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Abstract: We revisit AdS/CFT at a finite radial cut-off, specifically in the context of

double trace perturbations, On= O(x)(∂2)nO(x), with arbitrary powers n. As well-known,

the standard GKPW prescription, applied to a finite radial cut-off, leads to contact terms

in correlators. de Haro et al. [1] introduced bulk counterterms to remove these. This

prescription, however, yields additional terms in the correlator corresponding to spurious

double trace deformations. Further, if we view the GKPW prescription coupled with the

prescription in [1], in terms of a boundary wavefunction, we find that it is incompatible

with radial Schrödinger evolution (in the spirit of holographic Wilsonian RG). We consider

a more general wavefunction satisfying the Schrödinger equation, and find that generically

such wavefunctions generate both (a) double trace deformations and (b) contact terms.

However, we find that there exist special choices of these wavefunctions, amounting to

a new AdS/CFT prescription at a finite cut-off, so that both (a) and (b) are removed

and we obtain a pure power law behaviour for the correlator. We compare these special

wavefunctions with a specific RG scheme in field theory. We give a geometric interpretation

of these wavefunctions; these correspond to some specific smearing of boundary points in

the Witten diagrams. We present a comprehensive calculation of exact double-trace beta-

functions for all couplings On and match with a holographic computation using the method

described above. The matching works with a mapping between the field theory and bulk

couplings; such a map is highly constrained because the beta-functions are quadratic and

exact on both sides. Our discussions include a generalization of the standard double-trace

Wilson-Fisher flow to the space of the infinite number of couplings.
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1 Introduction and summary

In AdS/CFT, conformal field theory partition function at a finite UV cut-off (Λ) is given

by an AdS partition function at a finite radial cut-off z = ε = R2
AdS/Λ. The latter quantity,

of course, needs a boundary condition. For example, the original GKPW prescription is

a Dirichlet boundary condition. It is well-known, however, that the bulk path integral

with this boundary condition leads to correlators with contact terms some of which may
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diverge in the limit ε → 0. Following de Haro et al. [1], it is possible to add bulk coun-

terterms to remove these contact terms (completely or partially). With recent insight from

hWRG (holographic Wilsonian RG [2, 3]), we will treat boundary conditions at z = ε as a

wavefunction Ψ0[φ0, ε] (e.g. Dirichlet b.c. is a delta-function wavefunction). Some obvious

questions which arise are

(1) What are the allowed boundary wavefunctionals (equivalently, boundary conditions)?

(2) What does a choice of boundary condition/wavefunction in the bulk path integral

correspond to in the CFT?

The answer to question (1) is obvious from the discussions on hWRG. A boundary

wavefunction Ψ0[φ0, ε] is allowed provided its ε-dependence follows the radial Schrödinger

equation ∂εΨ0[φ0, ε] = Hrad[φ0, ∂/∂φ0] Ψ0[φ0, ε]. In the limit of GN → 0 (implicit in

the above equation), the Schrödinger equation reduces to a Hamilton-Jacobi equation for

S[φ0, ε] = log Ψ0[φ0, ε]:

∂εS = Hrad[φ0, ∂S/∂φ0]

For example, for a quadratic bulk action such as (2.2), the space of allowed boundary

wavefunctions Ψ0 = eS is given by the (2.8), which we reproduce schematically as (here we

suppress the ε-dependent factors in B,C)

Ψ0[φ0; ε] = exp

[
− 1

2

∫
√
γ0

(
A(k, ε)φ0(k)φ0(−k)

+ 2B(k, ε)J(k)φ0(−k) + C(k, ε0)J(k)J(−k)
)]

(1.1)

We will show below that the wavefunctional corresponding to GKPW [4, 5] boundary con-

ditions, normally taken to represent the CFTs (Dirichlet boundary condition for standard

quantization and Neumann for alternative quantization when the latter exists), correspond

to a wavefunctional with a wrong ε-dependence when taken with the counterterms in [1],

as they do not satisfy the radial Schrödinger equation. This wavefunctional also leads to

spurious double trace deformations in the dual CFT. The correct wavefunctions which

represent the IR and UV CFT’s (standard and alternative CFTs) are the wavefunctions

Ψ0
1 and Ψ0

2 described below (eq. (2.14) and (2.22), respectively).1

A partial answer to question (2) appears in [6] where it is shown that a subset of

the above wavefunctions represents a CFT with double-trace deformations (see section 4).

In the present work, we will give a detailed and improved interpretation of the A,B,C

coefficients.2 In particular we will show that various choices of the A,B,C terms correspond

to (i) double-trace deformations,

S = SCFT +
∞∑
n=0

fn

∫
On, On = O(x)(∂2)nO(x) (1.2)

and (ii) contact terms. We have summarized the interpretation of these coefficients in

table 1. One of the main observations of our paper will be that there exist special wave-

functions (with special choices of A,B,C) such that both (i) and (ii) are absent and the

1Ψ0
2, the wavefunctional corresponding to the UV fixed point has an interpretation of a unitary quantum

field theory only inside the Klebanov-Witten window.
2J will continue to represent the source for the single trace operator O(x) dual to the bulk field φ.
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correlators become pure power laws. Indeed, as mentioned above, there are just two such

special choices Ψ0
1 and Ψ0

2 in the context studied in this paper: one corresponds to the

IR CFT (standard quantization) without any deformations and the other corresponds to

the UV CFT (alternative quantization) without any deformation. In section 2 these will

correspond to setting a quantity χ(k) (characterizing A,B,C, and hence the boundary

wavefunctional) to zero or ∞.

We will show (in section 3) that the wavefunctions Ψ0
1 and Ψ0

2 have a simple geometric

interpretation. Each of them corresponds to a specific smearing of the boundary points

in Witten diagrams; as mentioned above, the defining property of the above smearing is

that even when the cut-off surface is moved inside, the resulting correlators remain a power

law. As an application of the above insight, we compute the Wilsonian holographic beta-

functions of the double-trace operators and compare them with those obtained from direct

calculations in field theory. We find that the infinite number of coupled beta-functions can

be exactly mapped between field theory and holographic calculations. The existence of

such a mapping is nontrivial since both the field theory and holographic beta-functions are

exact and strictly quadratic. The correct identification of the double trace deformations

with the boundary wavefunctionals plays here an essential role.

The organization of the paper is as follows.

In section 2, we discuss the allowed boundary conditions at finite cut-off and arrive

at the two wavefunctionals Ψ0
1 and Ψ0

2 which correctly represent the IR and UV CFTs re-

spectively. In section 3, we discuss a geometric interpretation of the wavefunctions Ψ0
1 and

Ψ0
2. We show that each of these represents introducing a specific kind of non-locality which

smears the boundary points in Witten diagrams in a particular way. Section 4 presents

the exact identification of the coefficients in a general boundary wavefunctional with cou-

pling constants of double trace deformations in eq. (1.2) and the contact terms (a generic

boundary wavefunction represents both). In section 5, we use the above characterization

of double trace deformations to compute the infinite series of coupled beta-functions. In

section 6, we present a detailed field theory computation of these infinite series of beta-

functions and discuss the matching between the two results in section 7. The matching

works with a mapping between the FT and bulk couplings; such a map is highly constrained

because the beta-functions are quadratic and exact on both sides. In section 8, we discuss

some outstanding problems. The details of most of the calculations have been reserved to

appendices. Section A lists some of the notations for the double-trace couplings constants

that are followed throughout the paper. Appendix B presents some mathematical results

that are used in the field theory computations of section 6. All the exact holographic

β-function calculations are in appendix C, where we have also discussed the RG flow be-

tween the standard (IR) and alternative (UV) theories in appendix C.1. Some comparison

with known results in large N O(N) vector model is discussed in D. Lastly, appendix E

presents some general discussion of large N limits, probe approximation in AdS geometry

and applicability of Hamilton-Jacobi equations in general. The details of various calcula-

tions in the paper are available at arXiv:1608.00411 as a Mathematica notebook named

CalculationsFile.nb.
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2 AdS/CFT at a finite radial cut-off: fixed points

In this section we will present a precise extension of the GKPW prescription ([4, 5]) to

a finite cut-off. We will present the ideas in the context of correlation functions of a

single trace operator O(x), which is dual to a scalar field φ(z, x) in d+ 1 dimensional AdS

spacetime. The spacetime metric and the scalar action are given by3

ds2 ≡ gMNdX
MdXN =

dz2 + dxµdxµ
z2

, (2.1)

Sb =
1

2

∫
ddxdz

√
g
(
(∂φ)2 +m2φ2

)
(2.2)

The mass of the scalar field is chosen to satisfy the usual mass-dimension relation4

∆ = ∆+ ≡ d/2 + ν, ν =
√
d2/4 +m2R2

AdS, (2.3)

(we use units where RAdS = 1). For our purposes, the scalar action is the only relevant

part of the bulk action since we will work in the “probe approximation” in which the AdS

metric gMN remains unaltered (see appendix E).

2.1 Standard quantization

As usual, we will call ‘standard quantization’ the quantum theory defined by the usual

GKPW prescription, characterized by the mass-dimension relation (2.3). Under special

circumstances we can define an ‘alternative quantization’ (see footnote 4 and more de-

tailed discussions below). We will denote various quantities associated with the ‘standard

quantization’ by a subscript + (e.g. ∆+) (and similarly those associated with ‘alternative

quantization’ by a subscript −).

Let us begin with the following putative definition of AdS/CFT for standard quanti-

zation (GKPW)

Z+[Jk] =

〈
exp

[∫
ddkJkO−k

]〉
+

=

∫
Dφ0Ψ0[φ0; ε0]

∫
z>ε0

Dφe−Sb (2.4)

Ψ0[φ0; ε0] = ΨGKPW ×Ψct, ΨGKPW = δ
(
φ0(k)− εd−∆+

0 J(k)
)
,

Ψct = exp

(
−1

2

∫
z=ε0

√
γ0φkD̂ct(kε0)φ−k

)
(2.5)

Here γ0 is the determinant of the induced metric γµν at a radial cut-off z = ε0.

The δ-function above is equivalent to imposing the Dirichlet boundary condition on

the bulk field at z = 0, where the boundary value of the bulk field is related to the source,

J(k), of the dual field theory operator O(k) with some appropriate renormalization. In

addition to the original δ-function of GKPW, we have also included the counter-terms

3For simplicity we will consider a Euclidean metric.
4Later on, when we specifically discuss the Klebanov-Witten window ν ∈ (0, 1), two distinct CFT duals

can be found, corresponding to O(x) having scaling dimensions ∆± = d/2± ν. For the new CFT, defined

as ‘alternative quantization’, the conformal dimension is ∆−.
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denoted by D̂ct(kε0) conventionally introduced to ensure finiteness of the bulk partition

function in the ε → 0 limit [1] (see also [7, 8]; these counterterms can also be motivated

from the requirement of a well-defined variational principle, cf. (4.3) below). Expanded to

several orders in (kε0)2, it reads ([1] gives the first two terms; the expansion can be worked

out to arbitrary orders with the help of the Mathematica notebook CalculationsFile.nb

in arXiv:1608.00411)

D̂ct(ε0k) = ∆− −
1

2(ν − 1)
(kε0)2 +

1

8(ν − 2)(ν − 1)2
(kε0)4 + · · · (2.6)

As we will shortly see below, the precise choice of counterterms is determined by demanding

conformal invariance.

We will now show that the definition of AdS/CFT (2.4) using the wavefunctional (2.5)

needs improvement in the sense that the wavefunctional has a wrong dependence on ε0.

Of course, one could take the viewpoint that it is meant to be valid only for a fixed ε0 and

at other values the wavefunctional is different. It is not clear what that special value is;

one possibility is ε0 = 0, however, it is hardly clear how to take this limit in (2.5). If one

does go ahead with this viewpoint and computes the r.h.s. of (2.4) at some special value of

ε0, it does not give the right results expected in the CFT, rather the correlators computed

from it are of the form (6.31) obtained from a regulated field theory perturbed by double

trace operators. While, in some sense, these correlators do limit to those expected from

conformal symmetry, strictly speaking, these can’t be interpreted as coming from an exact

conformal field theory through Wilsonian philosophy.

We therefore demand that the wavefunctional must be specified such that it at least

has the correct dependence on ε0. We now discuss the general class of such wavefunctions.

The space of allowed wavefunctionals: the general form of the wavefunctional

Ψ0[φ0, ε0], in particular the dependence on ε0, can be inferred from the fact that it must

satisfy the radial Schrödinger equation, which, in the case of a bulk theory with a free

massive scalar without gravitational back reaction, takes the form

−∂ε0Ψ[ψ0; ε0] = ĤradΨ[ψ0; ε0], (2.7)

where Ĥrad =

∫
ddx Ĥrad =

1

2

(∫
ddk

1

z1−d Π̂kΠ̂−k + z−1−d (z2k2 +m2
)
φ̂kφ̂−k

)
and Π̂ ≡ i δ

δφ

The general solution for the wavefunctional is of the following quadratic form in the bulk

field φ0, of the form5

Ψ0[φ0; ε0] = exp

[
− 1

2

∫
z=ε0

ddk
√
γ0

(
A(k, ε0)φkφ−k + 2ε

d−∆+

0 B(k, ε0)Jkφ−k

+ε
2(d−∆+)
0 C(k, ε0)JkJ−k

)]
(2.8)

5The explicit ε0-dependent factors in front of B and C are chosen so that the parameters A,B, and

C in the wavefunctional are dimensionless (note our choice of units where RAdS = 1). The form of the

wavefunction can also be argued based on explicit integration of the near boundary degrees of freedom in

the bulk action, as is done in [2, 3, 9], and also in appendix C. Without any interactions, the wavefunctional

obtained by integrating out degrees of freedom between z = 0 and some z = ε0 can only be quadratic.
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Eq. (2.7), computed in the Hamilton-Jacobi approximation [2, 3] gives6

Ȧ = −(A−∆+)(A−∆−) + (kε)2, Ḃ = ∆+ B −A B, Ċ = (2∆+ − d) C −B2 (2.9)

here, Ẋ denotes, ε0∂ε0X. The general closed form solution for A(k, ε0) is,

A(k, ε) =
χ(k)

(
(d2 + ν)I−ν(kε) + kε0I−ν−1(kε)

)
+ (−1)ν Γ(ν+1)

Γ(1−ν)

(
(d2 − ν)Iν(kε) + kεIν−1(kε)

)
χ(k) I−ν(kε) + (−1)ν Γ(ν+1)

Γ(1−ν)Iν(kε)

=
2νχ(k)

(
(d− 2ν) + (kε)2 (d−2ν+4)

4(1−ν) + . . .
)

+
(
−1

2

)ν
(kε)2ν

(
(d+ 2ν) + (kε)2 (d+2ν+4)

4(ν+1) + . . .
)

2ν+1χ(k)
(

1 + (kε)2 1
4(1−ν) + . . .

