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1 Introduction and summary

The study of thermalization in closed interacting quantum systems has a long history (see,

e.g. [1] for a review). It has been known ever since the celebrated work of Fermi, Pasta

and Ulam (FPU) that interacting classical systems need not necessarily equilibrate. The

question of finding sufficient conditions for thermalization in quantum systems is also an

open one. Recently, the advent of holography has linked the issue of thermalization in

strongly coupled quantum field theories to another important, classical, problem of black

hole formation (see, e.g. [2–5] and references therein). In the latter setting too, the issue

of gravitational collapse of a given matter distribution is rather nontrivial; indeed there
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is an interesting debate in the current literature (see, e.g., [6–11]) regarding the fate of

perturbations in anti-de-Sitter spacetimes.

In this paper, we will focus on two-dimensional conformal field theories (CFTs) on an

infinite line σ ∈ R. We will consider the system at t = 0 to be in a “quenched state”1

|ψ0〉 = exp

[

− ǫ2H −
∞∑

n=3

ǫnWn

]

|Bd〉 (1.1)

Here |Bd〉 is a conformal boundary state; the exponential factors cut off the UV modes to

make the state normalizable. Wn denote the additional conserved charges in the theory.2

This choice of the quenched state is a generalization of that in [12] for which ǫn = 0,

for n > 3.

The wavefunction for t > 0 is given by

|ψ(t)〉 = exp[−iHt]|ψ0〉 (1.2)

The questions we will explore, and answer, are: what is the long time behaviour of

various observables in |ψ(t)〉? In particular, does the expectation value of an operator (or

a string of operators) approach a constant? If so, (i) is the constant value characterized

by a thermodynamic equilibrium, and (ii) what is the rate of approach to the constant

value? More generally, we would also address, and partially answer, the questions: how

does the existence and rate of thermalization depend on the initial state and the choice of

observables?

Thermalization We find in this paper that the expectation values of local observables

(supported on a finite interval A : σ ∈ [−l/2, l/2]) asymptotically approach (see (1.12) for

the precise statement) their values in an equilibrium ensemble,

ρeqm =
1

Z
exp

[

− βH −
∑

n

µnWn

]

, Z = Tr exp

[

− βH −
∑

n

µnWn

]

(1.3)

whose temperature and chemical potentials are related to the cutoff scales in (1.5) as follows

β = 4ǫ2, µn = 4ǫn, n = 3, 4, . . . (1.4)

1In the original sense of the term, a quantum quench is defined as a sudden change from a hamiltonian

H0 to a hamiltonian H which governs further evolution for t ≥ 0. The system is assumed to be in the

ground state of H0 at t = 0, which serves as an initial state for subsequent dynamics; the dynamics is

nontrivial since the initial state prepared this way is not an eigenstate of H. In this paper, the state (1.1)

is an ansatz for a quenched state, generalizing the Calabrese-Cardy (CC) ansatz [12]. The CC state has

a single cut-off parameter ǫ2; this works for sudden quenches characterized by a single scale — the initial

mass gap — which is much larger than the mass scale set by the cut-off parameter (see [13, 14] for subtleties

associated with the ‘sudden limit’). The generalized Calabrese-Cardy ansatz (1.1), accommodates quench

protocols with multiple scales (see section 6). The other characteristic of the ansatz (1.1) is that it describes

a global quench or a homogeneous quench, as the state is translationally invariant. We will briefly mention

inhomogeneous and local quenches in section 6.
2For the purposes of this paper, we will identify them with Wn-charges of 2D CFT, n = 3, 4, . . . (with

W2 ≡ H), although much of what we say will go through independent of this specific choice as long as these

charges mutually commute and are defined from currents which are quasiprimary fields of the conformal

algebra.
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The relations (1.4) are uniquely dictated by the requirement that the expectation values of

the conserved chargesH,W3,W4, . . . in the initial state match those in the mixed state (1.3)

(see (3.3)). In the absence of the extra parameters ǫn, n = 3, 4, . . . this result is derived by

the elegant method of conformal transformations [12]. In the presence of these parameters,

this method is not available; in this paper, we deal with the extra exponential factors in

terms of an infinite series and do a resummation.

We emphasize that the thermalization we found above persists even when we have an

integrable model with an infinite number of conserved charges. Relaxation of local observ-

ables in integrable systems has been a very active subject of investigation in recent years;

see, e.g. [15–25]. Specific models investigated in this context include (a) one-dimensional

hardcore bosons [17], (b) transverse field Ising model [21], (c) Luttinger model [19], (d) ma-

trix quantum mechanics [24], (e) sine-Gordon model [25], etc. The equilibrium ensembles

in theses cases have been called a generalized Gibbs ensemble (GGE). Most of the above

works involve quenches with a mass gap; however, ref. [19], and, closer to our context,

ref. [23] (section 2.5), discuss possible extension to critical quenches involving post-quench

conformal dynamics.3 The role of our present results is to quantitatively substantiate the

occurrence of local thermalization in integrable conformal field theories for the general class

of quenches described by (1.1), and to determine the relevant relaxation time scales, besides

finding a holographic interpretation where applicable. Interestingly, the thermalization we

find works even for free conformal field theories, e.g. a free scalar field theory.4

With the above identification of parameters, we will rewrite the initial quenched

state (1.1) henceforth as

|ψ0〉 = exp

[

−
(

βH −
∞∑

n=3

µnWn

)

/4

]

|Bd〉 (1.5)

We find the following specific results.

1. Thermalization time scale for single local observables: we find that at

large times

〈ψ(t)|φk(σ)|ψ(t)〉 = Tr (φk(0)ρeqm(β, µi)) + ak e
−γkt + . . . (1.6)

where φk(σ) is an arbitrary quasiprimary field (labelled by an index k). Below we compute

the thermalization exponent γk in a perturbation in the chemical potentials and to linear

order it is given by

γk =
2π

β

[

∆k +
∑

n

µ̃nQn,k +O(µ̃2)

]

, µ̃n ≡ µn

βn−1
, (1.7)

3It is of relevance here to refer to an important recent talk by John Cardy (see

http://www.ggi.fi.infn.it/talkfiles/slides/talk2326.pdf) to which our attention was drawn by the anony-

mous referee after the arXiv version v2 of our paper was submitted for publication. This talk mentions

unpublished results on thermalization involving deformation of Calabrese-Cardy states [12] by descendents

and powers of the stress tensor. The issue addressed in this talk is similar in spirit to the broader question

addressed in our sections 2 and 4, which includes integrable models with extended algebras.
4This happens essentially due to the fact that we consider here thermalization of local observables and

that local field modes are mutually coupled even in a free field theory. Thermalization happens at times

greater than the scale of localization, as we will see below.
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Here ∆k = hk+h̄k is the scaling dimension and Qn,k are the (shifted)Wn-charges (see (2.23)

for the full definition) of the field φk (in case of primary fields) or of the minimum-dimension

field which appears in the conformal transformation of φk. To obtain this result, we perform

the infinite resummation mentioned below (1.4). At large times, the perturbation series

for the one-point function in the chemical potentials exponentiates (see (2.23)), to give

the corrected exponent in the above equation. In various related contexts, finite orders of

perturbation terms in chemical potentials have been computed before [26–28]. Our finding

in this paper is that at large times, there is a regularity among the various orders leading

to an exponential function as in (1.6) (see section 2.2.2 for details).

Universality: in the case of zero chemical potentials, it has been noted in [29], that

although the relaxation time τk = 2ǫ2/(π∆k) = β/(2π∆k) is non-universal (in the sense

that it depends on the specific initial state (1.1)), the ratio of relaxation times for two

different fields, namely, τk1/τk2 = ∆k2/∆k1 is universal (it depends only on the CFT

data and not on the initial state and is hence expected to be valid for a general class of

initial states). In the presence of the additional cut-off parameters ǫi, i = 3, . . . in the

initial state (1.1), the ratio τk1/τk2 = γk2/γk1= (∆k2 +
∑

n µ̃nQn,k2)/(∆k1 +
∑

n µ̃nQn,k1)

is, however, not independent of the initial state.

However, as we will briefly discuss in section 6, for a large class of quench states

(e.g. where the energy density is uniform outside of a domain of compact support) the

β-dependence of τk, in the absence of chemical potentials, can be understood as the de-

pendence on the uniform energy density (see a related discussion in [30]). The time scales

τk, therefore, do have a limited form of universality in the sense that it depends on a

rather robust feature of the initial state. Our calculations in this paper leads us to believe

that this feature will continue in the presence of chemical potentials, in the sense that the

additional dependence of the time scales 1/γk on the µn is fixed by the charge densities

corresponding to the additional conserved charges. We hope to address this in [31].

2. Multiple local observables, reduced density matrix: besides the one-point

functions discussed above, it turns our that we can demonstrate thermalization of all

operators in an interval A of length l. It is convenient to define a ‘thermalization function’

IA(t) [32] as

IA(t) = Tr(ρ̂dyn,A(t)ρ̂eqm,A(β, µn)) =
Tr(ρdyn,A(t)ρeqm,A(β, µn))

[Tr(ρdyn,A(t)2)Tr(ρeqm,A(β, µi)2)]
1/2

ρdyn,A(t) = TrĀ |ψ(t)〉〈ψ(t)|, ρeqm,A(β, µn) = TrĀ ρeqm(β, µi) (1.8)

Here ρ̂ = ρ/
√

Trρ2 denotes a ‘square-normalized’ density matrix.56 We show below that

at large times the thermalization function has the form

IA(t) = 1− α(l̃) e−2γmt + . . . , l̃ ≡ l/β (1.9)

5Note that operators in a Hilbert space H can themselves be regarded as vectors in H× H
∗; under this

interpretation Tr(A B) defines a positive definite scalar product. With this understanding, we will regard

the hatted density matrices as unit vectors.
6Throughout this paper, we will consider field theories with an infinite spatial extent. The entire Hilbert

space is assumed to be of the form HA ⊗ HĀ. TrĀ implies tracing over HĀ.
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where γm refers to the exponent (1.7) for the operator φm with minimum scaling dimen-

sion.7 α(l̃) is computed as a power series in l̃ which we find using the short interval

expansion, valid for l̃ ≪ 1, i.e. l ≪ β.

