)

In this section we will describe various coordinate systems for this case. In particular, we

will describe the five coordinate charts of figure 1 which cover our spacetime.

A.1 Eddington-Finkelstein coordinates

EF1 (Right Exterior + Black Hole Interior). For a black hole with constant mass

and angular momentum, it is straightforward to find a coordinate transformation from the

(z, x+, x−) coordinates to a set of Eddington Finkelstein coordinates which we denote by

29We thank Rajesh Gopakumar for a discussion on this issue.
30For a single CFT, a similar computation was done in, e.g., [22, 39].
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EF1 (λ, v, y)

x+ = v − 1

2
√
L
log

(
λ− λ0
λ+ λ0

)
, x− = y +

√
L

L̄
v − 1

2
√
L̄
log

(
λ2 − λ20

4L̄

)
(A.2)

z =

√
2

λ20

(
λ−

√
λ2 − λ20

)
(A.3)

Under these transformations, we obtain the following metric

ds2 = − 2

L̄
λ0(λ− λ0)dv

2 +
1√
L̄
dvdλ+

L̄

4
dy2 − (λ− λ0)dvdy (A.4)

The horizon (1.3) of the metric (1.1) is now located at λ0 =
√
LL̄/2. The metric is obvi-

ously smooth and describes the black hole interior.31 To achieve a symmetry between the

boundary coordinates, we find it convenient to make one further coordinate transformation

from y to w

y = w −
√
L

L̄
v +

1√
L̄
log

(
λ+ λ0

2
√
L̄

)
(A.5)

In these new coordinates (λ, v, w), the metric becomes

ds2 =
dλ2

4(λ+ λ0)2
+
L

4
dv2 +

L̄

4
dw2 − λdvdw +

√
L

2(λ+ λ0)
dvdλ+

√
L̄

2(λ+ λ0)
dwdλ, (A.6)

which is clearly symmetric between the ‘boundary coordinates’ v and w.

EF2 (Left Exterior + Black Hole Interior). We can invent a second set of coordinate

transformations starting from the metric in the (z, x+, x−) coordinates which would de-

scribe the left exterior region of the black hole along with the interior. This transformation

is the following

x+ = u+
1

2
√
L
log

(
λ1 − λ0
λ1 + λ0

)
, x− = y1 +

√
L

L̄
u+

1

2
√
L̄
log

(
λ21 − λ20

4L̄

)
(A.7)

z =

√
2

λ20

(
λ1 −

√
λ21 − λ20

)
(A.8)

The Eddington-Finkelstein metric obtained via this transformation is

ds2 = − 2

L̄
λ0(λ1 − λ0)du

2 − 1√
L̄
dudλ1 +

L̄

4
dy21 − (λ1 − λ0)dudy1 (A.9)

As before, we make a further coordinate transformation y1 to ω

y1 = ω −
√
L

L̄
u− 1√

L̄
log

(
λ1 + λ0

2
√
L̄

)
(A.10)

31It develops a coordinate singularity at the inner horizon λ = −λ0; we do not discuss interpolation beyond

the inner horizon in this paper, although it can be easily done. In any case, there are strong reasons to

believe that generically, the inner horizon and the associated exotic feature of infinitely repeating universes

are unstable against even infinitesimal perturbations.
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to obtain the following metric in the (λ1, u, ω) coordinates

ds2 =
dλ21

4(λ1 + λ0)2
+
L

4
du2+

L̄

4
dω2−λ1dudω−

√
L̄

2(λ1 + λ0)
dωdλ1−

√
L

2(λ1 + λ0)
dudλ1 . (A.11)

EF3 (Left Exterior + White Hole Interior). Starting from (z, x+, x−) coordinates,

we do the following transformations

x+ =v1 −
1

2
√
L
log

(
λ1 − λ0
λ1 + λ0

)
, x− = w1 −

1

2
√
L̄
log

(
λ1 − λ0
λ1 + λ0

)
(A.12)

z =

√
2

λ20

(
λ1 −

√
λ21 − λ20

)
(A.13)

The metric obtained is

ds2 =
dλ21

4(λ1 + λ0)2
+
L

4
dv21 +

L̄

4
dw2

1 − λ1dv1dw1 +

√
L

2(λ1 + λ0)
dv1dλ1 +

√
L̄

2(λ1 + λ0)
dw1dλ1

(A.14)

This metric covers the left exterior and the white hole interior.

EF4 (Right Exterior + White Hole Interior). Starting from (z, x+, x−) coordinates,

we do the following transformations

x+ = u1 +
1

2
√
L
log

(
λ− λ0
λ+ λ0

)
, x− = ω1 +

1

2
√
L̄
log

(
λ− λ0
λ+ λ0

)
(A.15)

z =

√
2

λ20

(
λ−

√
λ2 − λ20

)
(A.16)

The metric obtained is

ds2 =
dλ2

4(λ+ λ0)2
+
L

4
du21+

L̄

4
dω2

1 −λdu1dω1−
√
L

2(λ+ λ0)
du1dλ−

√
L̄

2(λ+ λ0)
dω1dλ (A.17)

This metric covers the right exterior and the white hole interior.