)
+ 2

(
−1

2

)ν
(kε)2ν

(
1 + (kε)2 1

2(4(ν+1)) + . . .
) .

(2.10)

Here, χ(k) is a constant of integration, fixed by solving with a boundary condition at some

cut-off z = ε0. Note that the above solution in the series form has two independent series,

a series in integer powers of (kε0) and another series in powers of (kε0)2ν . We will show

later that the series corresponding to (kε0)2ν contains information about the double trace

deformations around the fixed point.

Similar solutions exist for B(k, ε0) and C(k, ε0).

Wavefunctional satisfying exact scaling: in general, the partition function can be

computed by integrating out the bulk fields exactly,

Z[Jk] = exp

−1

2

∫
ddk JkJ−kε

d−2∆+

0

C(k, ε0)− B2(k, ε0)

kε0
Kν−1(kε0)
Kν(kε0) −∆− +A(k, ε0)


(2.11)

where, Kν(kε0) are the modified Bessel functions of second kind. There are two special

choices of χ(k) above, i.e. χ(k) = 0, or∞, for which the partition function in (2.11) becomes

exactly that of a conformal theory.7

To the leading order in kε0, the solution for these particular choices of the wavefunc-

tionals are A = ∆+ or ∆−, as can also be seen from the leading order truncation of (2.10).

Let us consider the solution with A = ∆+. In this case, B-evolution equation is identically

satisfied, and the value of B is fixed by the boundary value enforced by (2.5) (to leading

order, in continuum limit) to B = −2ν. Finally, this fixes C = 2ν, and the wavefunctional

6In this particular quadratic case, Hamilton-Jacobi approximation is equivalent to exact Schrödinger

equations. The second and third equations of (2.9) are slightly different from the corresponding equations

in [2, 3] due to the fact that the their B,C are dimensionful.
7 What we really mean here is that the partition function computed above doesn’t explicitly depend on

the cut-off ε0, thus obeying the correct scaling laws corresponding to the dual field theory operator O. This

is also the reason to claim that such a wavefunctional can be understood as being generated by integrating

out the degrees of freedom between z = 0 and z = ε0 in the bulk theory that is exactly dual to the conformal

field theory, the limiting action given by (2.5).

– 6 –
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Figure 1. The wavefunctional with the coefficients A∗, B∗, C∗ gives the correct effective description

of the continuum theory, which was obtained by the ε0 = 0 bulk action. This wavefunctional is

effectively obtained by the integration of near boundary degrees of freedom in AdS.

is given by,8

Ψ0[φ0; ε0] ∼ exp

[
− 1

2

∫
z=ε0

ddk
√
γ0

(
∆+ φkφ−k − 4νε

d−∆+

0 Jkφ−k + 2νε
2(d−∆+)
0 JkJ−k

)]

∼ exp

[
− 1

2
× (2ν)

∫
z=ε0

ddk
√
γ0

(
φk − εd−∆+

0 Jk

)
k

(
φk − εd−∆+

0 Jk

)
−k

]

× exp

[
−1

2
∆−

∫
z=ε0

√
γ0φkφ−k

]
(2.12)

Note that with A = ∆+, B = −2ν, C = 2ν, we have an appropriately regulated, and correct

form of the wavefunctional (2.5).

The solution with the sub-leading corrections can be found to arbitrary order in (kε0)

and are given by,

A∗ST(kε0) = ∆+ +
1

2(1 + ν)
(kε0)2 − 1

8(2 + ν)(1 + ν)2
(kε0)4 + · · ·

= D̂ct(kε0) + 2ν

(
1− 1

2 (1−ν2)
(kε0)2 +

(
5+ν2

)
8 (4−ν2) (1−ν2)2 (kε0)4 + · · ·

)
= D̂ct(kε0) + 1/A ∗ST (2.13a)

A ∗ST ·B∗ST(kε0) = −
(

1 +
1

4(1− ν)
(kε0)2 +

1

32(1− ν)(2− ν)
(kε0)4 + · · ·

)
(2.13b)

A ∗ST · C∗ST(kε0) = 1 +
1

2− 2ν
(kε0)2 +

(3− 2ν)

16(2− ν)(1− ν)2
(kε0)4 + · · · (2.13c)

where it can be checked that (A ∗ST ·B∗ST(kε0))2 = A ∗ST · C∗ST(kε0). So the wavefunctional

at the finite cut-off is,

Ψ0
1[φ0; ε0] = exp

[
− 1

2

∫
z=ε0

ddk
√
γ0

(
φ+ A ∗ST ·B∗ST(kε0) ε

d−∆+

0 J
)
k

(
φ+ A ∗ST ·B∗ST(kε0) ε

d−∆+

0 J
)
−k

A ∗ST(kε0)

− 1

2

∫
z=ε0

√
γ0φkD̂ct(kε0)φ−k

]
(2.14)

8‘∼’ signifies that the subleading terms have not been included.
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and A ∗ST is just the shorthand for the series,

1

A ∗ST

= 2ν

(
1− 1

2 (1− ν2)
(kε0)2 −

(
5 + ν2

)
8 (4− ν2) (1− ν2)2 (kε0)4 + · · ·

)

We note here that not only does the δ-function in the standard quantization in AdS/CFT

correspondence gets regulated at finite cut-off, even the source, J , for the dual field theory

operator, O gets renormalized. The wavefunction renormalization at the finite cut-off is

given by Z−1
J = (−A ∗ST(kε0) ·B∗ST(kε0))−1 = ZO.9

With such a choice of wavefunction, the r.h.s. and consequently the l.h.s. of (2.4) will

actually be independent of the cut-off parameter ε0 (see (2.15) below)! Thus, although the

holographic calculation appears to be done at a finite radial cut-off z = ε0, the functional

integral is actually independent of the cut-off. We will see below that the correlators

computed from this prescription exhibit a pure power law behaviour.

O(k)O(−k) correlator: we compute the correlators with the new prescription for

AdS/CFT at finite radial cut-off with the inclusion of the boundary wavefunctional (2.14)

by integrating out the bulk fields φ. The exact partition function becomes,

Z+[Jk] = exp

[
−1

2

∫
ddk Jk

(
k2ν 21−2νΓ(1− ν)

Γ(ν)

)
J−k

]
(2.15)

This is the exact partition function to all orders with the correct solutions of A ∗ST, B
∗, C∗.10

Thus the connected two point function for the boundary operator is,

〈O(k)O(−k)〉+ = k2ν 21−2νΓ(1− ν)

Γ(ν)
(2.16)

This is the correct 2-point function as governed by conformal symmetry. If we follow the

Wilsonian principles of integrating out the degrees of freedom such that all the physical

observables remain invariant, then this is the wavefunctional that we will obtain from

(2.5). This result is slightly surprising because it tells us that it is possible to define

AdS/CFT correspondence with a finite bulk cut-off, such that we still describe the field

theory in the continuum limit. Alternatively, from the conventional renormalization point

of view, in the field theory this is analogous to finding out all the correct counter-terms

and/or vacuum energy terms that make the partition function at a finite cut-off exactly

conformally invariant. This view point is discussed in detail in section 2.3.

Correlator for a regulated field theory: since we want to find a bulk dual to field the-

ory that is regulated at short distances (section 6), we want to introduce an explicit cut-off

dependence in our correlator/partition function which replicates the regulation-dependence

in the field theory (see section 6.4). A position space regulated correlator, (6.15), in mo-

mentum space is given by (6.26). To include a similar regulation in the bulk calculation,

9We define O(ε) = ZO · O(0) and J(ε) = ZJ · J(0). Alternatively, we emphasize that the correct way to

identify the source is through (2.14), without any mention of wavefunction renormalization.
10We have checked it to the sixth order in kε expansion, but with the inclusion of the exact solutions for

A ∗ST, B
∗, C∗ this will hold true to all orders.
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A(kε) B(kε) C(kε)

Double-trace deformation Wavefunction renormalization Contact terms

Table 1. Interpretation of different coefficients in wavefunctional (2.8) away from the fixed point

values, A∗, B∗, C∗. This interpretation is slightly heuristic and the exact relations are given in

section 4.

we need to include an extra contact term piece in our bulk action,

Sextra =
1

2

∫
ddk ε

−d+2(d−∆+)
0 δC(kε0)JkJ−k (2.17)

which modifies the correlator (2.16) to,

〈O(k)O(−k)〉+ = k2ν 21−2νΓ(1− ν)

Γ(ν)
+ ε−2ν

0 δC(kε0) (2.18)

One could argue that any perturbation away from the fixed point could ideally be achieved

by changing any of A,B or C away from the fixed point values, A∗, B∗, C∗. But as we

will see in section 4, each of these coefficients have a different field theory interpretation

of double-trace perturbation, wavefunction renormalization and contact terms in the cor-

relators/partition function, respectively. So the change of each one of them contributes in

a different manner to the observables like correlators of the theory.

We have studied the RG flows of theories regulated in this fashion in field theory and

we will do a parallel calculation in the bulk. But before that we also establish the AdS/CFT

duality at a finite cut-off in alternative quantization.

2.2 Alternative quantization

In Klebanov-Witten window ν = ∆+−d/2 ∈ (0, 1) [7] the bulk gravitational theory is dual

to two different quantum field theories in the boundary which are related to each other

through Legendre transform. Thus, the generating function of one quantum field theory is

the 1PI effective action of the other and vice versa, with the distinction that 1PI effective

action is itself a local action for such theories.

Alternative fixed point can be understood as a UV completion of the standard IR the-

ory within the Klebanov-Witten window by analysing the flow equations (2.9).11 However,

we treat this as a stand-alone prescription to begin with, and will connect them using the

flow in double trace couplings in appendix C.1. The usual AdS/CFT prescription for the

alternative quantization is given by,

Z−[Jk] =

〈
exp

∫
ddkJkO−k

〉
−

=

∫
z≥ε0
Dφ exp

[
− Sb − lim

ε0→0

(∫
z=ε0

ddk
√
γ0ε

d−∆−
0 φkJ−k

+
1

2

∫
z=ε0

ddx
√
γ0φkD̂ct(ε0k)φ−k

)]
(2.19)

11It is the solution corresponding to χ→∞ in (2.10), with the corresponding solutions for B(k, ε0) and

C(k, ε0).
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The boundary part of the action, which is also the wavefunctional Ψ[φ0], in the above

equation is such that the variation principle imposes a modified Neumann condition on

the boundary z = ε0 → 0. This relates the normalizable part of the classical solution for

π (conjugate momentum to the bulk field φ) to the source, J for the dual field theory

operator O, which now has the conformal dimension ∆− = d/2 − ν, [7, 10]. In this case,

the wavefunctional can be generalized to a finite cut-off without any ambiguity. Evolution

equations for alternative quantization in terms of A,B,C are (B,C equations are modified

due to difference in normalization of the sources with respect to the bulk field φ),

Ȧ = −(A−∆+)(A−∆−) + (kε0)2, Ḃ = ∆− B −A B, Ċ = (2∆− − d) C −B2

(2.20)

It can be checked immediately that D̂ct given by [1] is identically a stationary point for A.

At the leading order in kε0, A = ∆− and B = 1, and B equation is identically satisfied.

However, in the limiting prescription of (2.19), we don’t have any C, which clearly is not

a stationary point. As we saw in our concluding discussion in the previous section, C

terms are quadratic in the sources Jk and add contact terms to the bulk action and the

O correlators, hence are interpretable as choice of regulation scheme at finite cut-off. We

modify the wavefunctional in (2.19) to include such terms and demand that this be at a

fixed point as we did for standard quantization. We see later that inclusion of such a term

makes the alternative theory the exact Legendre transform of the standard theory along

with all the counter-terms in both the theories. Solving for the stationary point of C to

the leading order, the wavefunctional becomes,

Ψ0[φ0; ε0] ∼ exp

[
− 1

2

∫
z=ε0

ddk
√
γ0

(
∆− φkφ−k + 2ε

d−∆−
0 Jkφ−k −

1

2ν
ε
2(d−∆−)
0 JkJ−k

)]
(2.21)

with the inclusion of the corrections in kε0, the wavefunctional becomes,

Ψ0
2[φ0; ε0] = exp

[
− 1

2

∫
z=ε0

ddk
√
γ0

(
φkD̂ct(kε0)φ−k + 2ε

d−∆−
0 B∗AQ(kε0)φkJ−k

+ε
2(d−∆−)
0 C∗AQ(kε0)JkJ−k

)]
(2.22)

where,

B∗AQ(kε0) = 1− 1

4(1− ν)
(kε0)2 +

(3− ν)

32(2− ν)(1− ν)2
(kε0)4 + · · · (2.23a)

C∗AQ(kε0) = − 1

2ν
+

1

4(1− ν2)
(kε0)2 − (5− 2ν)

32(1− ν)2 (4− ν2)
(kε0)4 + · · · (2.23b)

It is interesting to note that, B∗AQ(kε0) = −1/(A ∗ST ·B∗ST(kε0)) and C∗AQ(kε0) = −1/(A ∗ST ·
B∗ST

2). This shows that the alternative theory given by the wavefunctional (2.22) is exactly

the Legendre transform of the standard theory defined by the wavefunctional (2.14) at cut-

off z = ε0.
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O(k)O(−k) correlator: the partition function and the correlator computation follows

similar to that in standard quantization and can be computed exactly by using the wave-

functional (2.22), and integrating out the φ fields in the bulk,

Z+[Jk] = exp

[
−1

2

∫
ddk Jk

(
−k−2ν 22ν−1Γ(ν)

Γ(1− ν)

)
J−k

]
(2.24)

Again, this is the exact correlator to all orders with the correct solutions of A∗, B∗, C∗.

Thus the connected two point function for the boundary operator is,

〈O(k)O(−k)〉− = −k−2ν 22ν−1Γ(ν)

Γ(1− ν)
(2.25)

This is the correct 2-point function as governed by conformal symmetry for a continuum

theory around the UV-fixed point.

