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ABSTRACT We examine the efficacy of a scheme of
multiscale assessment of biodiversity linking remote sensing
on larger spatial scales with localized field sampling. A
classification of ecological entities from biosphere to individ-
ual organisms in the form of a nested hierarchy is employed,
such that entities at any level are differentiated in terms of
their compositionyconfiguration involving entities at the next
lower level. We employ the following hierarchy: biosphere
(1014 m2), ecoregions (1011–1012 m2), ecomosaics (108–1010

m2), ecotopes (103–106 m2), and individual organisms (1024–
102 m2). Focusing on a case study of West Coast–Western
Ghats ecoregion (1.7 3 1011 m2) from India, we demonstrate
that remotely sensed data permit discrimination of 205
patches of 11 types of sufficiently distinctive ecomosaics
(108–1010 m2) through unsupervised classification by using
distribution parameters of the Normalized Difference Vege-
tation Index, with a pixel size of 3.24 3 106 m2. At the
ecomosaic scale, Indian Remote Sensing LISS-2 satellite data
with a pixel size of 103 m2 permit discrimination of '30 types
of sufficiently distinctive ecotopes on the basis of supervised
classification. Field investigations of angiosperm species dis-
tributions based on quadrats of 1–102 m2 in one particular
landscape of 27.5 3 106 m2 show that the seven ecotope types
distinguished in that locality are significantly different from
each other in terms of plant species composition. This suggests
that we can effectively link localized field investigations of
biodiversity with remotely sensed information to permit ex-
trapolations at progressively higher scales.

Assessing the distribution of the diversity of life forms on the
earth and the efficacy of measures for their conservation is one
of the major scientific challenges of the day. This is an immense
task because the number of species of living organisms, one of
the most appropriate measures of diversity, runs into thou-
sands per km2 over much of the surface of the earth and into
several million for the earth as a whole (1). Moreover, the
patterns of distributions of these species are exceedingly
complex in space and time. Appraising species diversity in all
its complexity through field investigations obviously is not a
practical proposition. This can be attempted at best as an
exercise focusing on some selected taxonomic groups for a
representative selection of localized sampling points and must
be coupled to broader-scale, more rapid sampling to facilitate
extrapolation at a global scale.

Remote sensing, in particular with satellites, is an obvious
tool for such broader-scale rapid sampling. The Global Biodi-
versity Assessment advocates its use linked to localized sam-
pling for organizing a program of biodiversity assessment at
the global level (1). However, there have not been many
investigations using satellite data for assessing species diversity
at more detailed and larger scales, of hundreds to tens of

thousands of square kilometers. The few reports of successful
applications mostly relate to mapping of temperate or boreal
forest communities focusing on fairly homogeneous stands of
a small number of canopy tree species (2, 3). In the far more
diverse biological communities of the tropics, such stands at
large scales do not occur. These areas present a challenge of
an altogether different magnitude—a challenge that has not
been investigated (4).

To assess species diversity at spatial scales much larger than
those of individual organisms, other types of entities must be
identified. Ecological systems at the scales of a few tens of
square kilometers have been studied extensively as landscapes
(5, 6). The elements making up such landscapes may be termed
ecotopes, characterized at the spatial scale of hectares (6). If
boundaries of species distributions correspond in many cases
to boundaries of ecotopes (7), different types of ecotopes
would differ significantly from each other in their species
composition. If such ecotopes can be identified in the field on
the basis of some emergent biological parameters such as
vegetation structure, it is likely that they also would possess a
distinctive enough spectral signature to be identifiable on the
basis of remotely sensed information. Identification of a small,
manageable number of different types of ecotopes that are
both sufficiently distinctive in species composition and classi-
fiable with an adequate degree of reliability on the basis of
remotely sensed information then would provide an appropri-
ate link between the landscape scale of tens of square kilo-
meters and field assessment of species diversity at the hectare
scale or lower.