Two immediate consequences of (1.9) are

(i) Thermalization of an arbitrary string of operators: note, from (1.9), that

IA(t)
t→∞−−−→ 1, (1.10)

Since the square-normalized density matrices can be regarded as unit vectors

(in the sense of footnote 5), and IA(t) can be regarded as the scalar product

ρ̂dyn,A(t)·ρ̂eqm,A, (1.10) clearly implies

ρ̂dyn,A(t)
t→∞−−−→ ρ̂eqm,A (1.11)

This implies the following statement of thermalization for an arbitrary string of local

operators (with σ1, σ2, . . . ∈ A)

〈ψ(t)|O(σ1, t1)O(σ2, t2) . . . |ψ(t)〉 = Tr(ρ̂dyn,A(t)O(σ1, t1)O(σ2, t2) . . .)

t→∞−−−→ Tr(ρ̂eqm,AO(σ1, t1)O(σ2, t2) . . .).

(1.12)

(ii) Long time behaviour of reduced density matrix: carrying on with the interpretation

of IA(t) as a scalar product, we can infer following asymptotic behaviour of ρ̂dyn(t)

from (1.9):

ρ̂dyn,A(t) = ρ̂eqm,A(β, µi)
(
1− α e−2γmt + . . .

)
+ Q̂

(√
2α e−γmt + . . .

)

(1.13)

where Tr(Q̂2) = 1, Tr(ρ̂eqm,A(β, µi)Q̂) = 0. We will specify further properties of Q̂

later on.

Importance of local observables: in case of a free massless scalar field, it is

easy to show that quantities like 〈ψ(t)|α2
1α

†
1|ψ(t)〉 perpetually oscillate and never

reach a constant (see a related calculation in [24]). The modes αn represent Fourier

modes and are non-local. Indeed, as [29, 32, 33] showed, in the absence of chemical

potentials, the exponential term in (1.9) is e−2γm(t−l/2) and the thermalization sets

in only after t exceeds l/2. Thus, for l = ∞, there is no thermalization, which is

consistent with the above observation about perpetual oscillations. We expect the

form e−2γm(t−l/2) to continue to hold in the presence of chemical potentials8, since

the effect of the chemical potentials on the exponent γk can be viewed as a shift of the

7We will assume here that the spectrum of such ∆’s is bounded below by a finite positive number. In

case of a free scalar field theory, we can achieve this by considering a compactified target space.
8Although, in the short-interval expansion employed in this paper to derive (1.9), which uses t ≫ β ≫ l,

such an l-dependence in the exponent cannot be easily seen from the pre-factor α(l̃) unless one sums over

an infinite orders in l̃.
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anomalous dimension δ∆k =
∑

n µ̃nQn,k + O(µ̃2) (see, e.g. (4.8)). This shows that,

as in the case of zero chemical potentials, equilibration sets in only after t exceeds

l/2. We will see a similar phenomena next in the context of a decay of perturbations

to a thermal state.

3. Decay of perturbations to a thermal state: we compute (see section 4 for details)

the time-dependent two-point Green’s function G+(t, l;β, µ) for two points spatially sepa-

rated by a distance l. We find that for t, l, t− l ≫ β, the time-dependence is exponential,

with the same exponent as in (1.6):

G+(t, l;β, µ) ≡
1

Z
Tr

(

φk(l, t)φk(0, 0)e
−βH−

∑
n µnWn

)

= const e−γkt (1.14)

Note that the above thermalization sets in for t > l. For t < l, the two-point function has

an exponential decay in the spatial separation (see section 4 and figure 3).

The computation of the above relaxation times in the presence of an arbitrary number

of chemical potentials uses the technique, described above, of summing over an infinite

number of Feynman diagrams, and is one of the main results of our paper.

4. Collapse to higher spin black holes: in [34, 35] the bulk dual to the time-dependent

state (1.2) corresponding to initial condition (1.5), for large central charges, has been

constructed in the case of zero chemical potentials. The dual geometry corresponds to one

half of the eternal BTZ (black string) geometry, whose boundary represents an end-of-the-

world brane. In [36] the result has been extended to the case of non-zero angular momentum

and a Chern-Simons charge. In case of an infinite number of chemical potentials, a bulk

dual to the equilibrium ensemble (1.3) has been identified, in the context of the Gaberdiel-

Gopakumar hs(λ) theory [37], as a higher spin black hole with those chemical potentials [38,

39]. It is natural to conjecture [24, 36] that the time-development (1.2) should be dual to a

collapse to this higher spin black hole. At late times, therefore, the thermalization exponent

found above should correspond to the quasinormal frequency of the higher spin black hole.

We find that (see section 5 and [40]) this is indeed borne out in a specific example.

The plan of the paper is as follows. The results 1, 2, 3 and 4 above are described in

sections 2, 3, 4 and 5, respectively. The resummation of an infinite number of Feynman

diagrams (corresponding to insertions of arbitrary number of chemical potential terms) is

discussed in section 2.2.2, which uses results in appendix A. The calculation of the overlap

of reduced density matrices in section 3 needs the use of the short-interval expansion, which

is described in appendix B. In section 6 we present our conclusions and make some remarks

on inhomogeneous quench [31].

2 One-point functions

In this section we will consider the behaviour of the following one-point functions of a

quasiprimary field φk(σ)

〈φk(σ, t)〉dyn ≡ 〈ψ(t)|φk(σ)|ψ(t)〉,
〈φk(σ)〉eqm ≡ Tr (φk(σ)ρeqm(β, µn)) (2.1)

– 6 –
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We will briefly recall how these are computed in the absence of the chemical potentials [12,

41]. The first expectation value corresponds to the one-point function on a strip geometry,

with complex coordinate w = σ+ iτ , σ ∈ (−∞,∞), τ ∈ (−β/4, β/4) where τ is eventually

to be analytically continued to τ = it. This can be conformally transformed to an upper

half plane by using the map

z = ie(2π/β)w (2.2)

For a primary field with hk = h̄k (of the form φk(w, w̄) = ϕk(w)ϕk(w̄)), this procedure

gives9(for other primary fields, the one-point function vanishes)

〈φk(σ, t)〉dyn = 〈φk(w, w̄)〉str =
(
∂z

∂w

)hk
(
∂z̄

∂w̄

)h̄k

〈φk(z, z̄)〉UHP

= ak

(

e2πt/β + e−2πt/β
)−2hk ∼ ake

−γ
(0)
k

t + . . . , γ
(0)
k = 2π∆k/β = 4πhk/β

(2.3)

We have used the following result for the one-point function on the UHP:

〈φk(z, z̄)〉UHP = Ak〈ϕk(z)ϕ
∗
k(z

′)〉UHP = Ak(z − z′)−2hk , hk = h̄k, z
′ = z̄ (2.4)

which follows by using the method of images where the antiholomorphic factor of φk(z, z̄)

on the upper half plane at the point (z, z̄) is mapped (up to a constant) to the holomorphic

ϕ∗
k
10 on the lower half plane at the image point (z′, z̄′) with z′ = z̄, z̄′ = z [41, 42]. In the

above ak, Ak are known numerical constants. Note that

z = ie2π(σ+iτ)/β = ie2π(σ−t)/β , z′ = z̄ = −ie2π(σ−iτ)/β = −ie2π(σ+t)/β (2.5)

so that in the large time limit we have

t → ∞ ⇒ z → 0, z̄ → −i∞. (2.6)

The second, thermal, expectation value in (2.1), for µn = 0, corresponds to a cylindrical

geometry in the w-plane, with τ = 0 identified with τ = β. By using the same conformal

map (2.2) this can be transformed to a one-point function on the plane. For a primary

field the latter vanishes. Hence (1.6) is trivially satisfied.

For a quasiprimary field φk, its conformal transformation generates additional terms,

including possibly a c-number term ck (e.g. the Schwarzian derivative term for φk = Tww)

and generically lower order operators. The c-number term does not distinguish between a

plane and an UHP. This leads to the following overall result (for µn = 0):

〈φk(σ)〉eqm = 〈φk(w, w̄)〉cyl = ck,

〈φk(σ, t)〉dyn = 〈φk(w, w̄)〉str = ck + ake
−γ

(0)
k

t + . . . , γ
(0)
k = 2π∆k/β, (2.7)

9The subscripts str, cyl will denote a ‘strip’ and a ‘cylinder’, respectively.
10We distinguish ϕ∗

k from ϕk to allow for charge conjugation.

– 7 –
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where ∆k now is the scaling dimension of the minimum-dimension operator in a T (z1)φk(z)

OPE. This is clearly of the general form (1.6) for µn = 0.