Regions of overlap:

• Right exterior: the ‘Right Exterior’ region is described by both the EF1 (λ, v, w) and

EF4 (λ, u1, ω1) coordinates. These are related by the following smooth coordinate

transformations

v = u1 +
1√
L
log

(
λ− λ0
λ+ λ0

)
w = ω1 +

1√
L̄
log

(
λ− λ0
λ+ λ0

)
(A.18)

• Black hole interior: the ‘Black Hole Interior’ region is described by both the EF1

(λ, v, w) and EF2 (λ1, u, ω) coordinates, which are related by the following smooth

coordinate transformations

v = u+
1√
L
log

(
λ0 − λ1
λ0 + λ1

)
, w = ω +

1√
L̄
log

(
λ0 − λ1
λ0 + λ1

)
, λ1 = λ (A.19)
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• Left exterior: the ‘Left Exterior’ region is described by both the EF2 (λ1, u, ω) and

EF3 (λ1, v1, ω1) coordinates, which are related by the following smooth coordinate

transformations:

v1 = u+
1√
L
log

(
λ1 − λ0
λ1 + λ0

)
w1 = ω +

1√
L̄
log

(
λ1 − λ0
λ1 + λ0

)
(A.20)

• White hole interior: the ‘White Hole Interior’ finds a description in both the EF3

(λ1, v1, ω1) and EF4 (λ, u1, ω1) coordinates, which are related by the following smooth

coordinate transformations:

v1 = u1 +
1√
L
log

(
λ0 − λ

λ0 + λ

)
, w1 = ω1 +

1√
L̄
log

(
λ0 − λ1
λ0 + λ1

)
, λ = λ1 (A.21)

A.2 Kruskal coordinates

The union of all the above coordinate patches, together with a neighbourhood (indicated by

K5 in figure 1) of the bifurcation surface (the meeting point of the past and future horizons

in the Penrose diagram) can be described by a set of Kruskal coordinates, in which the

metric reads

ds2 = − 1

2λ0
dUdV +

1√
L
UdV dy +

L̄

4
dy2 (A.22)

The coordinate transformation between various EF coordinates and the Kruskal coordi-

nates are given below.

1. Right exterior + Black Hole Interior: EF1 to Kruskal. The transformation

from EF1 to the (U, V, y) coordinates is

U = − exp(−
√
Lv)(λ− λ0), V = exp(

√
Lv), (A.23)

y = w −
√
L

L̄
v +

1√
L̄
log

(
λ+ λ0

2
√
L̄

)
(A.24)

In the ‘Right Exterior’ region, λ > λ0, while in the ‘Black Hole Interior’, λ < λ0. The

above transformations give us the metric (A.22) in both the regions.

2. Left Exterior + Black Hole Interior: EF2 to Kruskal. The transformation

from EF2 to (U, V, y) coordinates is

U = exp(−
√
Lu)(λ1 + λ0), V = − exp(

√
Lu)

λ1 − λ0
λ1 + λ0

,

y = ω −
√
L

L̄
u+

1√
L̄
log(λ1 + λ0) (A.25)

with,

y1 = y − 2√
L̄
log

(
λ1 + λ0

2
√
L̄

)
(A.26)

In the ‘Black Hole Interior’ λ1 < λ0, while in the ‘Left Exterior’ region λ1 > λ0. These

coordinate transformations give us the metric (A.22) in both the regions.
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3. Left Exterior + White Hole Interior: EF3 to Kruskal. The transformations

from EF3 to the (U, V, y) coordinates is

U = exp(−
√
Lv1)(λ1 − λ0), V = − exp(

√
Lv1), (A.27)

y = w1 −
√
L

L̄
v1 +

1√
L̄
log

(
λ1 + λ0

2
√
L̄

)
(A.28)

In the ‘Left Exterior’ region λ1 > λ0, while in the ‘White Hole Interior’, λ1 < λ0.

These transformations give us the metric (A.22) in both the regions.

4. Right Exterior + White Hole Interior: EF4 to Kruskal. The transformation

from EF4 to the (U, V, y) coordinates is

U = − exp(−
√
Lu1)(λ+ λ0), V = exp(

√
Lu1)

λ− λ0
λ+ λ0

, (A.29)

y = ω1 −
√
L

L̄
u1 +

1√
L̄
log(λ+ λ0) (A.30)

with,

y1 = y − 2√
L̄
log

(
λ1 + λ0

2
√
L̄

)
(A.31)

In the ‘White Hole Interior’ λ < λ0, while in the ‘Right Exterior’ region λ > λ0. The

above transformations give us the metric (A.22) in both the regions.