Correlator for a regulated field theory: following the discussion in previous subsec-

tion, we can study a regulated field theory by including an extra piece in the wavefunc-

tional, (2.22),

Sextra =
1

2

∫
ddk ε

−d+2(d−∆−)
0 δC(kε0)JkJ−k (2.26)

which again modifies the correlator above to,

〈O(k)O(−k)〉− = −k−2ν 22ν−1Γ(ν)

Γ(1− ν)
+ ε2ν0 δC(kε0) (2.27)

2.3 Choice of regulation scheme and comparison with field theory

In a dual field theory calculation, Wilsonian principles demand that under integration

of degrees of freedom in a field theory, all physical observables remain unchanged. This

gives us an effective description of the same theory with reduced degrees of freedom. In

particular, if we start with a continuum quantum field theory and integrate out the UV

degrees of freedom (either in position or momentum space), then the correlation functions

computed using the new effective Lagrangian are the same as that of the continuum theory.

In a continuum conformal field theory in which the correlation functions of the primary

operators obey the scaling laws, an effective description with integration of certain degrees

of freedom will reproduce the same power law correlators. However, a particular choice

of regulation scheme in the field theory changes the short-distance/UV behaviour of the

correlators (e.g. (6.15)) by an addition of certain counter-terms in the momentum space

(eq. (6.25)). For example, for the Θ-function regulated theory this choice corresponds to,

(see (6.26)),

c0 = ± 2π
d−1

2

ν Γ
(
d−1

2

) , c1 =
π
d−1

2

3(ν + 1)Γ
(
d−1

2

) , c2 = − π
d−1

2

60(ν + 2)Γ
(
d−1

2

) , · · · (2.28)

where, δC = c0 + c1(kε)2 + c2(kε)4 + · · · . These coefficients depend only on the choice of

regulation scheme and not on the cut-off ε at which the theory is regulated. Within such
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Figure 2. Diagrams contributing to generation of terms quadratic in source, J(k). As a standard

convention throughout the paper, colored propagators denote ‘heavy’ modes (see section 6 for

conventions used in Feynman diagrams).

a scheme, with the regulated correlator, one needs to modify the effective Lagrangian ap-

propriately to obtain the continuum power-law-obeying correlators. In conventional renor-

malization this is done by adding appropriate counter-terms in the Lagrangian. Following

the general treatment of [11], we argue that in a large N theory the conformal invariance is

broken by the running of double-trace couplings (which, as emphasized there, is a leading

large N behaviour), unless the theory is at a conformal fixed point of all the double-trace

couplings. Since we identify the alternative/standard quantizations with the UV/IR fixed

points in the double-trace sectors, we are assured that no new counter-terms are generated

for double-trace deformations. So, the corrections required in the regulated effective theory

with certain UV cut-off can’t be obtained by some double-trace counter terms. This argu-

ment is further strengthened by an explicit calculation with the inclusion of double-trace

counter terms. As shown in various places in this paper, inclusion of any double-trace

interaction in the Lagrangian (away from the fixed point values) necessarily modifies the

correlators by addition of terms proportional to k4ν , k6ν , . . . — which is not the same as the

momentum space counter-terms that are present in the regulated theory. We believe that

the inclusion of terms quadratic in the source, J(k), of the operator, O(k) in the Lagrangian

provides the required correction that makes the correlators same as that of the continuum

theory. Normally, in the partition function (which is computed with J(k) = 0, as opposed

to the generating function), one would think that such terms are inconsequential. However,

such terms necessarily correct the generating function, W [J ] = logZ[J ], of the theory and

hence all the correlators of the theory. Particularly, in the quadratic effective action that

we have in the large N theory, we obtain the power-law 2-point functions with the inclusion

of appropriate terms. Within Wilson-Polchinski fRG treatment, such terms are necessarily

generated as we integrate out the degrees of freedom (figure 2).

The bulk computation at finite radial cut-off, (2.15), automatically corresponds to

the regulated field theory with the inclusion of such terms. However, we emphasise the

need to differentiate the contribution of the regulation scheme from that of the quadratic

J term. In a regulated field theory with a double-trace deformation the regulation of the

correlators (contact terms coming due to the regulation scheme) participates dynamically in

the computation of the Feynman diagrams that gives rise to the rational fraction form of the

correlator, (6.27), in the perturbed theory. The quadratic J term corrects this correlator

by an additive term (which cancels the regulation-scheme contact terms in absence of

the perturbation). Analogously, in the bulk computation, we treat the two contributions
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separately. This is done by a deviation of the boundary wavefunctional, Ψ, from C∗ by

some δC corresponding to the particular choice of scheme in the field theory. Then we use

this wavefunctional in our Hubbard-Stratonovic transformation to describe the regulated,

double-trace deformed field theory (as in (4.9) and (4.17)). It is hence important to compute

the β-functions for the double-trace couplings using this prescription.

3 Geometric interpretation: smeared Witten diagram

The above improvement of the AdS/CFT prescription at finite radial cut-off has a natural

generalization in the limit of massive, mRAdS � 1, bulk fields. It is known that in this

limit, the field theory correlators are approximated by geodesics between the points of

operator insertions in the boundary, [12, 13] . Geodesic length between the points (ε, x1)

and (ε, x2) in AdS is given by

Lε(x1 − x2) = cosh−1

(
1 +

1

2
(|x1 − x2|/ε)2

)
= 2 log[|x1 − x2|/ε] + 2(ε/|x1 − x2|)2 +O(ε/|x1 − x2|)4 (3.1)

This is related to the correlator 〈O(x1)O(x2)〉ε for large ∆ ≈ m (with RAdS = 1) as (∆ is

the operator dimension of O)

Gε(x1 − x2) = constant exp[−∆Lε(x1 − x2)]

= (1/|x1 − x2|)2∆e(1+2∆(ε/|x1−x2|)2+O(ε/|x1−x2|)4) (3.2)

where the ‘constant’= ε−2∆ (in accordance with the dimension [O(x)] = ∆, and Zamolod-

chikov’s convention G(0, 1) = 1). The corrections that appear in the exponential of the

correlator above can be thought of as a regulation scheme for the correlator. It can be

easily checked that this scheme obeys all the general discussion of section 6.4 and has the

momentum space counter-terms as discussed there.

Like the conventional GKPW prescription, this should also be understood as a limiting

prescription which is well defined only in ε→ 0 limit. Our finite radial cut-off modification

to the GKPW prescription suggests that we need to modify the geodesic prescription too.

Our source corresponding to the insertion of boundary operator O at x1, x2 is J(~x) =

δ(~x− ~x1) + δ(~x− ~x2). Using the boundary condition, (4.5) (with f = 0), we find that the

bulk field, φ, at finite radial cut-off in the momentum space is,

φ(k, ε0) =
21−νε

d/2
0

Γ(ν)

(
ei
~k·~x1 + ei

~k·~x2

)
kνKν(kε0) (3.3)

where we have used J(k) = (ei
~k·~x1 + ei

~k·~x2). Similar to the law of superposition, we simply

add the field due to the presence of one source at ~x = ~x1 to that due to source at ~x = ~x2.
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Figure 3. Plots for the boundary fields at finite radial cut-off with double-centered delta function

source.

In position space, the field due to an individual source is given by,

φ(k, ε0) =
21−νε

d/2
0

Γ(ν)
ei
~k·~x1kνKν(kε0)

Fourier
transform−−−−−→

2d−1π
d−2

2 ε
− d

2
−ν

0

(d+ 2ν − 1)

(
Γ
(
d
2

)
Γ
(
d
2 + ν

)
Γ
(
d+1

2

)
Γ(ν)

)((
1 +

ε20
ρ2

)
2F1

(
d

2
,
d

2
+ ν;−1

2
;−ρ

2

ε20

)
−
(

2(d+ ν) +
ε20
ρ2

)
2F1

(
d

2
,
d

2
+ ν;

1

2
;−ρ

2

ε20

))
(3.4)

This function is peaked around ρ = 0, where ~ρ = ~x − ~x1, with a half-width of the order

of ε0. This solution for φ0 corresponds to a distribution for φ0 smeared around J(x) =

δ(~x− ~x1) + δ(~x− ~x2). This is schematically represented by the right panel of the diagram,

figure 4. Note that since the correlator at any cut-off surface is a pure power law by this

device, the motion of the cut-off surface into the AdS bulk does not change the correlator.

4 Double trace perturbations

Having defined our fixed point theories with a finite cut-off and before we move on to

computation of β-function in dual bulk theory, we review ([6]) and extend the AdS/CFT

dictionary for the derivative double-trace operators. We show that the same bulk field

which is dual to a scalar primary operator O of scaling dimension ∆ also describes the

physics of derivative multi-trace operators with an appropriately modified boundary con-

dition that we discuss in this section.

Our action with a double-trace perturbation and inclusion of a source term is given

by (6.14)

S = S0 +
1

2

∫
ddk Of(∂2)O(x)−

∫
ddx J(x)O(x)
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Figure 4. (Left) Witten diagram for a delta-function boundary term corresponds to a scaling

violation, as in (3.2). (Center) Witten diagram with our smearing over the delta-function boundary

condition gives the pure power law. (Right) Smearing increases as one moves deeper in the radial

direction. However, the exact correlator in both the centre and the right diagram are equal.

Since the bulk computations will give us different β-functions, to differentiate between

the two sets of couplings we have denoted the couplings used in the bulk calculations by f

instead of f for the dimensionful couplings, and f̄ instead f̄ for the dimensionless couplings.

We are using the same notation for f(∂2) as in (6.13). In the subsequent discussions, we

work in momentum space,

f(k2) = f0 + f2k
2 + f4k

4 + . . .

We use Hubbard-Stratonovich trick to write the perturbation terms above as,

exp

[∫
J(k)O(−k) −

∫
f(k2)

2
O(k)O(−k)

]

=

∫
Dφ̃ exp

[∫ (
φ̃− J

)
k

(
φ̃− J

)
−k

2f(k2)
+

∫
φ̃(k)O(−k)

]
(4.1)

Standard quantization: using (4.1), and the statement of duality for standard quanti-

zation at finite radial cut-off given by the wavefunctional (2.14), we obtain a bulk partition

function dual to the double-trace perturbed field theory,

Z+[J, f(k2)] =

∫
Dφ exp

[
− Sb −

∫
z=ε0

ddk
√
γ0

(
φ+ A ∗ST ·B∗ST(kε0) ε

d−∆+

0 J
)2

k

2A ∗ST(kε0)
(

1−B∗ST
2 A ∗ST

f(k2)
ε2ν0

)
−
∫
ddk

√
γ0

2
φkD̂ct(ε0k)φ−k

]
(4.2)

Variational principle imposes following condition at the boundary z = ε0,

π(k, ε0)−√γ0

(
φ+ A ∗ST ·B∗ST(kε0) ε

d−∆+

0 J
)
k

A ∗ST(kε0)

(
1−B∗ST

2 A ∗ST

f(k2)

ε2ν0

) −√γ0 D̂ct(ε0k)φ(k, ε0) = 0 (4.3)

where, π(k, z) =
√
g ∂zφ(k, z) is the conjugate momentum of the bulk field.
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Using the near boundary expansion of the bulk field φ(k, z),12

φ(k, z) = zd−∆+ a(k)

(
1− (kz)2

22(ν − 1)
+ · · ·

)
+ z∆+ b(k)

(
1 +

(kz)2

22(ν + 1)
+ · · ·

)
(4.4)

the boundary condition becomes,

J(k) = 2νf(k2)b(k) + a(k) (4.5)

In the above expression, in the ε0 → 0 limit, b(k) is the expectation value of the operator

O, and a(k) is the source. The above expression can be rewritten as,

a(k) = J(k)− 2νf(k2) b(k) = J(k)− 2νf(k2)〈O(k)〉

≡ a(x) = J(x)− 2ν
(
f0〈O(x)〉+ f2〈∂2O(x)〉+ f4〈∂4O(x)〉+ . . .

)
(4.6)

IR boundary condition in the bulk at z = ∞ imposes an additional condition on the

on-shell field φ(k, z). In the pure AdS geometry, demanding the regularity of the field at

IR determines b(k) in terms of a(k),

b(k) = 2−2νk2ν Γ(−ν)

Γ(ν)
· a(k)

So the improved relationship between the boundary value of the bulk field, φ(k, ε0), and

the field theory source for the dual operator O, in the absence of the double-trace defor-

mation, f(k2), is

φ(k, ε0) = ε
d−∆+

0 J(k)

[(
1− (kε0)2

22(ν − 1)
+ · · ·

)
+

(
kε0
2

)2ν Γ(−ν)

Γ(ν)

(
1 +

(kε0)2

22(ν + 1)
+ · · ·

)]
(4.7)

In the limit, ε0 → 0, this gives back the well known GKPW prescription between the

field and the source, limε0→0 ε
∆+−d
0 φ(k, ε0) = J(k). This is a reaffirmation of the limiting

δ-function prescription, (2.5), originally known in the correspondence.

In the presence of the double-trace deformation this relation gets modified to,

φ(k, ε0) = ε
d−∆+

0 J(k)

[(
1− (kε0)2

22(ν−1)
+ · · ·

)
+
(
kε0
2

)2ν
Γ(−ν)
Γ(ν)

(
1 + (kε0)2

22(ν+1)
+ · · ·

)]
1 + 21−2ν f̄(k2ε20) (kε0)2ν νΓ(−ν)

Γ(ν)

(4.8)

With the regulator counter-terms: since we are particularly interested in field the-

ories that are regulated at short distances in position space (or equivalently, have certain

counter-terms in the momentum space) it is also important that we establish our duality

12This equation is correct to all orders with the inclusion of all the correct counterterms that we have

derived at finite cut-off, viz., the values of B∗ST,A
∗
ST, D̂ct.
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for the double-trace perturbations with the inclusion of such regulators, (2.17).