We now turn to a discussion of these expectation values (2.1) in the presence of chemical

potentials µn, n = 3, 4, . . ., as in (1.5) and (1.3). We will denote the new conserved currents

as Wn(w) and W̄n(w̄), n = 3, 4, . . .. The conserved charge, Wn, is defined as

Wn =
1

2π

∫

Γ
Wττ ...τdσ =

1

2π

∫

Γ

(
indw1Wn(w1) + (−i)ndw̄1 W̄n(w̄1)

)
(2.8)

Here the contour Γ is taken to be a τ = constant line along which dw1 = dw̄1 = dσ. Under

the conformal transformation (2.2) to the plane/UHP, the holomorphic part of the contour

integral becomes

Wn|hol =
in

2π

(
2π

β

)n−1 ∫

Γ1

dz1

[

zn−1
1 Wn(z1) +

⌊n/2⌋
∑

m=1

an,n−2mzn−2m−1
1 Wn−2m(z1)

]

(2.9)

where the an,n−2m denote the mixing of Wn(z1) with lower order W -currents under confor-

mal transformations [43, 44]. The contour Γ1 is an image of the contour Γ onto the plane.

The expression for the antiholomorphic part Wn|antihol is similar.

As mentioned before, in this paper we will regard the Wn as conserved charges of a

W-algebra, although the results we derive will be equally valid as long as these charges,

together with H, form a mutually commuting set, and the currents (Wn(w), W̄n(w̄)) are

quasiprimary fields.

2.1 One-point function on the cylinder with chemical potentials

For simplicity we first consider the equilibrium expectation value in (2.1). Unfortunately,

unlike the thermal factor above, the factor e−
∑

n µnWn in (1.3) cannot be dealt with in

terms of a conformal map. We will, therefore, treat this factor as an operator insertion,

and write

〈φk(σ)〉eqm ≡ Tr (φk(w, w̄)ρeqm(β, µn)) =
〈e−

∑
n µnWnφk(w, w̄)〉cyl

〈e−
∑

n µnWn〉cyl
≡ 〈φk(w, w̄)〉µcyl (2.10)

We will now illustrate how to compute this for a single chemical potential, say µ3, using

perturbation theory Feynman diagrams:11

〈φk(w, w̄)〉µcyl = 〈φk(w, w̄)〉cyl − µ3〈W3φk(w, w̄)〉conncyl +
µ2
3

2!
〈 W3W3φk(w, w̄)〉conncyl +O(µ3

3)

(2.11)

The first term in the above expression is the constant ck that we already encountered

in (2.7). For a holomorphic primary field φk, the second, O(µ3), term, transformed on to

the plane, gives

〈W3φk(w)〉conncyl =
2π

β2
zhk

[

i3
∫

Γ1

dz1 z21〈W3(z1)φk(z)〉connC

+ (−i)3
∫

Γ1

dz̄1 z̄21〈W̄3(z̄1)φk(z)〉connC

]

(2.12)

11The superscript conn denotes ‘connected’.
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Here we have used the contour representations (2.8) and (2.9). The correlator inside the

second integral obviously vanishes (it factorizes into a holomorphic and an antiholomorphic

one-point functions, leading to a vanishing connected part). The first integral vanishes

unless φk = W3 (this uses the orthogonality of the basis of quasiprimary fields). In the

latter case, using

〈W3(z1)W3(z)〉C =
c/3

(z1 − z)6

the integral evaluates to c/(90z3); combining with the factor of z3 outside (hk = 3 in this

case) we get a z-independent constant, as we must, because of translational invariance on

the plane. With an antiholomorphic primary field φk, the calculation is isomorphic. For

a primary field with nonvanishing hk, h̄k the result vanishes. For quasiprimary φk, as well

as for other Wn charges, the conformal transformation to the plane additionally generates

lower order operators (see, e.g. (2.9))), each of which can be dealt with as in (2.12). The

result is a finite constant which we will denote as

〈Wnφk(w, w̄)〉 = cn,k

(this will be non-vanishing only for special choices of φk, e.g. φk = Wn). As explained

above, for n = 3 and φk(w, w̄) = W3(w), cn,k = −2πc/(90β2).

In a similar fashion, the O(µ2
3) term in (2.11) can be transformed to the plane. Again,

we present the explicit expression for the simple case of a holomorphic primary field φk.

〈W3W3φk(w)〉conncyl =

(
2π

β2

)2

zhk

[

i6
∫

Γ1

dz1

∫

Γ2

dz2〈W3(z1)W3(z2)φk(z)〉connC z21z
2
2

+ (−i)6
∫

Γ1

dz̄1

∫

Γ2

dz̄2〈W̄3(z̄1)W̄3(z̄2)φk(z)〉connC z̄21 z̄
2
2

+

∫

Γ1

dz1

∫

Γ2

dz̄2〈W3(z1)W̄3(z̄2)φk(z)〉connC z21 z̄
2
2

+

∫

Γ1

dz̄1

∫

Γ2

dz2〈W̄3(z̄1)W3(z2)φk(z)〉connC z̄21z
2
2

]

(2.13)

For holomorphic quasiprimary φk, additional, similar, terms appear due to the generation of

lower order operators under conformal transformation to the plane. Only the holomorphic

correlator survives (as in the O(µ3) calculation). Thus, e.g. if φk = T (z), the stress tensor,

we have

〈W3(z1)W3(z2)T (z)〉C =
c

(z1 − z2)4(z1 − z)2(z2 − z)2

Again, after performing the integration over z1 and z2, we obtain a z-independent con-

stant, as we must. The analysis of more general fields φk and two arbitrary W -charges is

straightforwardly generalizable. The result is a finite constant (can be zero for a particular

φk) which we denote as

〈WmWnφk(w, w̄)〉 = cmn,k

Note that in (2.13) the result does not depend on the location of the contours Γ1,Γ2 on

the plane, since the W -currents are conserved.
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Summarizing, we get

〈φk(w, w̄)〉µcyl = ck −
∑

n

µn cn,k +
1

2!

∑

m,n

µmµn cmn,k +O(µ3) (2.14)

2.2 One-point function on the strip with chemical potentials

Similarly to the previous subsection, we will treat the µ-deformations in (1.5) as operator

insertions:

〈φk(σ, t)〉dyn ≡ 〈ψ(t)|φk(σ)|ψ(t)〉 =
〈e−

∑
n µnWn/4 φk(w, w̄) e

−
∑

n µnWn/4〉str
〈e−

∑
n µnWn/2〉str

≡ 〈φk(w, w̄)〉µstr (2.15)

As before, we begin by illustrating the calculation of this quantity with the simplest case

of a single chemical potential µ3, using perturbation theory Feynman diagrams:

〈φk(w, w̄)〉µstr = 〈φk(w, w̄)〉str −
µ3

4
〈{W3, φk(w, w̄)}〉connstr

+

(
µ3

4

)2 1

2!
(〈{W3W3, φk(w, w̄)}〉connstr + 2〈W3φk(w, w̄)W3〉connstr ) +O(µ3

n)

(2.16)

The { , } denotes an anticommutator. The operator ordering implies the following: when

W3 appears on the left of φk(w, w̄), e.g., in 〈W3φk(w, w̄)〉, the integration contour (2.8)

for W3 on the strip lies above the point (w, w̄); similarly when W3 appears on the right of

φk(w, w̄), e.g. in 〈φk(w, w̄)W3〉, the contour for W3 is below the point (w, w̄).

The first, µ-independent, term in the above expansion is already calculated in (2.7).

2.2.1 O(µn) calculation

As before, we find it convenient to use the conformal transformation (2.2). The correlator

on the strip then reduces to that on the UHP, as in the µ = 0 case before. For a holomorphic

primary field φk, this gives

〈W3φk(w)〉connstr =
2π

β2
zhk

[

i3
∫

Γ1

dz1 z21〈W3(z1)φk(z)〉connUHP

+ (−i)3
∫

Γ1

dz̄1 z̄21〈W̄3(z̄1)φk(z)〉connUHP

]

(2.17)

where the operator ordering explained above implies that the contour Γ1 lies to the left of

the point (z, z̄) on the UHP. Now, in the analogous calculation (2.12), the second connected

correlator on the complex plane vanished because of factorization into one-point functions.

Correlators on the UHP are, however, related to those on the plane by the method of

images (an example of which we saw in (2.4)). In particular, W̄3 at the point (z1, z̄1) on

the UHP becomes the holomorphic operator W∗
3 = −W3 on the LHP at the point (z′1, z̄

′
1)

with z′1 = z̄1 [41, 42]. The contour Γ1 gets mapped to its mirror image Γ′
1 on the lower half

plane. With this, we get

〈W3φk(w)〉connstr =
2π

β2
zhk

[

i3
∫

Γ1+Γ′

1

dz1 z21〈W3(z1)φk(z)〉connC

]

(2.18)
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Figure 1. Various contours needed to compute the Wn insertions in (2.16). At late times, the

insertion of each contour, irrespective of the position of the contour, amounts to insertion of a given

factor linear in t. This allows to re-sum arbitrary orders of arbitrary Wn-charge insertions, leading

to the exponential time-dependence as in (1.6). See figure 2 for more.

On the complex plane, the contour Γ1 on the UHP can be deformed to Γ′
1 on the LHP, hence

the two contours simply yield a factor of 2. In fact, combining with the other ordering, and

applying a similar reasoning, we get an overall factor of 4. Thus, combining with results

from section 2.1, we get, for holomorphic primary fields

−µ3

4
〈{W3, φk(w)}〉connstr = −µ3〈W3φk(w)〉conncyl (2.19)

A similar statement is true for an antiholomorphic primary field.