A.3 Poincare

In this section we show how the EF1, EF2 coordinates can, in fact, be obtained from

Poincare coordinates ζ,X± = X0 ±X1, in terms of which the metric is written as

ds2 =
1

ζ2
(dζ2 − dX+dX−) (A.32)

We will choose L = L̄ for simplicity, so λ0 = L/2.

The coordinate transformation from X±, ζ to the EF1 coordinates is given by

v =
log(X+)√

L
, w = − 1√

L
log

(−X+X− + ζ2

X+

)
,
λ

λ0
=

−2X+X− + ζ2

ζ2
(A.33)

whereas the coordinate transformation from X±, ζ to the EF2 coordinates is given by

u =
1√
L
log

(−X+X− + ζ2

X−

)
, ω = − log(X−)√

L
,
λ1
λ0

=
−2X+X− + ζ2

ζ2
(A.34)

There are similar coordinate transformations between the other charts EF3/4 and

Poincare.32

32As explained in [14] , it is possible to describe the BTZ black string in terms of a single Poincare chart.

The BTZ black hole is a quotient of AdS3, which in appropriate coordinates [40] corresponds to the periodic

identification of the spatial direction; the BTZ string discussed in this paper is obtained by decompactifying

the spatial circle, which gives back AdS3.
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B The new metrics in the charts EF3 and EF4

EF3:

ds2 =
1

B2

[
dλ̃21 +A2

+dṽ
2
1 +A2

−dw̃
2
1 + 2A+dũ1dλ̃1 + 2A−dw̃1dλ̃1

− λ̃1

(
B2 + 2

(
A+

H ′′
−(w̃1)

H ′
−(w̃1)

+A−
H ′′

+(ṽ1)

H ′
+(ṽ1)

+ λ̃
H ′′

+(ṽ1)H
′′
−(w̃1)

H ′
+(ṽ1)H

′
−(w̃1)

))
dw̃1dṽ1

]

(B.1)

where

A+ =
√
LH ′

+(ṽ1)(λ̃1 + λ̃10)− λ̃1
H ′′

+(ṽ1)

H ′
+(ṽ1)

,

A− =
√
L̄H ′

−(w̃1)(λ̃1 + λ̃10)− λ̃1
H ′′

−(w̃1)

H ′
−(w̃1)

, B = 2(λ̃1 + λ̃10)

EF4:

ds2 =
1

B2

[
dλ̃2 +A2

+dũ
2
1 +A2

−dω̃
2
1 − 2A+dũ1dλ̃− 2A−dω̃1dλ̃

− λ̃

(
B2 − 2

(
A+

G′′
−(ω̃1)

G′
−(ω̃1)

+A−
G′′

+(ũ1)

G′
+(ũ1)

− λ̃
G′′

+(ũ1)G
′′
−(ω̃1)

G′
+(ũ1)G

′
−(ω̃1)

))
dω̃1dũ1

]
(B.2)

where

A+ =
√
LG′

+(ũ1)(λ̃+ λ̃0) + λ̃
G′′

+(ũ1)

G′
+(ũ1)

,

A− =
√
L̄G′

−(ω̃1)(λ̃+ λ̃0) + λ̃
G′′

−(ω̃1)

G′
−(ω̃1)

, B = 2(λ̃+ λ̃0)

C UV/IR cutoffs in EF coordinates

From AdS/CFT it is well-known that in a Fefferman-Graham coordinate system such as

in (1.1), an IR cutoff surface z = ǫ in the asymptotically AdS spacetime corresponds to a

UV cutoff ǫ in the CFT. We wish to express the IR cutoff in the geometry in terms of the

EF coordinates. By using the relation

z =

√
2

λ20

(
λ−

√
λ2 − λ20

)
(C.1)

we clearly see that z = ǫ for ǫ small, corresponds to λ = 1/ǫ2.

D An alternative to Banados’ metric

In a beautiful paper [22], Roberts showed that the Banados metric (1.1) can be obtained

from the Poincare metric (A.32) by a Brown-Henneaux type diffeomorphism (an ‘SGD’ in
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the language of our paper), given by

X± = f±(x±) +
2z2f ′±(x±)

2f ′′∓(x∓)

8f ′±(x±)f
′
∓(x∓)− z2f ′′±(x±)f

′′
∓(x∓)

ζ = z

(
4f ′+(x+)f

′
−(x−)

) 3

2

8f ′+(x+)f
′
−(x−)− z2f ′′+(x+)f

′′
−(x−)

(D.1)

It was shown in [22] that the above diffeomorphism reduces to a conformal transformation

on the boundary, with the the following asymptotic form (as z→0)

X± = f±(x±) +O(z2)

ζ = z
√
f ′+(x+)f

′
−(x−) +O(z3) (D.2)

It was also shown in this paper that L(x+), L̄(x−) appearing in (1.1) can be obtained from

the zero stress tensor through the conformal transformation f±.