Z+[J, f(k2)] =

∫
Dφ exp

−Sb− 1

2

∫
z=ε0

ddk
√
γ0

 1− δC · f(k
2)

ε2ν0

A ∗ST

(
1−
(
δC+B∗ST

2 A ∗ST

) f(k2)
ε2ν0

)φkφ−k
+ 2

B∗ST ε
d−∆+

0(
1−

(
δC +B∗ST

2 A ∗ST

) f(k2)
ε2ν0

)Jkφ−k
+

(
δC + A ∗ST ·B∗ST

2
)
ε
2(d−∆+)
0(

1−
(
δC +B∗ST

2 A ∗ST

) f(k2)
ε2ν0

) JkJ−k

− ∫
z=ε0

ddk

√
γ0

2
φkD̂ct(ε0k)φ−k


(4.9)

Variational principle imposes following condition at the boundary z = ε0,

π(k, ε0)−
√
γ0

A ∗ST

 1− δC · f(k
2)

ε2ν0

1−
(
δC +B∗ST

2 A ∗ST

) f(k2)
ε2ν0

φk

−√γ0

 ε
d−∆+

0 B∗ST

1−
(
δC +B∗ST

2 A ∗ST

) f(k2)
ε2ν0

 Jk −
√
γ0 D̂ct(ε0k)φ(k, ε0) = 0 (4.10)

the boundary condition becomes,

J(k) = 2νf(k2)b(k) +

(
1− f(k2)

ε2ν0
δC(kε0)

)
a(k) (4.11)

In the double-trace perturbed theory the exact two point function, 〈O(k)O(−k)〉f is

given by the summing over all the connected diagrams. Since the bulk partition function

of the perturbed theory, (4.2) or (4.9), is quadratic in bulk fields φk, we can perform the

gaussian integral exactly and compute the 2-point function from the resulting generat-

ing function,

〈O(k)O(−k)〉(+)
f =

Gε0(+)(k)

1 + f(k2)Gε0(+)(k)
(4.12)

for any value of the coupling f(k2). Here G
(ε0)
+ is given by either (2.16) or (2.18).13

Alternative quantization: from the duality for alternative quantization without

double-trace perturbation (2.22) and (4.1), the bulk dual to double-trace deformed al-

ternative quantized theory is,

Z−[J, f(k2)] =

∫
DΦ exp

(
−S(−)

0 +

∫
ddk J(k)O(−k)−

∫
ddk

f(k2)

2
O(k)O(−k)

)
=

∫
z≥ε0
Dφ exp

[
−Sb −

∫
z=ε0

ddk

√
γ0

2

(
B∗AQ

2 f(k2)ε2ν0

1− C∗AQ f(k2)ε2ν0
+ D̂ct(ε0k)

)
φkφ−k

13Note that we have dropped the contribution coming from the quadratic J explained in section 2.3 as

we won’t need them for the β-function calculation, but we should remember their presence.
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−
∫
z=ε0

ddk
√
γ0

(
B∗AQ

1− C∗AQ f(k2)ε2ν0

)
ε
d−∆−
0 φkJ−k

−1

2

∫
z=ε0

ddk
√
γ0

(
C∗AQ

1− C∗AQ f(k2)ε2ν0

)
ε
2(d−∆−)
0 JkJ−k

]
(4.13)

Variation of the fields on the boundary z = ε0 imposes the condition,

π(k, ε0)−√γ0 φ(k, ε0)

(
B∗AQ

2 f(k2)ε2ν0

1− C∗AQ f(k2)ε2ν0
+ D̂ct(ε0k)

)

=
√
γ0

(
B∗AQ

1− C∗AQ f(k2)ε2ν0

)
ε
d−∆−
0 J(k)

Using the near boundary expansion of the bulk field φ(k, z) in the boundary condition

we get,14

J(k) = 2ν a(k)− f(k2)b(k) (4.14)

which can be rewritten as,

a(k) =
1

2ν

(
J(k) + f(k2)b(k)

)
=

1

2ν

(
J(k) + f(k2)〈O(k)〉

)
≡ a(x) =

1

2ν

(
J(x) + f0〈O(x)〉+ f2〈∂2O(x)〉+ f4〈∂4O(x)〉+ . . .

)
(4.15)

As in the standard quantization, demanding regular IR boundary condition in the pure

AdS bulk geometry, at z =∞, determines b(k) in terms of a(k),

b(k) = 22νk−2ν Γ(ν)

Γ(−ν)
· a(k)

So the improved relationship between the boundary value of the bulk field, φ(k, ε0), and

the field theory source for the dual operator O, now of dimension ∆−, is

φ(k, ε0) = ε
∆−
0 J(k)

(
k

2

)−2ν

[(
kε0
2

)2ν (
1 + (kε0)2

22(ν+1)
+ · · ·

)
+ Γ(ν)

Γ(−ν)

(
1− (kε0)2

22(ν−1)
+ · · ·

)]
2ν − 22ν f̄(k2ε20) (kε0)−2ν Γ(ν)

Γ(−ν)

(4.16)

which, again limits to the known relationship between the source and the normalizable

part of the bulk field, J(k) = 2νa(k) in the ε0 → 0 limit in the absence of the double-trace

deformations.

14φ(k, z) = zd−∆− a(k)
(

1 + (kz)2

22(ν+1)
+ · · ·

)
+ z∆− b(k)

(
1− (kz)2

22(ν−1)
+ · · ·

)
where a(k) is the coefficient

of normalizable part and hence the source for alternative quantization. Also the expression in (4.14) is

exact to all orders.
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With the regulator counter-terms: if we however start with (2.26), then,

Z−[J, f(k2)]

=

∫
DΦ exp

(
−S(−)

0 +

∫
ddk J(k)O(−k)−

∫
ddk

f(k2)

2
O(k)O(−k)

)
=

∫
z≥ε0
Dφ exp

[
−Sb−

1

2

∫
z=ε0

ddk
√
γ0

(
B∗AQ

2 ε2ν0 f(k2)

1−ε2ν0 f(k2)(C∗AQ + δC)
+ D̂ct(ε0k)

)
φkφ−k

−
∫
z=ε0

ddk
√
γ0

B∗AQ
1− ε2ν0 f(k2)(C∗AQ + δC)

ε
d−∆−
0 φkJ−k

−1

2

∫
z=ε0

ddk
√
γ0

C∗AQ + δC

1− ε2ν0 f(k2)(C∗AQ + δC)
ε
2(d−∆−)
0 JkJ−k

]
(4.17)

which leads to boundary condition,

π(k, ε0)− √γ0 φ(k, ε0)

(
B∗AQ

2 ε2ν0 f(k2)

1− ε2ν0 f(k2)(C∗AQ + δC)
+ D̂ct(ε0k)

)

=
√
γ0

B∗AQ
1− ε2ν0 f(k2)(C∗AQ + δC)

ε
d−∆−
0 J(k) (4.18)

J(k) = 2ν
(
1− ε2ν0 f(k2) δC(kε0)

)
a(k)− f(k2)b(k) (4.19)

As in standard quantization, the 2-point function is evaluated exactly by integrating

out (4.13) or (4.17),

〈O(k)O(−k)〉(−)
f =

Gε0(−)(k)

1 + f(k2)Gε0(−)(k)
(4.20)

Equations (4.6), (4.11), (4.15) and (4.19) are our proposed generalisation of the boundary

prescription originally given by [6] for the derivative multi-trace deformations around a

conformal field theory in standard and alternative quantization, respectively. These have

the same structure as we had found for the field theory correlators in section 6.4.

For even more general higher-derivative multi-trace operators, we expect that the above

formulae generalises as long as we include all the derivative terms inside the expectation

values. Corresponding computation for triple-trace operators without derivatives is done

in [10], and we think the generalisation shouldn’t be difficult.

5 Holographic computation of β-functions

Having established the duality for the double-trace operators in previous section, we know

that the couplings of the field theory double-trace operators are contained in the coefficient

of the φkφ−k in the boundary part of the bulk action (4.2), (4.13). AdS/CFT naturally

incorporates a holographic version of RG flow, because of the correspondence between the

radial coordinate in the bulk and the energy scale in the boundary field theory, see, e.g., [14–

18]. Holographic Wilsonian RG flow of double-trace operators without derivatives was
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considered in [2, 3], which was generalised in [9] to double trace operators with derivatives.

In the following we essentially build up on the treatment in [9]. For other relevant work on

renormalization of multi-trace operators from holographic and field theoretic viewpoints,

see, e.g. [10, 11, 19–21]).

An essential feature of the AdS/CFT correspondence is the connection between the

energy scale of the conformal field theory (CFT) and the radial coordinate of the AdS

dual. More precisely, AdS/CFT states that the bulk partition function in Euclidean AdS,

defined with a radial cut-off r = r0, equals the dual field theory partition function with

a UV momentum cut-off Λ given in terms of r0 (for large Λ, Λ = r0/R
2
AdS [22]). A

corollary of this statement, in the semi-classical limit, is that the running of field theory

couplings is identified with the radial dependence of classical field configurations in the

dual gravitational theory (see, e.g., [14–17]). Motivated by this feature, in [2, 3], the near-

boundary degrees of freedom in the bulk are identified with the heavy/short-distance modes

of the dual field theory. They work in probe approximation with a fluctuating field φ(x, z)

on a fixed AdS background given by,

ds2 =
1

z2

(
dz2 + ηµνdx

µdxν
)

(5.1)

Integration of the near boundary modes in the bulk gives a new holographic version of

Wilsonian effective action in the field theory. Stated mathematically,

Zbulk,ε0 =

∫
z≥ε0
D[φ]e−S[φ]

=

∫
Dφ|z>ε Dφ̃ Dφ|ε0≤z<ε e−S[φ]|z>εe−S[φ]|z<ε

=

∫
Dφ̃ Zbulk,ε(ε, φ̃)ZUV(ε, φ̃) (5.2)

The role of ZUV is an addition of a boundary wavefunctional, Ψ[φ0; ε0] to the bulk action

at the new cutoff z = ε, Zbulk,ε. This, in the AdS/CFT dictionary has the interpretation

of addition of higher-trace terms in the field theory, as discussed in section 4. Following

Wilsonian principles, same as in the field theory computations, we demand,

d

dε
Zbulk,ε0 = 0

⇒
∫
Dφ̃
(
∂Zbulk,ε
∂ε

ZUV + Zbulk,ε
∂ZUV

∂ε

)
= 0 (5.3)

here, the evolution of ZUV can be computed using the Hamiltonian corresponding to ra-

dial slicing,

∂ZUV

∂ε
(φ̃, ε) = −H(φ̃, π̃)ZUV(ε, φ̃) (5.4)

which we will refer to as radial Schrödinger evolution equations. Here π̃ = −iκ2 δ/δφ̃. In

general, ZUV contains the details of the various field theory couplings which enables us to

compute the β-functions of these couplings using (5.4). These ideas have been worked out

for the bulk duals of double-traced deformed field theories (4.2), (4.13) in appendix C. We

only quote the final β-functions here.
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Standard quantization: working with the bulk action, (4.9), which is dual to the reg-

ulated field theory and keeping in mind the subtleties that we remarked upon in the sec-

tion 2.3, we get the β-function equation,

ε∂εf̄ = f̄2 ×
(
B∗ST

2 A ∗ST
2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− ε∂εδC

+
(δC)2

B∗ST
2A ∗ST

2

(
ε∂εf̄

∗ − 1 + A ∗ST(d− 2D̂ct)

+ A ∗ST
2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

))
− δC

(
−

2ε∂εB
∗
ST

B∗ST

−
2 ε∂εA ∗ST

A ∗ST

− 2A ∗ST

(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− d+ 2D̂ct

))
+ f̄

(
−

2 ε∂εB
∗
ST

B∗ST

−
2 ε∂εA ∗ST

A ∗ST

− 2A ∗ST

(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− d+ 2D̂ct(kε)

− 2
δC

B∗ST
2A ∗ST

2

(
ε∂εf̄

∗ − 1 + A ∗ST(d− 2D̂ct)

+ A ∗ST
2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)))

+
ε∂εA ∗ST + A ∗ST (d− 2D̂ct) + A ∗ST

2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− 1

B∗ST
2 A ∗ST

2

(5.5)

Alternative quantization: bulk action, (4.17), corresponds to the regulated theory,

ε∂εf̄ =
1

B∗AQ
2

[̄
f2
(

2B∗AQ ε∂εB
∗
AQ

(
C∗AQ + δC

)
−B∗AQ

2
(
ε∂εC

∗
AQ + ε∂εδC +

(
C∗AQ + δC

)
(d− 2D̂ct)

)
−B∗AQ

4 +
(
C∗AQ + δC

)2 (D̂ct(d− D̂ct)− ε∂εD̂ct + k2ε2 +m2
))

+ f̄
(
− 2B∗AQ ε∂εB

∗
AQ +B∗AQ

2(d− 2D̂ct)

− 2
(
C∗AQ + δC

) (
D̂ct(d− D̂ct)− ε∂εD̂ct + k2ε2 +m2

))
+ D̂ct(d− D̂ct)− ε∂εD̂ct + k2ε2 +m2

]
(5.6)

We have listed the β-function equations for individual couplings f̄i in (C.7) and (C.8).

One can note that they follow the same general structure as the β-functions computed

from the field theory. Although, even for the same choice of the regulator (or equivalently,

δC) at a given cut-off, the β-functions are different. We associate this additional ‘scheme-

dependence’ of the β-functions with reparametrization in the space of couplings as explained

in section 7.
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6 β-function for double-trace operators from field theory

6.1 Warming up: β-function of f0

Before we get into a full-fledged calculations of β-function for general double trace couplings

mentioned above, let us first describe, following [6, 23], the Wilsonian computation of the

β-function in the space of the single coupling f0. Double-trace perturbations without

derivatives, i.e. (1.2) with only f0 6= 0 and their renormalizations have been discussed

extensively in the literature see, e.g. [2, 3, 6, 9–11, 18–21, 23, 24].

Let us consider a double-trace perturbation given by,

S = SCFT +
f0

2

∫
ddx O2(x) (6.1)

The single-trace operator O(x) is a primary of conformal dimension ∆− =
d

2
− ν at the

fixed point given by fi = 0. The double-trace operator will then be a relevant operator

with dimension (at leading large N).15

∆O2 = 2∆ ≡ d− ν, ν > 0 (6.2)

In [6] β-function for f0 was computed for a marginal double-trace deformation. This was

generalised in [23] to arbitrary ∆O2 , where a Wilsonian RG using real space integration

shells was used. See also [25], and [10] for a general perspective. Partition function of the

deformed theory is given by,

Z =

∫
DΦ e−S[Φ]

=

∫
DΦ e−SCFT[Φ]

(
1− f0

2

∫
ddx O2(x) +

f2
0

4 · 2!