Let us turn now to primary fields φk(w, w̄) with hk, h̄k 6= 0 (of the form φk(w, w̄) =

ϕk(w)ϕk(w̄), as discussed before in the context of (2.4)). In the cylinder calculation in

section 2.1 the µ-corrections for these vanished. In the present case, they are non-zero for

operators of the form φk(w, w̄)= ϕk(w)ϕ̄k(w̄), with hk = h̄k (as in (2.3)). After conformally

transforming to the UHP, we regard ϕ̄k on the UHP as ϕ∗
k at the image point on the LHP

(up to a constant). Combining with the arguments used for the holomorphic operators, we

eventually get

〈{W3, φk(w, w̄)}〉connstr

〈φk(w, w̄)〉str
= i3

2π

β2
(zz̄)hI3(z, z

′),

I3(z, z
′) ≡

∫

Γ1+Γ′

1+Γ̃1+Γ̃′

1

dz1 z21〈W3(z1)ϕk(z)ϕ
∗
k(z

′)〉connC /〈ϕk(z)ϕ
∗
k(z

′)〉connC (2.20)

The ratio of correlators inside the integral is given by

〈W3(z1)ϕk(z)ϕ
∗
k(z

′)〉connC /〈ϕk(z)ϕ
∗
k(z

′)〉connC = q3
(z − z′)3

(z1 − z)3(z1 − z′)3
(2.21)

where q3 is the W3-charge of the field φk. Integrals of the kind (2.20) are discussed in

detail in appendix A.2. The final result (see (A.6)) is that the O(µ3) correction, in the long

time limit (2.6), is given by (using that all four contours Γ1, Γ̃1,Γ
′
1, Γ̃

′
1 contribute equally,

– 11 –



J
H
E
P
0
8
(
2
0
1
5
)
0
1
3

cancelling the 1/4 in −µ3/4)

〈φk(σ, t)〉dyn = ake
−2π∆kt/β

(

1−Q3,kµ̃3

(
2πt

β
+ constant

)

+O(µ2
3)

)

+ . . . ,

Q3,k = i32q3,k(2π), µ̃3 =
µ3

β2
, ∆k = 2hk (2.22)

Up to O(µ3), it agrees with (1.7).

In case of a quasiprimary field φk(w, w̄), it mixes, under conformal transformation to

the plane, with lower dimension operators. The most relevant operator among these, which

is of the form ϕk(z)ϕk(z̄), is then to be used in (2.20) for obtaining the dominant time-

dependence; in that case ∆k, Q3,k refer to this operator (rather than to the original φk).

For higher Wn charges, the currents Wn(w) are typically quasiprimary, and hence they

mix with lower order Wm(z) under conformal transformation to the UHP. Thus the O(µn)

correction to the dynamical one-point function 〈φk〉dyn is a linear combination of terms of

the form (A.3) (weighted by a set of coefficients an,m, as in (2.23) below). Collecting all

this, the O(µ) correction with all chemical potentials is given by

〈φk(σ, t)〉dyn = ake
−2π∆kt/β

(

1−
∑

n=3

Qn,kµ̃n

(
2πt

β
+ constant

)

+O(µ2)

)

+ . . . ,

µ̃n =
µn

βn−1
, ∆k = hk + h̄k = 2hk

Qn,k = 2

⌊n/2−1⌋
∑

m=0

an,min−2m(2π)n−2m−2qn−2m,k

= in(2π)n−22qn,k + in−2(2π)n−4an,2 2qn−2,k + . . . , (2.23)

Note that for W3 deformations, the expression for Q3 as in (2.22) corresponds only to the

first term in the above series expression for Qn. This is because the W3 current is a primary

field and does not mix with any lower W current under a conformal transformation. From

n = 4 onwards, the additional terms in Qn,k’s represent the mixing of Wn currents with

Wn−2m under conformal transformations.

2.2.2 Higher order µ-corrections

Let us first consider that O(µ2
n) correction:

〈φk(w, w̄)〉connstr |µn

2 ≡ (µn/4)
2

2!
(〈{WnWn, φk(w, w̄)}〉connstr + 2〈Wnφk(w, w̄)Wn〉connstr ) (2.24)

Again, for holomorphic (or antiholomorphic) primary fields φk(w), it is straightforward to

generalize (2.19) to this order.

〈φk(w)〉connstr |µn

2 =
µ2
n

2!
〈WnWnφk(w)〉conncyl (2.25)

For a primary field of the form φk(w, w̄) = ϕk(w)ϕk(w̄), proceeding as in the previous

subsection, we get

〈φk(w)〉connstr |µn

2 =
1

2!

(

Qn,kµ̃nt
2π

β

)2

+ µ2
n(constant× t+ constant) + . . . (2.26)
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The essential ingredient in this calculation is

Inm(z, z′|Γ1,Γ2) ≡
∫

Γ1

dz1 zn−1
1

∫

Γ2

dz2 zm−1
2 fnm(z1, z2, z, z

′),

fnm(z1, z2, z, z
′) =

〈Wn(z1)Wm(z2)ϕk(z)ϕ
∗
k(z

′)〉conn
C

〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

(2.27)

By repeating the strategy of (A.10), we get

Coefficient of [log(−z′)− log(−z)]2 in Inm(z, z′|Γ1,Γ2)

= Residuez1=z

[

Residuez2=z

(〈Wn(z1)Wm(z2)ϕk(z)ϕ
∗
k(z

′)〉conn
C

〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

)]

= qn,k qm,k

(2.28)

where we have first used the Wm(z2)ϕk(z) OPE, and then the Wn(z1)ϕk(z) OPE. In a

manner similar to that in appendix A.2, we conclude the following structure of Inm(z, z′):

Inm(z, z′|Γ1,Γ2) = qn,k qm,k([log(−z′)− log(−z)] + constant)

× ([log(−z′)− log(−z)] + constant) (2.29)

Note that at late times t ≫ β, ([log(−z′) − log(−z)] → 2(2πt)/β and dominates over the

constant term (the precise sense is that of (2.34)). Similar to appendix A.2, the 4× 4 = 16

locations of the contour-pairs (Γ1,Γ2),(Γ1,Γ
′
2), (Γ1, Γ̃2),(Γ1, Γ̃

′
2), . . . ., all contribute equally,

therefore converting (µn/4)(µm/4) → µnµm. Combining all these, we get (2.26). The

charges qn that are defined by the Wnϕ OPE and appear in (2.28), get multiplied by some

constants12 and shifted by lower Wn−2k charges to give the Qn in (2.28), as in (2.23).

Arbitrary orders and exponentiation: it is straightforward to generalize the above

O(µ̃2) calculation to higher orders in the perturbation in chemical potentials. Thus, at the

order
∏r

i=1 µni
, there are r insertions of W-currents, leading to integrals of the form

In1n2...nr(z, z
′|Γ1,Γ2, . . . ,Γr)

≡
∫

Γ1

dz1 zn1−1
1

∫

Γ2

dz2 zn2−1
2 . . .

∫

Γr

dz2 znr−1
r fn1n2...nr(z1, z2, . . . , zr; z, z

′),

fn1n2...nr(z1, z2, . . . , zr; z, z
′)

=
〈Wn1(z1)Wn2(z2) . . .Wnr(zr)ϕk(z)ϕ

∗
k(z

′)〉conn
C

〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

(2.30)

12Each Wn current comes with a factor of in

2π

(

2π
β

)n−1

, as in (2.9).
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Again, repeating the strategy of (A.10), we get the following leading (viz. (log)r) contri-

bution (see (2.34) for the definition of the leading-log contribution)

Coefficient of [log(−z′)− log(−z)]r in In1n2...nr(z, z
′|Γ1,Γ2, . . . ,Γr)

= Residuez1=z

[

. . .Residuezr−1=z

{

Residuezr=z

(〈Wn1(z1) . . .Wnr−1(zr−1)Wnr(zr)ϕk(z)ϕ
∗
k(z

′)〉conn
C

〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

)}]

= qn1,k . . . qnr−1,k qnr,k (2.31)

where we have first used the Wnr(zr)ϕk(z) OPE, then Wnr−1(zr−1)ϕk(z) OPE, etc. As in

the O(µ2) calculation above, we obtain the following behaviour at late times

In1n2...nr(z, z
′|Γ1,Γ2, . . . ,Γr)

= qn1,k . . . qnr−1,k qnr,k ([log(−z′)− log(−z)] + constant)

× . . .× ([log(−z′)− log(−z)] + constant)
︸ ︷︷ ︸

r terms

(2.32)

The two equations above show that the leading log contribution to (2.30) from every contour

integral of the Wni
current contributes the factor qni

[log(−z′)− log(−z)]. This is the first

basic ingredient for the exponentiation we are going to find. Furthermore, it is easy to

see that the leading log contribution is the same irrespective of where each contour Γi

is placed (out of 4 possible choices, e.g. Γ1,Γ
′
1, Γ̃1, Γ̃

′
1 in figure 1). As before we must

combine the contribution of all positions of the contours, which, therefore, amounts to

multiplying the result for (2.30) by 4r which converts the original coefficients coming from

exp[−∑

n µnWn/4] as follows

∏r
i=1 µi/4

r!
→

∏r
i=1 µi

r!
.

This is the second basic factor leading to the exponentiation. Combining all these, and

incorporating some additional constants (see footnote 12) we get the following, leading,

order (µn1 . . . µnr) contribution

〈φk(w)〉connstr |µn1 ...µnr
r =

1

r!

r∏

i=1

(

Qni,kµ̃ni

2π

β

)

+O(µrtr−l) (2.33)

Once again, the constants Qn are related to the qn as in (2.23)) in a manner similar to the

O(µ̃) and the O(µ̃2) calculation above. We note that the leading log contribution used in

this paper can be isolated by considering a scaling

µ̃n → 0, t̃ ≡ t

β
→ ∞, such that µ̃nt̃ = constant. (2.34)

The second term in (2.33), or for that matter, in (2.26), is subleading at large times in the

sense of this scaling.
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G0(z) G0(z) fn log(z) G0(z) fnfm  log(z)2/2!