A different choice of gauge: the SGD (D.1) used by Roberts seems fairly involved

compared to the ones we use in this paper, e.g. (2.9). Can we obtain the metric (1.1)

by a simpler SGD similar to ours, which nevertheless has the same conformal asymptotic

form (D.2)? The answer turns out to be yes. Indeed the simplest way of inventing such

a transformation is to take the asymptotic form (D.2) and gauge fix all the higher order

terms in z to 0. We then have a new, exact transformation of the form

X± = f±(x±), ζ = z
√
f ′+(x+)f

′
−(x−) (D.3)

Note the similarity with our SGDs, say (2.9) (recall that z ∼ 1/
√
λ near the boundary).

(D.3) transforms the Poincare metric to

ds2 =
dz2

z2
+

f ′′+(x+)

zf ′+(x+)
dx+dz +

f ′′−(x−)

zf ′−(x−)
dx−dz +

1

4

(
f ′′+(x+)

2

f ′+(x+)
2
dx2+ +

f ′′−(x−)
2

f ′−(x−)
2
dx2−

)

−
(

2

z2
− f ′′+(x+)f

′′
−(x−)

2f ′+(x+)f
′
−(x−)

)
dx+dx− (D.4)

A priori this is a new metric different from (1.1). However, the holographic stress tensor [23]

obtained from this metric is the same as obtained from (1.1) given by (4.3). As discussed

in section 2.5 and 2.5.1, the above metric and (1.1) differ only by a trivial diffeomorphism,

and are hence essentially identical.33 Note that this example shows the enormous gauge

ambiguity in the choice of a metric in AdS3 (whose physical content is manifested in the

boundary behaviour). Indeed, by the same token even the SGD’s employed in this paper

are ambiguous; the solutions presented in section 2 are one of a gauge equivalent class

of metrics.

33Note that in this new metric (D.4), the position of the horizon is at z = ∞. Of course, it can be

brought to a finite value by an additional coordinate transformation involving the radial coordinate.
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E Unitary realization of conformal transformation

Under a finite, non-trivial, holomorphic coordinate transformation, w → w′ = f(w), the

stress tensor of a 2D CFT transforms as

T̃ (w′) =

(
∂w′

∂w

)−2[
T (w)− c

12
S(w′, w)

]
(E.1)

with the Schwarzian derivative S(w′, w) given by

S(w′, w) =

(
∂3w′

∂w3

)(
∂w′

∂w

)−1

− 3

2

(
∂2w′

∂w2

)2(∂w′

∂w

)−2

(E.2)

For an infinitesimal transformation w → w′ = f(w) = w+ ǫ(w), the Schwarzian derivative

turns out to be

S(w′, w) = ǫ′′′(w) +O(ǫ2) (E.3)

The change in the stress tensor, under such a transformation, becomes

δT (w) ≈ −ǫ(w)T ′(w)− 2ǫ′(w)T (w)− c

12
ǫ′′′(w) +O(ǫ2) (E.4)

Now, the Laurent expansion of T (w) and ǫ(w) is

T (w) =
∞∑

m=−∞

Lm

wm+2
ǫ(w) =

∞∑

m=−∞
ǫmw

−m+1 (E.5)

where L†
n = L−n, ǫ

†
n = −ǫ−n and the Ln’s satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (E.6)

Plugging (E.5) into (E.4), we get

δLm =
∞∑

n=−∞

{
(m+ n)Lm−nǫn +

c

12
n(n2 − 1)ǫnδm−n,0

}
(E.7)

We wish to construct a unitary operator U = U(ǫ) which implements the above conformal

transformations, namely that it satisfies

U(ǫ)†LmU(ǫ)− Lm = δLm +O(ǫ2) (E.8)

The required unitary operator, in fact, is

U(ǫ) = exp(
∞∑

n=−∞
ǫnL−n) (E.9)

The proof is straightforward. Note that the l.h.s. of (E.8) becomes
(
1−

∑

n

ǫ−nLn

)
Lm

(
1+

∑

n

ǫnL−n

)
−Lm=−

∞∑

n=−∞
ǫ−n(LnLm)+

∞∑

n=−∞
ǫn(LmL−n)+O(ǫ2)

After flipping the sign of n in the first sum, this becomes

ǫn[Lm, L−n]

which reduces to the expression (E.7) upon using the Virasoro algebra (E.6).

Thus, we have explicitly constructed a unitary operator U such that U †T (w)U −T (w)
is given by (E.4).
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