∫
ddx ddy O2(x)O2(y)− . . .

)
(6.3)

Here, Φ are the ‘fundamental fields’ in the theory. The omitted terms in (6.3) organise

in themselves in form of a Dyson-Schwinger sum in the final answer. If we regulate the

theory at some cut-off a, such that the correlator 〈O(x)O(y)〉 vanishes for |x− y| ≤ a, we

can write (for more general treatment see (6.15) and the discussion in section 6.2)

Ga(w) = 〈O(x)O(x+ w)〉a =
Θ(|w|/a− 1)

|w|2∆
(6.4)

this regulator is also used in [23] (see section 6.2, especially (6.16) for other choices). As

explained in detail in following subsection (figure 6), we can rewrite the third term in

parenthesis in (6.3) as,

f2
0

4 · 2!

∫
ddx ddw O2(x)O2(x+ w) =

f2
0

2!

∫
ddx ddw O(x) Ga(w) O(x+ w)

=
f2

0

2!

∫
ddx ddw O(x)

(
Ga′(w) + (a− a′)G′a′(w)

+
(a− a′)2

2
G′′a′(w) + · · ·

)
O(x+ w) (6.5)

15This makes the theory at f0 = 0 a UV CFT. In later sections discussing the holographic setup, we will

identify this CFT with the so-called ‘alternative quantization’. However, we keep our subsequent analysis

more general and won’t use any specific value of ∆. Only in (6.11a) do we use the specific value in (6.2).
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In (6.5) we have omitted the terms that are suppressed in the large N limit (see section 6.3).

In the simple case of Θ-function cut-off as in (6.4), it can be written more simply as,

f2
0

4 · 2!

∫
a
ddx ddw O2(x)O2(x+ w) =

f2
0

4 · 2!

(∫
a′
ddx ddw O2(x)O2(x+ w)

+ 4

∫ a′

a
ddx ddw O2(x)O2(x+ w)

)
=

f2
0

4 · 2!

(∫
a′
ddx ddw O2(x)O2(x+ w)

+ 4

∫ a′

a
ddx ddw O(x)

1

|w|2∆
O(x+ w)

)
(6.6)

The factors of 4 in both (6.5) and (6.6) are due to 4 possible combinations of contractions

between O(x) and O(x+ y). While the first term in (6.6) is the standard contribution for

a new theory defined at cut-off a′, the second term corrects the value of f0 in (6.3). In

second term on r.h.s. of (6.6), expanding O(x+ w) in a Taylor series

f2
0

2

∫
ddx

(
O2(x)

∫ a′

a
ddw

1

|w|2∆
+O(x) ∂µO(x)

∫ a′

a
ddw

wµ

|w|2∆

+
1

2!
O(x) ∂µ∂νO(x)

∫ a′

a
ddw

wµwν

|w|2∆
+ . . .

)
(6.7)

Using the result (B.1) in appendix B,

=
f2

0

2

(
2πd/2

Γ
(
d
2

))(a′d−2∆ − ad−2∆

d− 2∆

)(∫
ddx O2(x)

)

+
f2

0

2

(
πd/2

2 Γ
(
d
2 + 1

))(a′d−2∆+2 − ad−2∆+2

d− 2∆ + 2

)(∫
ddx O (∂2)O(x)

)
+ . . . (6.8)

We see that derivative double-trace couplings are automatically generated. The couplings

at the new cut-off a′ are then,16

f ′0 = f0 − f2
0

(
2πd/2

Γ
(
d
2

))(a′d−2∆ − ad−2∆

d− 2∆

)
+ . . .

f ′1 = −f2
0

(
πd/2

2 Γ
(
d
2 + 1

))(a′d−2∆+2 − ad−2∆+2

d− 2∆ + 2

)
+ . . .

f ′2 = −f2
0

(
πd/2

16 Γ
(
d
2 + 2

))(a′d−2∆+4 − ad−2∆+4

d− 2∆ + 4

)
+ . . .

(6.9)

The ellipsis in the above equations denotes higher order terms coming from ellipsis in (6.3).

(6.9) can be used to compute β-functions. The contributions coming from terms in ellipsis

16Recall, we had started with only f0 6= 0, rest all fi = 0∀i > 0.
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above are ∼ (δa)2 and hence don’t contribute to β-function computations.

β
(d)
0 = lim

a→a′

(
a · f

′
0 − f0

a′ − a

)
= −f2

0 ad−2∆

(
2πd/2

Γ
(
d
2

)) (6.10a)

β
(d)
1 = lim

a→a′

(
a · f ′1

a′ − a

)
= −f2

0 ad−2∆+2

(
πd/2

2 Γ
(
d
2 + 1

)) (6.10b)

β
(d)
2 = lim

a→a′

(
a · f ′2

a′ − a

)
= −f2

0 ad−2∆+4

(
πd/2

16 Γ
(
d
2 + 2

)) (6.10c)

...

where, β(d) are the β-functions for the dimensionful couplings. In terms of the dimensionless

couplings, for the operators with dimension given by (6.2), these become,

β0 = 2νf̄0 − f̄2
0

(
2πd/2

Γ
(
d
2

)) (6.11a)

β1 = (2ν − 2)f̄1 − f̄2
0

(
πd/2

2 Γ
(
d
2 + 1

)) (6.11b)

β2 = (2ν − 4)f̄2 − f̄2
0

(
πd/2

16 Γ
(
d
2 + 2

)) (6.11c)

...

More generally, we can start with double-trace couplings with arbitrary number of deriva-

tives as in (1.2). By a simple generalisation of the above method, we get a closed set of

beta-functions. This is what we describe in what follows.

6.2 β-function of a general coupling with arbitrary cut-off regulator

In this section we generalise the above computations of the β-functions to couplings con-

stants of the double-trace operators with derivatives. The fixed point Lagrangian is per-

turbed by a term as follows,

1

2

∫
ddx

(
f0O2(x) + f1O∂2O(x) + f2O∂4O(x) + · · ·

)
(6.12)

where fi are the dimensionful coupling constants for the operators of the type O(∂2)iO(x),

same as in (1.2), but written in a concise notation. These are the same class of operators

for which β-functions were computed in bulk in [2, 3]. In a large N theory, the anomalous

dimension of the double-trace operators are suppressed by 1/N , and so the conformal

dimension of any of the above double-trace operators is ∆i =
[
O(∂2)iO(x)

]
= d−2ν+2i.17

We are considering appropriately orthogonalized single-trace operators at the fixed point

17We only require ∆i = ∆O2 + 2i in most of our analysis, using the specific value only in β-function

computations.
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Figure 5. Factorisation through double-trace vertices in Large-N limit.

such that under RG only the multi-traces and their derivatives are generated. We package

the above couplings into a single function of ∂2 (or equivalently k2 in momentum space),

f(∂2) = f0 + f1(∂2) + f2(∂2)2 + · · · (6.13)

and hence the double-trace perturbations become,

LDT =
1

2

∫
ddx O f(∂2)O(x) (6.14)

In a large-N theory, all the O(1) connected diagrams factorise through the double-trace ver-

tices into chain-like diagrams, In the figure 5, each circle is representative of 〈O(x1)O(x2)〉
contractions, or of their derivatives coming from the double-trace vertices (although here

it looks like O = Tr[Φ2], it is representative of any arbitrary single-trace operator). In

a regulated theory a UV cut-off modifies the short-distance behaviour of any correlator.

We capture the effect of such regulations in our correlators by introducing a regulating-

function, K(|x1 − x2|/a), such that the new regulated correlator becomes,

Ga(x1 − x2) = 〈O(x1)O(x2)〉a =
K(|x1 − x2|/a)

|x1 − x2|2∆
. (6.15)

Here a parametrises the length-scale of regulation, and the correlator shows deviation from

polynomial law only near length-scales . a, while long distance behaviour remains power-

law, as governed by conformal symmetry. Thus, K(|x1 − x2|/a)→ 1, when |x1 − x2| � a,

but falls off faster than |x1 − x2|2∆, when |x1 − x2| . a. In our study, we assume that the

short-distance fall-off is fast enough to regulate all the correlators 〈(∂2)iO(x1) (∂2)jO(x2)〉
at short distances. An example of such a regulator is K(r/a) = Θ(r − a), where Θ is the

Heaviside-theta function, which was used in [6, 23, 24]. We also use a regulated form of

Θ-function,

K(ρ) =

√
πe1/ω2 (

ω2 + 2
) (

erf
(
ρ−1
ω

)
+ erf

(
1
ω

) )
+ 2ω − 2(ρ+ 1)ωe−(ρ2−2ρ)/ω2

√
πe1/ω2 (ω2 + 2)

(
erf
(

1
ω

)
+ 1
)

+ 2ω
(6.16)

The corresponding regulated δ-function that is

δr(ρ− 1) =
4ρ2e−

(ρ−2)ρ

ω2

ω
(√

πe
1
ω2 (ω2 + 2)

(
erf
(

1
ω

)
+ 1
)

+ 2ω
)

here, ω is the width of the regulated δ-function and regulated Θ-function.
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Figure 6. Corrections to a vertex at new cut-off a′. The crossed vertex on l.h.s. denotes the vertex

at new cut-off. Vertices on r.h.s. are original vertices at a. Coloured contractions denote integration

of heavy modes coming from higher order corrections in (6.17).

Hence, computation of any physical observable involves evaluation of chain-diagrams

with regulated correlators.

Evaluation of β-functions involves studying the change of the coupling constants fi
under the change of the cut-off scale a → a′. All the physical observables in this new

theory are required to remain unchanged and the chain diagrams involve the correlators,

Ga′(|x1 − x2|/a′). One can relate the diagrams in the original theory at a to those in the

new theory at cut-off a′ by relating the correlators.

Ga(x1 − x2) = Ga′(x1 − x2) + ∂a′Ga′(x1 − x2) (−δa) + . . . (6.17)

Note that the second term above involves derivative of K(|x − y|/a) and is supported

only in the region |x − y| ∼ a′. The first term on the r.h.s. of (6.17) contributes to the

chain-diagrams at the new cut-off a′ and subsequent terms correct the coupling constant.

Integration involving second and subsequent terms can be seen as coming from integration

of heavy modes, as they contribute only at short distances. We will denote them by coloured

contractions in our diagrammatic representations, as in figure 6.

We compute the contribution of the second diagram on the r.h.s. of figure 6 with the

vertices 1
2fn

∫
ddz1O (∂2)nO(z1) and 1

2fm
∫
ddz2O (∂2)mO(z2). There are 4 ways to choose

the heavy contractions between single-trace operators,

fnfm
4

(−δa′)
(∫

ddz1d
dz2 O(z1) ∂a′

[
(∂2)nGa′(z1 − z2)

]
(∂2)mO(z2)

+

∫
ddz1d

dz2 O(z1) ∂a′
[
(∂2)m+nGa′(z1 − z2)

]
O(z2)

+

∫
ddz1d

dz2 (∂2)nO(z1) ∂a′ [Ga′(z1 − z2)] (∂2)mO(z2)

+

∫
ddz1d

dz2 (∂2)nO(z1) ∂a′
[
(∂2)mGa′(z1 − z2)

]
O(z2)

)
(6.18)

Here we have kept only the linear variation in (δa′), since only that is required in the β-

function computations. All the subsequent terms in (6.17) (which are higher order in (δa′))
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don’t contribute to the β-functions, even though they need to be considered in computation

of the exact vertex at the new cut-off. For the same reason second and following rows in

figure 6 don’t contribute to the β-function computation. As in any differential equation,

their contribution is exactly captured in the solution. At this point the β-functions in

large-N limit are quadratic, whose exactness will be established in section 6.3. This is

consistent with the holographic computations of the β-functions.

In (6.18), we can write the operator at O(z2) in a Taylor series expansion around z1.

(∂2)mO(z2) = (∂2)mO(z1) + (z2 − z1)µ∂µ

(
(∂2)mO(z1)

)
+

1

2!
(z2 − z1)µ(z2 − z1)ν∂µ∂ν

(
(∂2)mO(z1)

)
+ · · · (6.19)

From the conformal field theory point of few, this is same as translating the operator

at z1 to z2. Furthermore, rotational invariance of the theory implies that only the vector-

singlets constructed at any level of Taylor series contribute, and hence odd-terms in the

Taylor series don’t contribute. Thus a general term appearing in the Taylor series can be

written as,∫
ddz1d

dz2O(z1)∂a′
[
(∂2)nGa′(|z1 − z2|)

]( 1

(2k)!
zµ1

21 . . . z
µ2k
21 ∂µ1 . . . ∂µ2k

(
(∂2)mO(z1)

))
= (a′)2k

(
21−2kπd/2

Γ(k + 1)Γ(k + d
2)

)
×
(∫

dρ ρd−1+2k ∂a′
[
(a′)−2n(∂2

ρ)nGa′(a
′ρ)
])

×
∫
ddz1O(z1)(∂2)(m+k)O(z1) (6.20)

where, we have used the notation ~ρ =
~z21

a′
, zij = zi − zj , ρ = |~ρ|; and the first numerical

factor is coming from the angular integrations (see appendix B).

Clearly, β-function of every coupling constant in the double-trace perturbation, fi, is

quadratic in every other coupling constant, fj . It is instructive to note that the contribution

of some coupling fn to the βi, where n > i comes only from those terms in (6.18) in which

the operator (∂2)nO is involved in a contraction.