Wn
Wn

Wm

+ + +  ......

z zz

Figure 2. The schematics of the calculation of the one-point function. The first term represents

the zero-order boundary Green’s function (2.3) without chemical potentials (the shading indicates

the boundary of the upper half plane). The second term represents the O(µn) correction, which

involves one insertion of a Wn-charge (which is an integral over the z1-contour. As explained in

the text, at long times, this insertion amounts to multiplying the zero order term by a term of

the form fn log(z), where fn is described in (2.23). The third term represents insertion of two

such W -charges; as we explained in the text (see (2.26) and below), each insertion again amounts

to multiplying by the factor mentioned above, along with a factor of 1
2! . The pattern continues,

to ensure an exponentiation to G0(z) z
∑

n
fn , as in (2.35). Since at long times G0(z) ∼ e−γ

(0)
k

t

(see (2.3)), and z ∼ e−2πt/β , adding the chemical potentials amount to a shift of the exponent

γ
(0)
k → γk as in (1.6).

Using the above results, we now have, for primary fields of the form φk(w, w̄) =

ϕk(w)ϕk(w̄)

〈φk(w, w̄)〉str = ake
−

2π∆kt

β

[

1−
∑

n

µ̃n Qn,k

(
2πt

β
+ const

)

+
1

2!

∑

n,m

µ̃nµ̃m Qn,k

(
2πt

β
+ const

)

Qm,k

(
2πt

β
+ const

)

+ . . .

+
1

r!

∑

{ni}

r∏

i=1

µ̃ni
Qni,k

( (
2πt

β
+ const

)

. . .

(
2πt

β
+ const

)

︸ ︷︷ ︸

r terms

)

+ . . .

]

= ake
−2πt/β(∆k+

∑
n µ̃nQn,k+O(µ̃2)) = ake

−γkt (2.35)

where we have absorbed some constant factors in ak. γk is given by (1.7); Qn,k are the

shifted Wn charges of φk as defined in (2.23). The proof of the above equation for general

quasiprimary operators φk(w, w̄) works out much the same way as in case of the O(µ)

terms, as discussed in section 2.2.1. We emphasize that it is only the leading contributions

at large times which we have proved here to exponentiate. Thus, we do not claim that

the constant terms marked “const” in the above equation are all the same. As we have

remarked before, the leading contributions can be isolated using the scaling mentioned

in (2.34).

The schematics of the above calculation is explained in the figure 2.

3 Calculation of I(t)

Let us rewrite the expression for the thermalization function I(t) (1.8) in the form

I(t) = Zsc/
√

ZssZcc = Ẑsc/

√

ẐssẐcc,
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Zsc ≡ Tr(ρdyn,A(t)ρeqm,A(β, µ)), Ẑsc = Zsc/(ZsZc)

Zss ≡ Tr(ρdyn,A(t)ρdyn,A(t)), Ẑss = Zss/Z
2
s ,

Zcc ≡ Tr(ρeqm,A(β, µ)ρeqm,A(β, µ)), Ẑcc = Zcc/Z
2
c ,

Zs = Tr(ρdyn(t)) = 〈ψ0|ψ0〉, Zc = Tr(ρβ,µ) (3.1)

In appendix B we explain how to compute I(t) using the short interval expansion, valid

when the length of the interval l is small compared with the other time scales β and t in

the problem. We reproduce the main formula (B.4) for our purpose, where we explicitly

denote the dependencies on the length l of the interval, the inverse temperature β and the

chemical potentials µ (the dependence on β on the r.h.s. is implicit; the one-point functions

depend on both β and µ — see section 2).

Ẑsc(l, β, µ) =
∑

k1,k2

Ck1,k2(l)〈φk1(w1, w̄1)〉µstr〈φk2(w2, w̄2)〉µcyl,

Ẑss(l, β, µ) =
∑

k1,k2

Ck1,k2(l)〈φk1(w1, w̄1)〉µstr〈φk2(w2, w̄2)〉µstr,

Ẑcc(l, β, µ) =
∑

k1,k2

Ck1,k2(l)〈φk1(w1, w̄1)〉µcyl〈φk2(w2, w̄2)〉µcyl (3.2)

It is understood, for the logic of the short interval expansion to go through, that all contours

which represent insertion of the W -charges (see figure 1) are drawn outside of the small

disc-like region of both sheets of figure 4.

3.1 Proof of thermalization

Using the short-interval expansion above, and the long time behaviour of one-point func-

tions from section 2), it is easy to prove that the system thermalizes in the sense of (1.10)

or (1.11).

To prove this, note that it is only the holomorphic (or antiholomorphic) fields φk which

possibly have non-zero expectation values in the long time limit (2.6). For these fields, the

one-point functions on the cylinder and on the strip agree (see (2.7), (2.19), (2.25) ). By

virtue of (3.2), we therefore have in the long time limit Zsc = Zss = Zcc. Hence using the

expression (3.1) for the thermalization function we get I(t → ∞) = 1 which proves (1.10)

and consequently (1.11).

The above-mentioned equality of one-point functions between the strip and cylinder

geometries for holomorphic (or antiholomorphic) fields imply the same for the conserved

Wn- (or W̄n)- currents. This, therefore, proves that

〈ψ(t)|Wn|ψ(t)〉 = Tr(Wnρeqm) (3.3)

Note that in proving this, we have used the correspondence (1.4) between the parameters of

the initial state and the putative equilibrium state. The above equation, therefore, proves

the correspondence (1.4).
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3.2 Thermalization rate

To evaluate the rate of approach of I(t) to its asymptotic value 1, we organize the terms

in Ẑsc, Ẑss, Ẑcc as follows

Ẑsc = C0,0(1 + Ssc
1 ), Ssc

1 =
∑

a

Ĉa,0(〈φa〉µstr + 〈φa〉µcyl) +
∑

ab

Ĉa,b〈φa〉µstr〈φb〉µcyl

Ẑss = C0,0(1 + Sss
1 + Sss

2 ), Sss
1 = 2

∑

a

Ĉa,0〈φa〉µstr +
∑

ab

Ĉa,b〈φa〉µstr〈φb〉µstr,

Sss
2 =

∑

k

Ĉk,k(〈φk〉µstr)2

Ẑcc = C0,0(1 + Scc
1 ), Scc

1 = 2
∑

a

Ĉa,0〈φa〉µcyl +
∑

ab

Ĉa,b〈φa〉µcyl〈φb〉µcyl (3.4)

where a, b, . . . denote descendents of the identity operator, k labels other primaries (than

the identity) and their descendents. Ĉ ≡ C/C0,0.

3.2.1 µ = 0

Let us first consider the case of zero chemical potentials. Using the results in sections 2,

and appendices A and B.1, we get

Ssc
1 = − aT l̃

2
(

1 +O(l̃)2
)

+ aT T̄ l̃
4e−8πt/β

(

1 +O(l̃)2
)

+O(e−8πt̃)

Sss
1 = − aT l̃

2
(

1 +O(l̃)2
)

+ 2aT T̄ l̃
4e−8πt̃

(

1 +O(l̃)2
)

+O(e−8πt̃)

Sss
2 =

∑

k

[

ak l̃
4hke−8πhkt/β

(

1 +O(l̃)2
)

+O(e−12πhk t̃)
]

Scc
1 = − aT l̃

2
(

1 +O(l̃)2
)

aT =
cπ2

24
, aT T̄ =

AT T̄π
4

8c
ak =

A2
k

nk

(π

2

)4hk

(3.5)

To this order, it is easy to see that the contribution to I(t) from descendents of identity,

demarcated by aT , aT T̄ , vanishes. The leading contribution to I(t), demarcated by ak,

occurs only in Ẑss and comes from (〈φm(z, z̄)〉str)2 for which hk is the minimum (= hm) (this

could be a field which appears after a conformal transformation of the original quasiprimary

field). The time-dependence shown of Sss
2 comes from (2.3). Using this, we get

I(t) = 1− α exp[−2γ(0)m t] + . . . , γ(0)m = 2π∆m/β (3.6)

This is of the form (1.9) for µ = 0, with

α ≡ A2
m

nm

(π

2

)4hm

(l̃)4hm

(

1 +O(l̃)2
)

(3.7)

The discarded terms in (3.6) are faster transients. This proves (1.9) for zero chemical

potential. This result has already appeared in [32].13

13Our exponent differs from Cardy’s value by a factor of 2.
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3.2.2 µ 6= 0

The generalization of the above result to the case of non-zero chemical potentials is straight-

forward. Once again, the dominant time-dependence arises from (〈φm(z, z̄)〉µstr)
2
in the Sss

2

or Ẑss. The time-dependence (1.9) follows by using (2.35) in Sss
2 .

3.3 Properties of Q̂

From the asymptotic behaviour (1.9) of the thermalization function we indicated the

asymptotic behaviour (1.13) of the dynamical reduced density matrix ρ̂dyn(t). By using

the long time behaviour of the one-point functions (1.6), we can easily deduce the following

dominant behaviour of overlaps of Q̂ with various quasiprimary fields at late times

Tr(Q̂φk(t)) ∝ e−(γk−γm)t, Tr(Q̂φm(t)) → constant.

4 Decay of perturbations of a thermal state

We found in the previous sections that the long time behaviour of the reduced density

matrix ρdyn,A(t) resembles that of a thermal ensemble plus a small deformation which

decays exponentially. We will find in the next section that the thermal ensemble (or

more accurately the generalized Gibbs ensemble) corresponds to a (higher spin) black

hole geometry in the bulk. The small perturbation of the equilibrium ensemble is thus

expected to correspond to a small deformation of the black hole geometry. Consequently,

the exponential decay of the deformation in the CFT should correspond to a ‘ringing-down’

or a quasinormal mode in the bulk.

We will address the above issue in the next section which deals with bulk geometry.

However, in order to make the correspondence of the above paragraph more precise, in this

section we will directly present a CFT computation of the decay of a perturbation to a

thermal state. Note that this computation is, in principle, different from the exponential

decay of the one-point function in the quenched state, (1.6). However, what we will find is

that the long time behaviour (1.6) of an operator φk(0, t) in the quenched state is the same

as that of its two-point function (4.1) in the thermal state (1.3) (with chemical potentials).

The latter measures the thermal decay of a perturbation and is more directly related to a

black hole quasinormal mode. Throughout this section, we will assume that the conformal

dimensions of φk satisfy hk = h̄k.

We define the thermal two-point function as14

G+(t, 0;β, µ) ≡
1

Z
Tr

(

φk(0, t)φk(0, 0)e
−βH−

∑
n µnWn

)

(4.1)

By the techniques developed in the earlier sections, a computation of this quantity amounts

to calculating the following correlator on the plane

〈φk(z, z̄)φk(y, ȳ)e
−

∑
n µnWn〉, z = ie−2πt/β , z̄ = −ie2πt/β , y = i, ȳ = −i (4.2)

14We use the same notations as in [45].
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|G+(t,l)|

l=6 l=8

t

Figure 3. Plots of the thermal Green’s function G+(t, l;β, 0) for β = 2π, ∆k = 1.5. The curve

on the left (blue) is for l = 6, and the curve on the right (orange) is for l = 8. Note that the

exponential decay in time occurs for times larger than l.

where the µn-deformations are understood as an infinite series of contours as in the previ-

ous section.

For µ = 0, the above two-point function is standard. Including the Jacobian of trans-

formation, we get

G+(t, 0;β, 0) =

(
2π

β

)4hk [

(ie−2πt/β − i)(−ie2πt/β + i)
]−2hk t→∞−−−→ const e−2πt∆k/β , (4.3)

which clearly matches the long time behaviour of the one-point function (1.6) in the

quenched state for µ = 0. Here ∆k = 2hk.

In the above, we considered the thermal Green’s function for two points which are

both at the same spatial point σ = 0. It is easy to compute the Green’s function when the

two points are spatially separated by a distance l, say with σ1 = l and σ2 = 0. We get

G+(t, l;β, 0) ≡
1

Z
Tr(φk(l, t)φk(0, 0)e

−βH)

=

[
2π

β
eπl/β

]4hk (

(ie2π(l−t)/β − i)(−ie2π(l+t)/β + i)
)−2hk

t,l≫β−−−→
{
const e−2πt∆k/β , (t− l) ≫ β

const e−2πl∆k/β , (l − t) ≫ β
(4.4)

The coordinates of the two points, in the notation of (4.2) are modified here to z =

ie2π(l−t)/β, z̄ = −ie2π(l+t)/β , y = i, ȳ = −i. The prefactor with the square bracket comes

from the Jacobian of the transformation from the cylinder to the plane. The behaviour

of the Green’s function is shown in figure 3. It is important to note that the exponential

decay, found in (1.6) shows up only for time scales t ≫ l.

The effect of turning on the chemical potentials can be dealt with as in the previous

sections. At O(µn), we will have, as before, a holomorphic contribution and an antiholo-

morphic contribution. The former is proportional to

〈φk(z̄)φk(ȳ)〉 ×
∫

Γ
dz1z

n−1
1 〈Wn(z1)φk(z)φk(y)〉 (4.5)
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As we see, the structure of the integral is the same as in the previous section. As before,

logarithmic terms appear in the above integrals which give the leading, linear, t-dependence.

Similar remarks also apply to the antiholomorphic contour. Since the calculations are very

similar to those in the previous two sections, we do not provide all details. By resumming

the series over the infinite number of contours, we find in a straightforward fashion that

G+(t, 0;β, µ)
t→∞−−−→ G+(0, 0;β, 0)b(µ)e

−γkt (4.6)

where b(µ) is time-independent, and is of the form b(µ) = 1 +O(µ). This long time decay

is the same as that of the one-point function (1.6) in the quenched state, as claimed above.

For points separated by a distance l, the above exponential decay shows up for t ≫ l, as

in (4.4).

In the above, we have discussed the two-point function in real space. It is straight-

forward to convert the result (4.4) without chemical potentials to Fourier space, which

develops poles at

ωk,m|µ=0 = −i
2π

β
(∆k + 2m), m = 0, 1, 2, . . . (4.7)

Our results in (1.6) can be interpreted as a shift, caused by the presence of the chemical

potentials µn, of the dominant pole ωk,0|µ=0 to

ωk,0 = −i
2π

β

(

∆k +
∑

n

µ̃nQn,k

)

= −iγk, (4.8)

where the notation is the same as that of (1.6). In this paper we will not address the

question of the shift of the subdominant poles ωk,m (for m = 1, 2, . . .) due to chemical

potentials (the current status of these can be found in [26, 27, 46]).

Two-point functions of the kind (4.1), for a single chemical potential µ3, and up to

order µ2
3, have appeared earlier in [26] (calculations up to O(µ5

3) have appeared in [27]).

What we find in our paper is that at large times, the perturbation series in µn, up to all

orders in all chemical potentials, can be resummed, to yield the leading correction to the

thermalization rate in the presence of chemical potentials.

At a technical level, the one-point function in the quenched state corresponds to a one-

point function in a geometry with a boundary, and for operators considered here, these turn

into a two-point function on the plane, by virtue of the method of images. The thermal

decay naturally involves a two-point function on the plane15 and agrees with the above

two-point function at late times.

5 Holography and higher spin black holes

Zero chemical potential: as remarked in the Introduction, a global quantum quench

described by an initial state of the form (1.5), for large central charges and zero chemical

15Actually the thermal calculation involves a product of two such factors, one holomorphic and the other

antiholomorphic, but one of the factors just gives an overall constant and only one factor leads to the

important time-dependence.
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potentials, has been shown in [34–36] to be dual to one half of the eternal BTZ (black

string) geometry, whose boundary represents an end-of-the-world brane.

In an independent development, it was found in [47] that the quasinormal mode of a

scalar field Φk(σ, t, z) of massm in a BTZ background (dual to a CFT operator φk of dimen-

sion ∆k ≡ 1+
√
1 +m2) is of the form exp[−2π∆t/β] at large times. This time-dependence

agrees with the CFT exponent in (4.4) exactly. This shows that the exponential decay of a

CFT perturbation to a thermal state corresponds to the decay of the corresponding scalar

field in the bulk geometry. This result has been extended to higher spin fields in the BTZ

background in [48].

Non-zero chemical potentials: in case the CFT has additional conserved charges, in

particular if it has a representation of a W∞ algebra (and consequently the hs(λ) alge-

bra [37]), then the bulk dual corresponding to those conserved charges have been conjec-

tured to be the conserved higher spin charges of higher spin gravity. In particular, [38, 39]

have shown that if one interprets the grand canonical ensemble (1.4) (more generally, the

GGE) in the framework of an hs(λ) representation, then the bulk dual corresponds to a

higher spin black hole.

Thus, we would like to conjecture that the bulk dual of the quantum quench with

chemical potentials, would correspond to a gravitational collapse to a higher spin black hole.

As an important consistency check, by analogy with the case with zero potential, in the

present case too, the leading quasinormal mode (QNM) of a scalar field Φk(σ, t, z) should

have a time-dependence given by (4.6). Following the results in [46] (see also [26, 27, 40])16

we find that at late times t ≫ β the QNM for the hs(λ) scalar field Φ+ behaves, up to

O(µ3), as e
−iω

k,0
t, where

ωk,0 = −i
2π

β

(

1 + λ+ µ̃3
1

3
(1 + λ)(2 + λ)

)

(5.1)

where the index k here refers to the operator φk dual to the scalar field Φ+. Noting that

for this operator we have ∆k = 1 + λ, and Q3,k = 1
3(1 + λ)(2 + λ) [26, 27], we see that

the QNM frequency ωk,0 agrees, to the relevant order, with the pole (4.8) of the thermal

2-point function which, in turn, is related to the thermalization exponent by the relation

ωk,0 = −iγk, with γk given in (1.6).

6 Discussion

In this paper, we considered quantum quench to a critical point which is described by

a 2D CFT with additional conserved charges besides the energy. We used a generalized

ansatz (1.1) for the quenched state which is obtained by regulating a conformal boundary

state with multiple cut-off parameters.17 It was found that local observables in such a

16We wish to thank Alejandro Cabo-Bizet and Viktor Giraldo-Rivera for informing us that the difference

between equation (5.1) above and the corresponding equation (4.2) in a previous version of their paper [46]

was due to a typo, which has now been corrected in the new version of their paper.
17As explained in footnote 1, the ansatz (1.1) generalizes the Calabrese-Cardy (CC) state. It is possible

to verify, for specific quench protocols in simple integrable theories [31], that the quenched state actually
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state thermalize to an equilibrium described by a grand canonical ensemble (1.4) with

temperature and chemical potentials related to the cut-off parameters. We computed the

thermalization rate for various observables, including the reduced density matrix for an

interval. It was found that the same rate appears also in the long time decay of two-point

functions in equilibrium (see (1.6) and (1.14)).