We show here only first few β-functions, while we have pushed the details of calculations

to appendix B:

β0 = 2νf̄0 + f̄2
0

(
α0GK

′
∆

)
+ f̄0f̄1 α0

[
ρd−2∆−1

(
ρ K(2)(ρ)− (2∆− 1)K(1)(ρ)

)]∞
0

+ f̄2
1 α0

[
ρd−2∆−3

(
ρ3K(4)(ρ)− ρ2(6∆− d− 2)K(3)(ρ)

+ ρ
(
12∆2 − (4d+ 2)∆ + d− 1

)
K(2)(ρ)

−
(
4∆2 − 1

)
(2∆− d+ 1)K(1)(ρ)

)]∞
0

(6.21a)

β1 = (2ν − 2)f̄1 + f̄2
0

(
α1GK

′
∆−1

)
+ f̄0f̄1

(
(α0 + 2d α1) GK

′
∆ + α1

[
ρd−2∆+1

(
ρK(2)(ρ)− (2∆ + 1)K(1)(ρ)

)]∞
0

)
+ f̄2

1

(
α1

[
ρd−2∆−1

(
ρ3K(4)(ρ)− ρ2(6∆− d)K(3)(ρ)

+ ρ
(
12∆2 − (4d+ 6)∆ + d− 3

)
K(2)(ρ)
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−
(
4∆2 − 1

)
(2∆− d+ 3)K(1)(ρ)

)]∞
0

+ 2 α0

[
ρd−2∆−1

(
ρ K(2)(ρ)− (2∆− 1)K(1)(ρ)

)]∞
0

)
(6.21b)

where, we have used the following short-hand notations

αi =
21−2i πd/2

Γ(i+ 1)Γ(i+ 1
2d)

GK
(n)

∆ =

∫
dρ ρd−2∆ K(n)(ρ)

(6.22)

f̄i = a2ν−2ifi are the dimensionless coupling constants for the operator O (∂2)iO(x) (cor-

responding to choice (6.2)), and the β-functions are computed for these dimensionless cou-

plings.

It is apparent that some of the coefficients in the above β-functions are simply boundary

terms. With our assumption that the regulation scheme, K falls off fast enough at the origin

to regulate all the correlators, these coefficients vanish. Thus the β-functions become,

β0 = 2νf̄0 − f̄2
0

(
α0GK

′
∆

)
(6.23a)

β1 = (2ν − 2)f̄1 − f̄2
0

(
α1GK

′
∆−1

)
− f̄0f̄1

(
(α0 + 2d α1) GK

′
∆

)
(6.23b)

We find that the β-functions follow a pattern in which the coefficient of f̄if̄j in βk is only

a boundary term when i+ j > k, and hence vanish. We have checked it explicitly for first

four β-functions listed below and could easily see it generalise to any arbitrary order,

β0 = 2νf̄0 − f̄2
0

(
α0GK

′
∆

)
β1 = (2ν − 2)f̄1 − f̄2

0

(
α1GK

′
∆−1

)
− f̄0f̄1

(
(α0 + 2d α1) GK

′
∆

)
= (2ν − 2)f̄1 − f̄2

0

(
α1GK

′
∆−1

)
− 2f̄0f̄1

(
α0 GK

′
∆

)
β2 = (2ν − 4)f̄2 − f̄2

0

(
α2GK

′
∆−2

)
− f̄0f̄1

(
(α1 + 4(d+ 2)α2)GK

′
∆−1

)
− f̄0f̄2

(
(α0 + 8d(d+ 2)α2)GK

′
∆

)
− f̄2

1

1

4

(
(α0 + 4dα1 + 8d(d+ 2)α2)GK

′
∆

)
= (2ν − 4)f̄2 − f̄2

0

(
α2GK

′
∆−2

)
− 2f̄0f̄1

(
α1GK

′
∆−1

)
−
(
2f̄0f̄2 + f̄2

1

) (
α0GK

′
∆

)
β3 = (2ν − 6)f̄1 − f̄2

0

(
α3GK

′
∆−3

)
− 2f̄0f̄1

(
α2GK

′
∆−2

)
−
(
2f̄0f̄2 + f̄2

1

) (
α1GK

′
∆−1

)
− 2

(
f̄0f̄3 + f̄1f̄2

) (
α0GK

′
∆

)
...

(6.24)

We have used the identity αi = (2i + 2)(d + 2i)αi+1 to simplify coefficients, and αi and

GK′∆ are given by (6.22). In table 2 we summarise the values of the coefficients above for

K = Θ and K =(6.16), the regulated Θ-function.
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Θ(ρ) Regulated-Θ(ρ)

α0GK
′

∆

2πd/2

Γ(d2)

4πd/2ω2ν+1
[
2Γ(ν+2) 1F1

(
ν+2; 3

2
; 1
ω2

)
+ωΓ(ν+ 3

2) 1F1

(
ν+ 3

2
; 1
2

; 1
ω2

)]
Γ( d2 )

[√
πe

1
ω2 (ω2+2)×(erf( 1

ω )+1)+2ω
]

α1GK
′

∆−1

πd/2

2Γ(d2 + 1)

πd/2ω2ν+3
[
2Γ(ν+3) 1F1

(
ν+3; 3

2
; 1
ω2

)
+ωΓ(ν+ 5

2) 1F1

(
ν+ 5

2
; 1
2

; 1
ω2

)]
Γ( d2 +1)

[√
πe

1
ω2 (ω2+2)×(erf( 1

ω )+1)+2ω
]

α2GK
′

∆−2

πd/2

16Γ(d2 + 2)

πd/2ω2ν+5
[
2Γ(ν+4) 1F1

(
ν+4; 3

2
; 1
ω2

)
+ωΓ(ν+ 7

2) 1F1

(
ν+ 7

2
; 1
2

; 1
ω2

)]
8Γ( d2 +2)

[√
πe

1
ω2 (ω2+2)×(erf( 1

ω )+1)+2ω
]

α3GK
′

∆−3

πd/2

192Γ(d2 + 3)

πd/2ω2ν+7
[
2Γ(ν+5) 1F1

(
ν+5; 3

2
; 1
ω2

)
+ωΓ(ν+ 9

2) 1F1

(
ν+ 9

2
; 1
2

; 1
ω2

)]
96Γ( d2 +3)

[√
πe

1
ω2 (ω2+2)×(erf( 1

ω )+1)+2ω
]

Table 2. List of the coefficients appearing in (6.24) for choice of two different regulators discussed

in the text.

Figure 7. Types of diagrams that originate in Wilsonian RG due to integration of heavy modes.

Coloured lines represent heavy modes that are being integrated out. Above diagrams show the

origin of corrections to φ4 and φ6 vertices.

6.3 Exactness of β-function

The usual Wilsonian or Polchinski-Wilsonian renormalization procedure involves integra-

tion of UV/short-distance-degrees of freedom. In a continuum field theory defined around

Gaussian fixed point, momentum eigenvalues serve as adequate label to differentiate be-

tween UV and IR degrees of freedom, and heavy modes are defined as those modes with

momentum greater than some arbitrary cut-off value. When we change the value of the

cut-off, those modes that lie between the old and new cut-offs are integrated over. Dia-

grammatically these are denoted by bold lines, and in this paper they are represented by

coloured lines (see figure 7). In this paper, we perform an integration of heavy modes in

position space, as demonstrated above and we justify our approach in this subsection.

In a large-N matrix theory like the one that we are considering, integration of heavy

modes generates diagrams shown in figure 8. With our normalisation of operators, it is

clear that the leading contribution comes from contracting all the heavy ‘legs’ between two
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Figure 8. Diagrams that arise in contraction of heavy modes in a matrix theory from the double-

trace vertices. The first kind of diagrams correct the single-trace coupling constants at sub-leading

order of N counting. Only the second kind of diagrams correct the double-trace coupling constants,

at the leading order.

Figure 9. An example of a 2-loop diagram that is suppressed in large-N counting. Suppression of

similar diagrams is also discussed in [11].

double-trace vertices, so one effectively has 〈O(x1)O(x2)〉. Fewer contractions of legs leaves

us with one more propagator (with a contribution of 1/N) than number of loops (which

contribute a factor of N each), and hence the contribution is suppressed. Moreover, such a

diagram with fewer heavy contractions contribute to a triple trace term, which even though

comes with the correct normalisation (of 1/N) in our N counting, doesn’t contribute to

O(1) part of the effective action.

There is a class of diagrams as shown in figure 9, which are suppressed by appearance

of internal propagators. In general, any diagram that involves internal propagators are

suppressed. A similar reasoning appears in [11] in terms of certain auxiliary fields that

are used to write the double-trace operators in terms of the single-trace operators. Thus,

it is clear that the only diagrams that can possibly contribute at the leading order are

the chain-type diagrams discussed previously in this section, and hence the β-functions

computed using such diagrams are exact.

6.4 Field theory correlators in momentum space

Most of our computations in bulk are in momentum space. For sake of completeness and

to be able to compare the results, we will summarize some of the field theory results in

momentum space. The momentum space expression for the field theory correlator along

with the inclusion of the regulating function, (6.15), in general is of the form,

〈O(k)O(−k)〉ε = p2∆−d + εd−2∆
(
a0 + a1(pε)2 + a2(pε)4 + . . .

)
(6.25)

where, ai are some coefficients that are given by the choice of the regulating function K. For

example, for the θ-function regulation, we have following correlator in momentum space
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(to keep in line with the bulk notations, we are using ∆ = d/2± ν),

〈O(k)O(−k)〉ε

= k±2ν

(
−4π

d−1
2 cos(πν)

Γ(∓2ν − 1)

Γ
(
d−1

2

) )
± 2ε∓2ν π

d−1
2

1F2

(
∓ν; 3

2 ,∓ν + 1;−1
4(kε)2

)
ν Γ

(
d−1

2

)
= k±2ν

(
−4π

d−1
2 cos(πν)

Γ(∓2ν − 1)

Γ
(
d−1

2

) )

+ ε∓2ν

(
± 2π

d−1
2

ν Γ
(
d−1

2

))[1± ν (kε)2

6(ν + 1)
∓ ν (kε)4

120(ν + 2)
± ν (kε)6

5040(ν + 3)
+ . . .

]
(6.26)

and the coefficients ai can be read from the above equation. Strictly speaking, in the

correctly regulated IR theory, we don’t get the diverging counter terms in the above cor-

relators. That is to say, for example, if 0 < ν < 1, then around the IR fixed point, when

∆ = d/2 + ν, in a correctly regulated theory, the first counter term above, a0 = 0 (i.e. we

need to add a counter-term with −a0).

In a more general case, it might happen that the kinematic term (the term proportional

to k2∆−d in the above equation) also has a multiplicative integer power series in kε. We

attribute such a series to a multiplicative wavefunction renormalization of the operator O.

Thus, for any choice of a regulator the 2-point function in momentum space can be brought

to the above form. For reference, we have presented the correlator computations in a large

N bosonic vector model in appendix D. There the correlator for the φ2 operator in the

regulated UV theory is given by, (D.1) which has the same form as presented above.

In a double-trace deformed field theory around a fixed point, the correlator of the O
operator in the large N limit is given by the Schwinger-Dyson series,

〈O(k)O(−k)〉fε = 〈O(k)O(−k)〉ε − f(k2)〈O(k)O(−k)〉2ε + f2(k2)〈O(k)O(−k)〉3ε + · · ·

=
〈O(k)O(−k)〉ε

1 + f(k2)〈O(k)O(−k)〉ε
(6.27)

IR fixed point from UV theory: now we will analyse the UV and IR limit of the

perturbed correlators around the fixed points of the theory. Around the UV fixed point

∆ = d/2 − ν, and the dimensionless coupling constants are f̄−(kε) = ε2νf−(k2), so the

perturbed correlator is given by,

〈O(k)O(−k)〉f−ε =
k−2ν + ε2νδC(kε)

1 + ε−2ν f̄− (k−2ν + ε2νδC(kε))
(6.28)

Taking the IR limit of this correlator, kε→ 0, we get the following limit of the correlator,

lim
kε→0
〈O(k)O(−k)〉f−ε →

(
ε2ν

f̄−
− k2ν ε

4ν

f̄2
−

+ k4ν ε
6ν

f̄3
−

(
1 + f̄−δC

)
+ · · ·

)
(6.29)

Thus in the strict IR limit, only the second term survives, and in that case we get the

correlator of the IR theory upto some wavefunction renormalization, ε4ν f̄2, and the first
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contact term, after the inclusion of this wavefunction renormalization becomes, f̄ · ε−2ν ,

lim
kε→0
〈Õ(k)Õ(−k)〉f

∗
−
ε →

(
f̄∗− · ε−2ν − p2ν

)
(6.30)

In this limit, even the coupling constants approach their respective IR fixed point value,

f̄ → f̄∗−. So the first term is precisely the type of contact term that one expects for the

regulated theory with the scaling dimension, ∆ = d/2 + ν.

UV fixed point from IR theory: let us analyse the correlator for a double-trace

deformed theory around the IR fixed point, and take the UV limit of such a correlator.

The correlator given by the exact summation of the Schwinger-Dyson sum in this case is

also (6.27), but now with the correlators at the IR fixed point, and also the perturbation,

f̄+(kε) = ε−2νf+(k2), around this fixed point,

〈O(k)O(−k)〉f+
ε =

k2ν + ε−2νδC(kε)

1 + ε2ν f̄+ (k2ν + ε−2νδC(kε))
(6.31)

The UV limit in this case is, kε→∞,

lim
kε→0
〈O(k)O(−k)〉f+

ε →
(
ε−2ν

f̄+
− k−2ν ε

−4ν

f̄2
+

+ k−4ν ε
−6ν

f̄3
+

(
1 + f̄+δC

)
+ · · ·

)
on wavefunction
renormalization−−−−−−−−−→

(
f̄∗+ · ε2ν − p−2ν

)
(6.32)

Thus, we see that starting with either of the fixed points, in correct limits, we can flow to

the other fixed point. It is clear that the properties of the correlators and the β-functions

that are discussed in this section are also true for the holographic computations. We

now discuss a few subtleties that are involved in the duality between the field theory and

the bulk.

7 Scheme-dependence and coupling constant redefinition

In this section we will discuss (a) the relationship between the choice of regulator K in the

field theory and radial cut-off in the holographic computations, and (b) how are different

choices of regulators K related to diffeomorphisms in the space of couplings (or equivalently,

in the space of field theories).

In the derivation of β-functions for a general regulator K, (6.24), it is clear that all the

independent coefficients appearing there are of the form

GK
′

∆−j =

∫
dρ ρd−2∆+2j K′(ρ), j ∈ {Z+ ∪ 0} (7.1)

These are almost like moments of derivative of the regulating function, K (we say almost,

because d − 2∆ = 2ν is not an integer). Thus knowledge of all these coefficients, along

with the behaviour of K at 0 and ∞, is, in principle, enough to reconstruct K. However,

the relationship between the coefficients and the regulating function in the bulk calcula-

tion is different, which points to a different ‘scheme’ of renormalization between bulk and

field theory.
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Next, we will discuss the class of diffeomorphisms in the space of couplings, f̄i, that

correspond to different choices of regulating function in the Wilsonian computation. The

general structure of the β-functions either in bulk (C.7) and (C.8) or field theory (6.24) is:

β0 = 2νf̄0 −A0f̄
2
0

β1 = (2ν − 2)f̄1 −A1f̄
2
0 − 2A0f̄0f̄1

β2 = (2ν − 4)f̄2 −A2f̄
2
0 − 2A1f̄0f̄1 −A0

(
2f̄0f̄2 + f̄2

1

)
β3 = (2ν − 6)f̄3 −A3f̄

2
0 − 2A2f̄0f̄1 −A1

(
2f̄0f̄2 + f̄2

1

)
−A0

(
2f̄1f̄2 + 2f̄0f̄3

)
...