In the context where the number of conserved charges is infinite, so that the CFT is

integrable, our results prove that thermalization is generic to all integrable CFTs, provided

that the charges are derived from local conserved currents and that the spectrum of confor-

mal dimensions has a gap. By contrast, to our knowledge, there is no such general proof of

thermalization for integrable models with mass gaps (although a large number of examples

are known, see page 3). It is interesting to mention that these models typically have a

power-law relaxation to the GGE (see, e.g. [21–23]),18 in contrast with the exponentially

fast relaxation found in this paper for the conformal case.

We found that for integrable models, the reduced density matrix reduces to that in an

equilibrium ensemble (a generalized Gibbs ensemble, GGE) which holographically corre-

sponds to a higher spin black hole [38, 39]. We found that the thermalization rate found

above agrees with the leading quasinormal frequency of the higher spin black hole; this

constitutes an additional, dynamical, evidence for the holographic correspondence between

the global quenches in this paper and the evolution into the higher spin black hole.

One of the main technical advances made in this paper is the resummation of leading-

log terms at large times, presented in section 2.2.2, which leads to exponentiation of the

perturbation series, leading to the thermalization rate, presented in (1.6), (2.35), as a

function of chemical potentials. This allows us to also compute the effect of chemical

potentials on the relaxation times of thermal Green’s functions. Another technical ad-

vance consists of the computation of the long-time reduced density matrix (1.9), using a

short-interval expansion, which allows us to prove thermalization of an arbitrary string of

local observables.

As we mentioned above, our ansatz of the initial state (1.1) for the post-quench evo-

lution accommodates additional details of the quench procedure in terms of the additional

conserved charges (see footnotes 1 and 17). We expect that the results we obtain regarding

equilibration and relaxation rates, when expressed in terms of the conserved charges, will

be general, irrespective of the specific choice of the initial state. We should also mention

that the effect of the higher Wn charges, which are higher dimension operators, is sub-

dominant at low energies (as is clear from the expression of the thermalization exponents).

In general, we would expect that a generic quenched state would correspond to deforming

the boundary state by a set of irrelevant operators; however, a generic irrelevant operator

which is not associated with additional conserved charges is expected not to modify the

final equilibrium ensemble. We hope to return to this important question in the near future.

takes the form (1.1). In case of a sudden quench which is characterized by a single scale, e.g. the initial mass

gap, the parameters ǫn are all related; whereas for a more general quench protocol with multiple scales, our

generalization of the CC state accommodates the additional scales.
18The power-law relaxation in these works can be understood in terms of a non-relativistic dispersion

relation of quasiparticles. In case of a critical quench, the quasiparticles have a relativistic dispersion

relation, leading to an exponential decay.
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One might wonder whether the results presented in this paper are tied to the use of

translationally invariant quenched states such as (1.1), whose energy density and various

charge densities are uniform. We will address the question of inhomogeneous quench in a

forthcoming paper [31], both in the CFT and in the holographic dual, using the methods

of [49] where we create an inhomogeneous energy density by applying conformal transfor-

mations. It turns out [31] that if the initial state has inhomogeneities in a compact domain

and has uniform energy densities outside, local observables again thermalize asymptoti-

cally with exponents governed by the uniform densities. Other important issues involve

local quenches (see, e.g. [50, 51]), and compact spatial dimensions. The issue of thermal-

ization when space is compact is quite subtle. It has been shown in [32] that at large

times one can have the phenomenon of revival (observables effectively returning to their

initial values). The dynamical entanglement entropy for a quantum quench in a space with

boundaries is an interesting, related, issue; we hope to come back to this in a forthcoming

publication [52].
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A Some details on one-point functions

Here we collect some additional helpful material on the one-point functions discussed in

this paper.

A.1 A few explicit one-point functions with zero chemical potentials

Case k = descendent of identity: in this case, φk(w, w̄) is of the form T, T̄ , or : T T̄ :

or some descendents thereof. Under a conformal transformation (2.2), these operators pick

up a c-number term in addition to a term proportional to the corresponding operator on

the plane/UHP. We will give some examples to illustrate the calculation

1. Cylinder: in this case

〈T (w)〉cyl =
〈(

− cπ2

6β2
− 4π2

β2
z2T (z)

)〉

UHP

= − cπ2

6β2

〈: T T̄ :(w, w̄)〉cyl =
〈([

− cπ2

6β2
− 4π2

β2
z2T (z)

][

− cπ2

6β2
− 4π2

β2
z̄2T̄ (z̄)

])〉

UHP

=

(
cπ2

6β2

)2

(A.1)
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2. Strip: in this case

〈T (w)〉str =
〈(

− cπ2

6β2
− 4π2

β2
z2T (z)

)〉

UHP

= − cπ2

6β2
= 〈T (w)〉cyl

〈: T T̄ :(w, w̄)〉str =
〈([

− cπ2

6β2
− 4π2

β2
z2T (z)

][

− cπ2

6β2
− 4π2

β2
z̄2T̄ (z̄)

])〉

UHP

=

(
cπ2

6β2

)2

+AT T̄ (z − z̄)−4 =

(
cπ2

6β2

)2

+ aT T̄ e
−8πt/β + . . . (A.2)

where AT T̄ , aT T̄ are constants as in (2.3) and (2.4).

Case k = descendent of other primaries: in this case,

1. cylinder: the one-point function vanishes as in the case of primaries.

2. strip: the one-point function can be related to one-point function of primaries which

is dealt with above.

A.2 Some details on O(µn) correction to the one-point function

In this section we will consider the following integrals which arise in connection with O(µn)

correction to the one-point function 〈φ(σ, t)〉dyn:

In(z, z
′|Γ1) ≡

∫

Γ1

dz1 zn−1
1 fn(z1, z, z

′), gn(z1, z, z
′) ≡

∫

dz1 zn−1
1 fn(z1, z, z

′)

fn(z1, z, z
′) =

〈Wn(z1)ϕk(z)ϕ
∗
k(z

′)〉conn
C

〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

= qn,k
(z − z′)n

(z1 − z)n(z1 − z′)n
(A.3)

The second integral on the first line is an indefinite integral. The integrals above can be

explicitly computed. E.g.

g3(z1, z, z
′) = q3,k

[

R3(z, z
′)(log(z1 − z)− log(z1 − z′))− z2

2(z1 − z)2
+

z′2

2(z1 − z′)2

+
z′(2z + z′)

(z − z′)(z1 − z′)
+

z(2z′ + z)

(z − z′)(z1 − z)

]

I3(z, z
′|Γ1) = q3,k

[

R3(z, z
′)(− log(−z) + log(−z′)) + 3

(z + z′)

(z − z′)

]

R3(z, z
′) ≡ (z2 + 4zz′ + z′2)

(z − z′)2
(A.4)

Note that I3 is essentially obtained from the lower limit of the integral, i.e. from −g(0, z, z′).

The contour Γ1 in I3 specifies which branch of the log is to be taken. In particular

I3(z, z
′|Γ1)− I3(z, z

′|Γ̃1) = −2πiq3,k R3(z, z
′) (A.5)

In the long time limit (2.6), we get

I3(z, z
′|Γ1) = I3(z, z

′|Γ̃1) = 2q3,kt(2π/β) + q3,k × const +O(e−2πt/β) (A.6)
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In this equation we have displayed the principal value of the relevant integrals (the discon-

tinuity (A.5) tells us the coefficient of the log term or the linear t term).

However, we would like to understand the above results more simply, by using the

Wn(z1)ϕk(z) OPE which is of the form:

Wn(z1)ϕk(z) = qn,k
ϕk(z)

(z1 − z)n
+

n−1∑

i=1

αn,i
ϕk,i(z)

(z1 − z)n−i
+ regular terms (A.7)

where ϕk,i(z) is of dimension hk + i.19 Using this, we get an expansion for the connected

3-point function of the form:

〈Wn(z1)ϕk(z)ϕ
∗
k(z

′)〉conn
C

〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

=
qn,k

(z1 − z)n
+

Cn,1

(z1 − z)n−1(z − z′)
+O(z − z′)−2 (A.8)

Performing the integral in (A.3),

gn(z1, z, z
′) = qn,k

(

log[z1 − z]− (n− 1)
z

z1 − z
+ . . .

)

+
Cn,1

z − z′
(z1 − z + (n− 1)z log[z1 − z] + . . .) + . . .

The ellipsis in each round bracket represents terms with higher powers of 1/(z1 − z) (up

to a maximum of (z1 − z)−n); successive round brackets themselves are arranged in higher

inverse powers of z − z′. Using the Wn(z1)ϕ
∗
k(z

′) OPE in a similar fashion and using the

symmetry property gn(z1, z, z
′) = (−1)ngn(z1, z

′, z) we can arrive at a general structure

gn(0, z, z
′) = qn,k(log[−z]− log[−z′])Rn(z, z

′) + . . .

where Rn(z, z
′) = (−1)n−1Rn(z

′, z) is of the form Pn−1(z, z
′)/(z − z′)n−1 (Pn−1(z, z

′) is a

homogeneous symmetric polynomial of degree zero). See the explicit form of Rn for n = 3

in (A.4). The omitted terms are all ratios of homogeneous polynomials in (z, z′) of the

same degree in the numerator and in the denominator. This implies that we have, in the

long time limit (2.6)

In(z, z
′|Γ1) = I3(z, z

′|Γ̃1) = 2qn,k(2π/β)t+ qn,k × const +O(e−2πt/β) (A.9)

which, of course, agrees with (A.6).

Note that the dominant time-dependence 2qn,kt(2π/β) comes from the long-time limit

of the coefficient Rn(z, z
′) of the log terms, which can be read off from the discontinuity

In(z, z
′|Γ1) − In(z, z

′|Γ̃1) (see (A.5)). Now, the contour
∫

Γ1−Γ̃1
dz1 can be deformed to a

very small circle
∮
Γzdz1 around the point z; therefore the leading long-time behaviour

R
(0)
n (z, z′) can be derived by using the leading OPE singularity in (A.7) and computing the

residue at z1 = z:

Coefficient of [log(−z′)− log(−z)] in In(z, z
′)

= Residuez1=z

(〈Wn(z1)ϕk(z)ϕ
∗
k(z

′)〉conn
C

〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

)

≡ qn,kR
(0)
n (z, z′) = qn,k (A.10)

19This is the general form; some of the αn,i coefficients may, of course, vanish.
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Figure 4. Two different geometries, the strip and the cylinder, glued along the cut as described in

the text. The method of the short interval expansion allows us to compute the functional integral

over this geometry by replacing a small tube enclosing the two glued cuts by a complete basis of

operators φk1
⊗ φk2

where the operators live in the two Hilbert spaces.

B Short interval expansion

In this section we will explain a formalism suitable for computing partition functions of

the kind that appear in (3.1). For convenience we will first compute these quantities in

Euclidean time τ = it and later analytically continue back to Lorentzian time. With this,

each of the expressions Zsc, Zss, Zcc is of the form

Tr(ρA,1ρA,2) =

∫

geometry 1
Dϕ1

∫

geometry 2
Dϕ2 δ(F [ϕ1, ϕ2]) exp (−S[ϕ1]− S[ϕ2]) (B.1)

where S[ϕ] represents the action for the CFT (with fields ϕ) and the delta-functional

in the measure represents a gluing condition between a geometry ‘1’ and a geometry ‘2’

along a ‘cut’ which is the location, at a particular time τ , of the spatial interval A : σ ∈
(−l/2, l/2).20 For Zss, both geometries are that of a strip of the Euclidean plane described

by complex coordinates (w, w̄) = σ± iτ defined by boundaries at τ = ±β/4 with boundary

conditions determined by the boundary state |Bd〉 introduced in (1.5). For Zcc, both

geometries are that of a cylinder cut of the Euclidean plane with identified boundaries at

τ = −β/4, 3β/4. The geometries for both Zss and Zcc are familiar from calculations of

Entanglement Renyi entropy (of order 2) and can be calculated from appropriate correlation

functions of twist fields [53] which exchange two identical geometries. For Zsc, the two glued

geometries are different (that of a strip and a cylinder), hence the method of twist operators

do not apply in a straightforward fashion. (See figure 4). In this paper, we will therefore,

employ the method of the short interval expansion.

The idea of the short interval expansion [54] is as follows. To begin, we express the

functional integral (B.1) as an overlap of two wavefunctions in H1 ⊗ H2, as follows

Z12 = Tr(ρA,1ρA,2) = 〈ψout|ψin〉 =
∫

w1∈D1

Dϕ1(w1)

∫

w2∈D2

Dϕ2(w2) ψin[ϕ1, ϕ2] ψ
∗
out[ϕ1, ϕ2]

ψin[ϕ1, ϕ2] ≡
∫

w1∈D1

Dϕ1(w1)

∫

w2∈D2

Dϕ2(w2)δ(ϕ1|∂D1 − ϕ1)

× δ(ϕ2|∂D2 − ϕ2)δ(F [ϕ1, ϕ2]) exp (−S[ϕ1]− S[ϕ2])

20To be precise, δ[F ] = δ(ϕ1(A<)−ϕ2(A>)) δ(ϕ1(A>)−ϕ2(A<)), where A< (A>) represents the limiting

value from below (above) the cut.
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ψout[ϕ1, ϕ2] ≡
∫

w1 /∈D1

Dϕ1(w1)

∫

w2 /∈D2

Dϕ2(w2)δ(ϕ1|∂D1 − ϕ1)δ(ϕ2|∂D2 − ϕ2) exp (−S[ϕ1]− S[ϕ2])

(B.2)

Here D1 (respectively, D2) is a small disc drawn around the cut in geometry 1 (respectively,

geometry 2).

Note that only |ψin〉 depends on the gluing condition since the delta functional in the

measure does not affect |ψout〉. The basic point of the short interval is that in the limit

when the length l of the cut is small compared with the characterizing length scale of

the geometries (in our case, when l ≪ β), the wavefunction ψin[ϕ1, ϕ2] becomes jointly

localized at the centre (w1, w̄1) of the disc D1 and at the centre (w2, w̄2) of the disc D2,
21

and hence can be expanded in terms of local operators, as follows

|ψin〉 =
∑

k1,k2

Ck1,k2 φk1(w1, w̄1)φk2(w2, w̄2)|0〉1 ⊗ |0〉2 (B.3)

Here k1, k2 label a complete basis of quasiprimary operators of the CFT Hilbert space.

Each term in the sum represents a factorized wavefunction (between geometries 1 and 2),

which, therefore, gives22

Ẑsc =
∑

k1,k2

Ck1,k2〈φk1(w1, w̄1)〉str〈φk2(w2, w̄2)〉cyl,

Ẑss =
∑

k1,k2

Ck1,k2〈φk1(w1, w̄1)〉str〈φk2(w2, w̄2)〉str,

Ẑcc =
∑

k1,k2

Ck1,k2〈φk1(w1, w̄1)〉cyl〈φk2(w2, w̄2)〉cyl (B.4)

Here the subscripts str and cyl refer to “strip”, and “cylinder” respectively. The one-point

functions are evaluated on the respective geometries without any cut (see section 2 for

more details). The glued functional integral (B.1), (B.2) is recovered by summing over

k1, k2 with the coefficients Ck1,k2 ; , as clear from (B.4) these are determined by the gluing

condition and depend on the size of the cut [54] (see section B.1 for more details).

B.1 The coefficients Ck1,k2

As explained in [54] (see also section B), the coefficients Ck1,k2 are determined by the

equation

Ck1,k2 =
Z2

Z2
1

(nk1nk2)
− 1

2 lim
z1→∞1,z2→∞2

(z1z2)
2(hk1

+hk2
)(z̄1z̄2)

2(h̄k1
+h̄k2

)〈φk1(z1, z̄1)φk2(z2, z̄2)〉C2

(B.5)

where C2 represents two infinite planes glued along a cut A, Z2 is the functional integral

such a glued geometry and Z1 is the functional integral over a single plane. This equation

21We will take the centre of the disc in each geometry to coincide with the centre of the cut, which has

coordinates w = iτ, w̄ = −iτ .
22In case geometries 1 and 2 are identical, the superscripts in wi, w̄i, i = 1, 2 indicate which sheet we are

considering.
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can be easily proved by inserting quasiprimary a operator at infinity in each plane in

an equation like (B.1) or (B.2). The two point function in the glued geometry is to be

determined by using the uniformizing map:

y =
√

(z + l/2)/(z − l/2) (B.6)

The normalization constants nk are determined by the following orthogonality condition

of the quasiprimary operators

〈φk1(z1, z̄1)φk2(z2, z̄2)〉C =
nk1δk1,k2

z
hk1

+hk2
12 z̄

h̄k1
+h̄k2

12

(B.7)

where nk1 is a normalization constant. Note that Ck1,k2 = Ck2,k1 . Below we will use

the notation

Ĉk1,k2 = Ck1,k2/C0,0 (B.8)

Case (k1, k2) = (0, 0): we will denote the identity operator as φ0 = 1. It is obvious that

C0,0 = Z2/Z
2
1 (B.9)

Case (k1, k2) = (k, 0): the only case where Ck,0 6= 0 is when φk(z, z̄) is a descendent

of the identity operator, e.g. T (z), T̄ (z̄), : T (z)T̄ (z̄) :, Λ(z), Λ(z̄) etc.23 E.g.

ĈT,0 = CT,0/C0,0 = ĈT̄ ,0 =
l2

16
; ĈT T̄ ,0 =

l4

256
; . . . (B.10)

All other Ck,0 vanish as they are proportional to a one-point function of a primary operator

on the Riemann surface (and hence to that on the complex plane).

Case (k1, k2) = (primary, primary): in case φk1 , φk2 are primary opera-

tors, (B.5) gives

Ĉk1,k2 =
1

nk1

δk1,k2

(

leiπ/2

4

)2(hk1
+h̄k1

)

(B.11)

Case (k1, k2) = (descendent, descendent): in case φk1 is of the form

L−n1L−n2 . . . L̄−m1L̄−m2 . . . φl1 and φk2 is of the form L−r1L−r2 . . . L̄−s1L̄−s2 . . . φl2 , we can

show that

Ĉk1,k2 = δl1,l2 δ∑n,
∑

r δ∑m,
∑

sA(n1, n2, . . . ,m1,m2, . . . ; r1, r2, . . . , s1, s2, . . .) l
2(hk1

+h̄k1
),

hk1 = hl1 +
∑

n, hk2 = hl2 +
∑

m (B.12)

where A(. . .) is a numerical coefficient.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

23Here Λ(z) = :TT :(z)− 3
10
∂2
zT is the level 4 quasiprimary descendent of the identity.
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