(7.2)

for some values of Ai.
Above β-functions, βi and couplings, fi can be packaged into generating functions

defined as

β(κ) = β0 + κ2β1 + κ4β2 + κ6β3 + · · · (7.3a)

f̄(κ) = f̄0 + κ2f̄1 + κ4f̄2 + κ6f̄3 + · · · (7.3b)

and then (7.2) is re-packaged into a single equation,

β(κ) = 2νf̄(κ)−A(κ)f̄2(κ)− κ∂κf̄(κ) (7.4)

where,

A(κ) = A0 + κ2A1 + κ4A2 + κ6A3 + · · · (7.5)

Note that, with the identification κ = εk in (7.3b), we have the dimensionless version of

f(k) =
∑∞

n=0 fn(k2)
n

in (1.2). Then, (7.4) becomes,

˙̄f(κ) = ε∂εf̄(κ)|k = 2νf̄(κ)−A(κ)f̄2(κ)

Such a packaged form of β-functions appears naturally in the bulk computations (see (5.5)

and (5.6)).

The above differential equation can be rewritten as,(
ε2ν

f̄(κ)

)·
= ε2νA(κ)

From the field theory computations, we see that different choices of regulating functions,

K, correspond to different Ai. Now, if we have another set of β-function differential equa-

tions with different coefficients, packaged into A(κ), which denotes a different scheme of

renormalization, then between two different set of β-functions, the couplings in these two

different schemes, f̄(κ) and f̄(κ) can be related by,18(
ε2ν
(

1

f̄(κ)
− d

f̄(κ)

))·
= ε2ν (A(κ)− dA(κ))

18For our interest, the Wilsonian/Polchinski-Wilsonian scheme and Holographic scheme are the ones that

we want to relate, and hence we use the same notations for couplings as those we have used previously in

this paper, f̄ for dimensionless field theory couplings, and f̄ for dimensionless bulk couplings.
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here, we have allowed for a relative scaling by d, which is a consistent rescaling within a

scheme: the coefficients and the couplings need to be simultaneously scaled by d and 1/d,

respectively, which leaves the β-function equations invariant. Defining, c(κ) = 1
f̄(κ)
− d

f̄(κ)
,

which can be viewed as an expansion by itself, c(κ) = c0 + κ2c2 + κ4c4 + · · · , we can solve

for c(κ),19

e2νtc(etk)− lim
t→−∞

(
e2νtc(etk)

)
=

∫ t

−∞
dt e2νt

[
A(etk)− dA(etk)

]
(7.6)

here we have used, κ = εk and the redefinition ε = et. Solving the above equation (7.6)

term by term as a series in κ, we get,

c(etk) =
∑
j=0

[(
e2t
)j
k2jcj

]
=
∑
j=0

(
e2t
)j
k2j Aj − dAj

2ν + 2j

ci =
Ai − dAi
2ν + 2i

, i ≥ 0 (7.7)

The relation c(κ) = 1
f̄(κ)
− d

f̄(κ)
gives us a transformation in the coupling-space which relates

the two RG-schemes at an arbitrary cut-off.

8 Discussions

In this paper we have determined all possible boundary conditions for a single bulk scalar

field in AdS/CFT. The principle is that these boundary conditions can be regarded as

wavefunctionals whose z-dependence is determined by a radial Schrödinger equation. We

found that the original GKPW prescription, coupled with the Solodukhin counterterms

and applied to a finite radial cut-off z = ε0, corresponds to a wavefunctional which cannot

be obtained by the evolution of the known GKPW δ-function boundary condition at z = 0.

In addition, it contains some spurious double trace deformations. We found a precise field

theory correspondence for all allowed boundary conditions and found two specific wave-

functions (boundary conditions) Ψ0
1 and Ψ0

2 (eqs. (2.14) and (2.22)) which represent the

pure CFTs (respectively, IR and UV CFT, corresponding to standard and alternative quan-

tizations). Using this insight, we isolate the real double trace deformations from spurious

ones and find that the holographic beta-functions can be matched to the ones computed

from field theory. We gave a geometric interpretation of the specific wavefunctionals in

terms of a specific form of non-locality of the boundary ‘points’ in Witten diagrams.

As mentioned above, we have discussed the field theory equivalent of the above bound-

ary wavefunctional in terms of properties of the generating functional Z[J ]. In field theory,

it is in principle possible, though difficult in practice, to reproduce the continuum result

(power law scaling) at a finite cut-off scale, in terms of effective Wilsonian vertices plus

a J2 term in logZ[J ].20 However, holography gives such an ‘RG scheme’ in a rather

straightforward fashion.

19This expansion is motivated by r.h.s. of the equation, and has some non-trivial implication. Since the

relation between f̄ and f̄ doesn’t depend explicitly on t, this can be directly understood as a diffeomorphism

in the space of couplings.
20We thank Shiraz Minwalla for discussion on this point.

– 34 –



J
H
E
P
1
2
(
2
0
1
6
)
1
2
5

In this paper, we considered a probe approximation; it was sufficient for our purposes to

consider a quadratic bulk scalar action. We expect that for an interacting bulk action, with

possibly multiple fields, it should again be possible to discover boundary wavefunctionals

defining AdS/CFT at a finite cut-off, such that the pure CFT correlators are reproduced at

a finite cut-off. The argument for the existence of such boundary conditions follows from

the abstract argument, presented above for existence of such RG schemes in field theory.

It is also interesting to speculate what the appropriate AdS/CFT prescription at a finite

cut-off is for scalar fields in a black hole background. As against the pure AdS background,

we now expect the correct wavefunctionals Ψ0
1 (and Ψ0

2, when the alternative quantization

exists), to have a specific dependence on the new scale provided by the black hole horizon

radius. We hope to come back to these issues shortly.
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A Notations

We will generally use the notation fn for the double-trace couplings introduced in (1.2),

and f̄n for their dimensionless counterparts. In addition, depending on the context we will

denote these couplings by the following specialized notations:

Field Theory Dimensionful: f Dimensionless: f̄

Bulk Dimensionful: f Dimensionless: f̄

B Some mathematical results

Integrals. Integrals of the following type appear in the calculation of β-functions,∫
a′>|w|>a

ddw
wµ1wµ2 · · ·wµ2n

|w|p

=

∫
a′>w>a

dw
1

|w|p−d+1−2n

∫
dΩd−1ŵ

µ1ŵµ2 · · · ŵµ2n

=
1

d+ 2n− p

(
a′d+2n−p − ad+2n−p

)
×

(
21−2nπd/2

Γ
(
d
2 + n

)
Γ(n+ 1)

) ∑
P∈S2n

(
δµP(1)µP(2) δµP(3)µP(4) · · · δµP(2n−1)µP(2n)

)
(B.1)

here, P runs over all permutations of 2n numbers, and hence a lot of terms in the parenthesis

in the last line are equivalent. The pre-factor has been accordingly calculated to account for
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n (∂2)nGa′(w)

0
K(w/a)

w2∆

1
K′′(w/a)

a2 w2∆
− (4∆− d+ 1)

K′(w/a)

a w2∆+1
+ 2∆(2∆− d+ 2)

K(w/a)

w2(∆+1)

2
K(4)(w/a)

a4 w2∆
− 2(4∆− d+ 1)

K(3)(w/a)

a3 w2∆+1
+
(
d2 − 4d(3∆ + 1) + 3

(
8∆2 + 8∆ + 1

) )
× K

′′(w/a)

a2 w2(∆+1)
− (4∆− d+ 3)(4∆(2∆ + 3)− 4d∆− d+ 1)

K′(w/a)

a w2∆+3

+4∆(∆ + 1)(2∆− d+ 4)(2∆− d+ 2)
K(w/a)

w2(∆+2)

...
...

Table 3. List of various powers of Laplacian acting on propagator Ga′(w), which are needed in the

computation of β-functions.

these redundancies. This convention is useful because contractions of the (2n)! different

permutations of Kronecker-δ above with ∂µ1 . . . ∂µ2n generates (2n)!(∂2)n, and the (2n)!

here exactly cancels with 1/(2n)! coming from the Taylor series. We have used the following

short-hand notation for the pre-factor in the paper,

αn =

(
21−2nπd/2

Γ
(
d
2 + n

)
Γ(n+ 1)

)
(B.2)

This factor also obeys an identity,

αn
αn+1

= 2(n+ 1)(d+ 2n) (B.3)

which is useful in simplifying the coefficients of the β-functions.

Variation of derivatives of propagators. Coefficients of all the terms in the β-function

equations are of the form (see (6.20)),(∫
dρ ρd−1+2k ∂a′

[
(a′)−2n(∂2

ρ)nGa′(a
′ρ)
])

In this appendix, we list first few expressions for (∂2)nGa′(w) and ∂a′
[
(∂2)nGa′(w)

]
, in

terms of various derivatives of the regulating function, K(n).

These expressions listed in table 4 are part of the integrands that appear in (6.20).

For a general coefficient, we use following notation for these integrals (6.22),

GK
(n)

∆ =

∫
dρ ρd−2∆ K(n)(ρ) (B.4)
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n ∂a′
[
(∂2)nGa′(w)

]
0 − K

′(w/a)

a2 w2∆−1

1 −K
(3)(w/a)

a4 w2∆−1
+ (4∆− d− 1)

K′′(w/a)

a3 w−2∆
−
(
4∆2 − 2d∆ + d− 1

) K′(w/a)

a2 w2∆+1

2 −K
(5) (w/a)

a6 w2∆−1
+ 2(4∆− d− 1)

K(4) (w/a)

a5 w2∆
−
(
24∆2 − 12d∆ + d(d+ 2)− 3

) K(3) (w/a)

a4 w2∆+1

+(4∆− d+ 1)
(
8∆2 − 4d∆ + 4∆ + d− 3

) K′′ (w/a)

a3 w2(∆+1)

−
(
4∆2 − 1

)
(2∆− d+ 3)(2∆− d+ 1)

K′ (w/a)

a2 w−2∆−3

...
...

Table 4. List of variation of (∂2)nGa′(w) with respect to a′.

and corresponding values from table 4 have been used to exactly compute the coefficients

in (6.21), (6.24) and table 2 for the choices K(ρ) = Θ(ρ−1) and K(ρ) = regulated-Θ(ρ−1)

for the regulating function.

C Holographic Wilsonian renormalization: explicit solution

In this appendix we compute the β-functions using Holographic Wilsonian RG techniques.

Calculations are based on the work that appears in [2, 3, 9] with modifications called for

by introducing finite cut-off as discussed in section 2.

As explained in section 5 we separate the bulk degrees of freedom into UV and IR

degrees of freedom and integrate out the near boundary (UV) degrees of freedom, as we

change the radial cut-off surface from z = ε0 to z = ε. In the process we generate a modified

wavefunctional Ψ[φ0; ε] = ZUV at the new boundary z = ε, whose coefficients contain that

information about the couplings of double-trace operators in the field theory at the new

cut-off as given by (4.2) and (4.13).

The bulk evolution equation in radial direction can be determined by computing the

radial Hamiltonian.

H =
1

2

(
π2

z1−d +
z−1−d

2

(
∂µφ∂µφ+m2φ2

))
(C.1)

in operator language, the evolution Hamiltonian in the radial direction is,

Ĥ =

∫
ddx Ĥ =

1

2

(∫
ddk

1

z1−d Π̂kΠ̂−k + z−1−d (z2k2 +m2
)
φ̂kφ̂−k

)
(C.2)
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here Π̂ ≡ i δδφ in the ‘field basis’, where φ̂(x) |φ〉 = φ(x) |φ〉 . The radial Schrödinger equation

for the radial wavefunctional ZUV is given by (5.4),21

− ∂εZUV = ĤZUV

Since we are working with a quadratic theory and the boundary wavefunctional at z = ε0
is also quadratic, the wavefunctional generated at any other cut-off z = ε, ZUV = Ψ[φε; ε]

is also quadratic. So let us consider a general form of the wavefunctional,

ZUV = exp

[
−1

2

∫
ddk
√
γ
(
A(kε; kε0)φεkφ

ε
−k + 2εd−∆B(kε; kε0)J0

kφ
ε
−k

+ε2(d−∆)C(kε; kε0)J0
kJ

0
−k

)]
(C.3)

to keep the calculation more general, we don’t specify ∆ here. In subsequent computations

∆ = ∆+ for standard quantization and ∆ = ∆− for alternative quantization. We now

derive the general evolution equations for the coefficients A(k, ε, ε0), B(k, ε, ε0), C(k, ε, ε0).

The exact form of these coefficients can be obtained by starting with the appropriate wave-

functionals (4.2) or (4.13) at z = ε0 but since the evolution equation doesn’t depend on the

initial wavefunctional it is not required here. When substituted in the radial Schrödinger

equation we get,

−∂εZUV =

(
1

2

∫
ddk

[
∂ε

(
ε−dA(kε; kε0)

)
φεkφ

ε
−k + 2∂ε

(
ε−∆B(kε; kε0)

)
φεkJ

0
−k

+∂ε

(
εd−2∆C(kε; kε0)J0

kJ
0
−k

)])
× ZUV

ĤZUV =

(
1

2

∫
ddkε−d−1

[ (
ε2k2 +m2 −A2(kε; kε0)

)
φεkφ

ε
−k

− 2A(kε; kε0)B(kε; kε0)εd−∆φεkJ
0
−k−ε2(d−∆)B2(kε; kε0)J0

kJ
0
−k

]
+ · · ·

)
× ZUV

(C.4)

the terms in the ellipsis in the above equation are not important and don’t arise when we

keep track of the overall normalisation of ZUV. J0 above is the source for the operator O
at z = ε0. This implies following evolution equations for the coefficients,

ε∂εA = −A2 + dA+ (ε2k2 +m2) (C.5a)

ε∂εB = ∆ B −A B (C.5b)

ε∂εC = (2∆− d) C −B2 (C.5c)

the field theory double-trace couplings are related to A(k, ε, ε0) by (4.2) and (4.13) (recall,

f̄ denotes dimensionless coupling),

f̄ST(k2ε2) =

(
A(kε; kε0)− D̂ct(kε)

)
A ∗ST − 1

B∗ST
2f̄∗ST

2
(
A(kε; kε0)− D̂ct(kε)

) (C.6a)

21In the particular case of quadratic bulk action, the case we are demonstrating here, the Schrödinger

equation and the semi-classical Hamiltonian-Jacobi equations are equivalent.
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while, with the inclusion of the counter-term,

f̄ST(k2ε2) =

(
A(kε; kε0)− D̂ct(kε)

)
A ∗ST − 1(

B∗ST
2f̄∗ST

2 + A ∗ST · δC
) (
A(kε; kε0)− D̂ct(kε)

)
− δC

(C.6b)

f̄AQ(k2ε2) =
A(kε; kε0)− D̂ct(kε)

C∗AQ

(
A(kε; kε0)− D̂ct(kε; kε0)

)
+B∗AQ

2
(C.6c)

and with the inclusion of the counter-terms,

f̄AQ(k2ε2) =
A(kε; kε0)− D̂ct(kε)(

C∗AQ + δC
)(

A(kε; kε0)− D̂ct(kε; kε0)
)

+B∗AQ
2

(C.6d)

Equations (C.5) can be used to compute the β-function equations for these couplings.

For standard quantization (see (5.5)),

ε∂εf̄ = f̄2 ×
(
B∗ST

2 A ∗ST
2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− ε∂εδC

+
(δC)2

B∗ST
2A ∗ST

2

(
ε∂εf̄

∗ − 1 + A ∗ST(d− 2D̂ct)

+ A ∗ST
2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

))
− δC

(
−

2ε∂εB
∗
ST

B∗ST

−
2 ε∂εA ∗ST

A ∗ST

− 2A ∗ST

(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− d+ 2D̂ct

))
+ f̄

(
−

2 ε∂εB
∗
ST

B∗ST

−
2 ε∂εA ∗ST

A ∗ST

− 2A ∗ST

(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− d+ 2D̂ct(kε)

− 2
δC

B∗ST
2A ∗ST

2

(
ε∂εf̄

∗ − 1 + A ∗ST(d− 2D̂ct)

+ A ∗ST
2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)))

+
ε∂εA ∗ST + A ∗ST (d− 2D̂ct) + A ∗ST

2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− 1

B∗ST
2 A ∗ST

2

And for alternative quantization (5.6),

ε∂εf̄ =
1

B∗AQ
2

[̄
f2
(

2B∗AQ ε∂εB
∗
AQ

(
C∗AQ + δC

)
−B∗AQ

2
(
ε∂εC

∗
AQ + ε∂εδC +

(
C∗AQ + δC

)
(d− 2D̂ct)

)
−B∗AQ

4 +
(
C∗AQ + δC

)2 (D̂ct(d− D̂ct)− ε∂εD̂ct + k2ε2 +m2
))
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+ f̄
(
− 2B∗AQ ε∂εB

∗
AQ +B∗AQ

2(d− 2D̂ct)

− 2
(
C∗AQ + δC

) (
D̂ct(d− D̂ct)− ε∂εD̂ct + k2ε2 +m2

))
+ D̂ct(d− D̂ct)− ε∂εD̂ct + k2ε2 +m2

]
In the above equations, we have suppressed the functional dependence of

D̂ct(kε), B∗ST(kε) and A ∗ST(kε) to avoid clutter. Although the above equations look horren-

dous, when resolved in components of the coupling f̄ = f̄0 + f̄1(kε)2 + f̄2(kε)4 + · · · , and on

substituting the values of D̂ct(kε), B∗ST(kε) and A ∗ST(kε) given by (2.6), (2.13), (2.23), the

β-functions for individual couplings become quite simple,

Standard quantization:

˙̄f0 = −2ν f̄0 + 2ν c0 f̄20
˙̄f1 = −(2ν + 2) f̄1 − 2(1− ν) c1 f̄20 + 4ν c0 f̄0f̄1

˙̄f2 = −(2ν + 4) f̄2 − 2(2− ν) c2 f̄20 − 4(1− ν) c1 f̄0f̄1 + 4ν c0 f̄0f̄2 + 2ν c0 f̄21
...

(C.7)

Alternative quantization:

˙̄f0 = 2ν f̄0 − 2ν c0 f̄20
˙̄f1 = (2ν − 2)̄f1 − 2(1 + ν) c1 f̄20 − 4ν c0 f̄0f̄1

˙̄f2 = (2ν − 4)̄f2 − 2(2 + ν) c2 f̄20 − 4(1 + ν) c1 f̄0f̄1 − 4ν c0 f̄2f̄0 − 2ν c0 f̄21
...

(C.8)

The fixed point values for the coupling constants given by solving the stationary points

of the above equations are (for both standard and alternative quantization),

Trivial Fixed Point: f̄i = 0 ∀ {i ∈ Z+ ∪ 0}

Non-Trivial Fixed Point: f̄0 →
1

c0
, f̄1 → −

c1

c2
0

, f̄2 →
c2

1 − c0c2

c3
0

. . . (C.9)

It might look strange that the fixed point for both standard and alternative quantiza-

tion in (C.9) is the same. This happens because the counter-terms, δC in one theory aren’t

the same as those in the other theory. Here we have only used them as a notational device

and so they should not be confused to be equivalent. We discuss the relation between the

non-trivial fixed points of one theory with the trivial fixed point of the other theory in the

next subsection.

C.1 Relation between standard and alternative quantizations

We had remarked in section 2.2 how the undeformed alternative and standard quantized

theories are Legendre transform of each other. This relationship doesn’t hold exactly any-

more for the regulated theories given by the inclusion of (2.17) and (2.26). However, as
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one would expect, the UV fixed point of the regulated standard quantized theory is the

alternative theory and vice versa. In the following discussion we show this relationship ex-

plicitly.

From (C.9) we see that the non-trivial fixed point corresponds to couplings f̄(k2ε2) =
1

δC(kε) . So the correlators at the non-trivial fixed points are given by, (4.12) and (4.20),

〈O(k)O(−k)〉fp+ =

k2ν 21−2νΓ(1− ν)

Γ(ν)
+ ε−2ν δCST(kε)

2 +
(kε)2ν

δCST(kε)

21−2νΓ(1− ν)

Γ(ν)

(C.10a)

〈O(k)O(−k)〉fp− =

−k−2ν 22ν−1Γ(ν)

Γ(1− ν)
+ ε2ν δCAQ(kε)

2− (kε)−2ν

δCAQ(kε)

22ν−1Γ(ν)

Γ(1− ν)

(C.10b)

here, the superscript fp signifies that we are computing the correlator at the non-trivial

fixed point of the theory. The flow towards UV starting from the standard quantization

is defined by taking the limit kε → ∞ in (C.10a). In this limit the correlation function

becomes,

〈O(k)O(−k)〉fp+

∣∣∣
kε→∞

=
(
ε−2νδCST

)2 [ ε2ν

δCST
− k−2ν 22ν−1Γ(ν)

Γ(1− ν)

]
(C.11)

which is the same as the correlator of the regulated alternative theory if we iden-

tify δCAQ = 1/δCST, upto some overall multiplicative wavefunctional renormalization,

O−(k) = (ε−2νδCST)−1 · O+(k) = f∗+O+(k).22 Similarly for the flow towards IR fixed point

from the alternative fixed point, we take the IR limit, kε→ 0 in (C.10b),

〈O(k)O(−k)〉fp−
∣∣∣
kε→0

=
(
ε2νδCAQ

)2 [ ε−2ν

δCAQ
+ k2ν 21−2νΓ(1− ν)

Γ(ν)

]
(C.12)

which again is the same as the correlator of the regulated standard theory with the identi-

fication δCST = 1/δCAQ, and O+(k) = (ε2νδCAQ)−1 · O−(k) = f∗−O−(k). Thus clearly, the

standard quantized theory and alternative quantized theory are connected to each other

with RG flow as IR and UV fixed points.

All the results discussed here are parallel to the field theory calculations that were

presented in section 6.4.

22This wavefunctional renormalization is well known in the literature and provides for the correct scaling

dimension of the operators at the non-trivial fixed point.

Also, for clarification of notation, f∗± are the non-trivial fixed points for the standard and alternative

theories.

O+ and O− are the operators dual to the bulk field φ at the standard and alternative fixed points

respectively.
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D Large N limit of O(N) Wilson-Fisher model

Let us consider the following Euclidean action in d = 4− ε dimensions (see, e.g. [26])

S =

∫
ddx

{
1

2
(∂µφi)

2 +
1

2
m2

0O(x) +
1

4!

g0

N
ΛεO(x)2

}
, O(x) = φiφi(x)

The phase diagram and fixed points of this model are shown in figure 10. The model

possesses a critical surface (where the correlation length diverges) given by

m2
0 = −g0

1

6
ΛεΩd(0), Ωd(0) ≡ 1

(2π)d

∫ Λ ddk

k2
∝ Λd−2

The β-function is given by

Λ∂Λg0 = β(g0) = −εg0 +
N + 8

N

g2
0

48π2
+O(g3

0)

which shows a UV fixed point at g0 = 0 and an IR fixed point at

g∗0 = ε
48π2N

N + 8
+O(ε2)

The two-point function of O(x) can be obtained in the large N limit by saddle point

methods, and is given by (see sections 2.3 and 2.4 of [26], especially eqs. (2.57) and (2.59))

〈O(p)O(q)〉 = G(p)δ(p+ q), G(p) = −Λ−ε
12
g0

1 + Λε g0

6 BΛ(p)

BΛ(p) =

∫ Λ ddk

k2(k − p)2

= p−ε
(
b0 + b1(p/Λ)2 + · · ·

)
+ Λ−ε

(
a0 + a1(p/Λ)2 + · · ·

)
(D.1)

where b, a are some constants.

The IR behaviour: IR limit is given by p/Λ→ 0,

GIR(p) = − 72Λ−2ε

g2
0Z

2
pε
[
1 +

( p
Λ

)ε(
δC +

6

g0Z2

)]−1

p/Λ→∞−−−−→ − 72Λ−2ε

g2
0Z

2
pε (D.2)

where, we have used the notation, Z2 =
(
b0+b1(p/Λ)2 + · · ·

)
, Z2 · δC =

(
a0 + a1(p/Λ)2+

+ · · ·
)
. The renormalized IR operators are given by OIR =

(g0 Λε

12

)2OUV, which is well

known for the Wilson-Fisher fixed point.23

23Note that there is a slight difference in the correlator here compared to section 6.4 because the correlator

in (D.1) is not of the form G
1+fG

, and the conventions in [26] are such that the IR correlator appears without

the contact-terms.
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m0
2

g0

Figure 10. Large-N Wilson-Fisher: fixed points and phase diagram.

The UV behaviour: in the limit p/Λ→∞, we get24

GUV(p) = −
12Λ−ε

g0

1 + g0

6 Z
2 · δC

[
1 +

g0

6 Z
2

1 + g0

6 Z
2 · δC

(
Λ

p

)ε]−1

p/Λ→∞−−−−→ −
12Λ−ε

g0

1 + g0

6 Z
2 · δC

+
2Z2(

1 + g0

6 Z
2 · δC

)2 p−ε (D.3)

which again agrees with the general analysis presented in section 6.4, upto some normal-

ization and contact terms which can be attributed different regulation used in [26].

E Large N , probe approximation and Hamilton-Jacobi

Probe approximation: let us consider a free massive scalar field described by (2.2) but

coupled to a perturbed metric of the form gMN = ḡMN +
√
κ hMN where ḡMN is now the

AdS metric (2.1). In this case the bulk action is of the schematic form (where we focus on

the κ-dependence)

S ∼ Sb + Sgrav + Sint,

Sb ∼
∫

(∂φ)2 +m2φ2,

Sgrav ∼
∫

(∂h)2, Sint ∼
∫ √

κ(h∂φ∂φ+ h∂h∂h) + κ hh∂h∂h (E.1)

The bulk partition function, computed from the above, clearly matches (in large N count-

ing) a field theory partition of the form 〈exp[
∫
φ0(x)O(x)] where the connected two-point

function is normalized as 〈OO〉 ∼ O(1). The connected 3-point function 〈OT̃ T̃ (where T̃

is the normalized stress tensor satisfying 〈T̃ T̃ 〉 ∼ O(1)) from the AdS computation is now

24Note that the normalization of the two-point function differs from the main text, due to a different

normalization of the operator O(x). We can identify correctly normalized UV operator as, OUV =
√

2 Z O.
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∼
√
κ which matches with the field theory result O(1/N).25 In the above we have assumed

that the scaling dimension of O(x) is O(1) (compared with N , or more generally, with

the central charge c of the CFT). The back-reaction on the metric is then given by the

equation of motion for the graviton ∂2h ∼
√
κ〈∂φ∂φ〉. Now 〈φφ〉 ∼ O(1) since φ is canoni-

cally normalized. (Alternatively, 〈φφ〉 is related to 〈OO〉 by bulk-boundary correspondence

and the latter is, by convention, O(1). We could also arrive at this result by noting that

δg ∼ GNTbulk,µν which is ∼ GN 〈O|Tµν |O〉 ∼ GN ∼ 1/N2 (which matches h ∼ 1/N . From

the last point of view, it is clear that we need the single trace operator to have scaling

dimension ∆ ∼ O(1).

The above argument about probe approximation can be easily extended to the case

when the CFT is deformed by both single trace and double trace operators. The zero-th

order bulk scalar action, Sb remains quadratic.

We should make a remark here about self-interaction of the bulk scalar. Typically the

connected 3-point function 〈OOO〉 will be non-vanishing. But this will also be O(1/N).

Hence Sint will have a term ∼
∫ √

κφ3.

Justification of Hamilton-Jacobi: we argued above that in the large N approximation,

it suffices to consider a quadratic action, making Hamilton-Jacobi approximation to the

Schrödinger equation is exact (up to a pre-factor which is not important for our purpose).
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