However, the global scale to which this information needs to
be extrapolated is still several orders of magnitude larger than
the landscape scale. Therefore, we need additional emergent
entities at intermediate scales to facilitate such an extrapola-
tion. We may identify ecomosaics and ecoregions as such
entities. Although no standardly accepted definitions for these
exist, we propose the term ecomosaic to describe land mosaics
on the scale of hundreds or thousands of square kilometers
that are relatively homogeneous with respect to their compo-
sition in terms of constituent ecotopes. A few hundred adja-
cent ecomosaics may comprise an ecoregion (6). These ecore-
gions may be thought of as corresponding to biogeographic
provinces or biomes such as those proposed by Udvardy (8),
covering tens to hundreds of thousands of square kilometers.
As defined by the World Wildlife Fund (9), each ecoregion
harbors a characteristic set of species, communities, dynamics,
and environmental conditions.

The proposal then is to divide the globe into a manageable
number of ecoregions, e.g., a few hundred, on the basis of a
system such as that proposed by the World Wildlife Fund (9).
Each individual ecoregion on a spatial scale of 1011–1012 m2

then would be divided into a few hundred ecomosaics, on the
scale of 108–1010 m2. The ecomosaics constituting a given
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ecoregion may be assigned to a small number, of the order of
10–100 types. Each ecomosaic type would have a characteristic
composition of between 10 and 100 types of ecotopes, delin-
eated on a spatial scale of 104 m2 or hectares. Each of these
types of ecotopes would be so defined as to differ from others
in terms of their species composition. Because all taxa biodi-
versity inventories as yet are not practicable, these ecotopes
would be characterized in terms of the incidence of thousands
of species of particular groups such as flowering plants.

We thus propose a scheme of classification of ecological
entities from biosphere through successive levels of ecore-
gions, ecomosaics, and ecotopes to individual organisms as a
nested hierarchy. At each level the classes should be distin-
guished from remotely sensed data in a way that makes them
significantly different from each other in terms of their com-
positionyconfiguration with respect to the different types of
entities at the next lower level. For instance, different types of
ecomosaics should be delineated in this way to be significantly
different from each other in terms of their compositiony
configuration with respect to ecotope types.

We report here an exercise of testing the feasibility of such
a system for one particular ecoregion, that of the Western
Ghats–West Coast of India.

MATERIALS AND METHODS

Study Area

The narrow strip of Indian West Coast extending over a
distance of 1,600 km flanked by the hills of Western Ghats
(8–21°N latitude, 73–77°E longitude) constitutes a very dis-
tinctive ecoregion, covering an area of 1.7 3 1011 m2. This
ecoregion has been categorized as the Western Ghats Moist
Forest major habitat type by the World Wildlife Fund (9).
Enjoying a much higher level of precipitation than the adjoin-
ing regions of peninsular India, the natural biota of the region,
an island of tropical rain forest separated from the more
extensive rain forest tracts of Eastern Himalayas and Southeast
Asia, exhibits a high level of endemicity (10, 11). The natural
biota, however, has been disturbed extensively by human
interference at least over the last two millennia (12–14). The
region therefore is designated as one of the world’s 18 biodi-
versity ‘‘hot spots’’—areas with high levels of biodiversity
under serious threat (15). This dynamic region, recognized as
a distinctive entity in biogeographic provinceybiome classifi-
cations (8, 16) as well as ecoregion classifications (9) and
clearly evident in satellite imagery as a region with much
higher levels of plant biomass compared with adjacent tracts,
is an excellent choice for a case study.

Methods

Ecoregion Scale. Our largest scale of mapping for a specific
ecoregion as delineated by the World Wildlife Fund (9) was
based on 50 scenes from the Indian Remote Sensing satellite
IRS 1B LISS 2 sensors, covering the Western Ghats and West
Coast of India. All images were from the premonsoon season,
mid-February to mid-June, when deciduous trees are leafless,
enhancing the chances of discriminating deciduous from ev-
ergreen forests (17). Scene dates range from 1991 to 1994
depending on availability of cloud-free data in the premonsoon
season. The spatial resolution of LISS-2 data is 36.25 3 36.25
m. Each scene covers 87 3 74 km, and neighboring scenes
overlap to varying extents (18). Manual coregistration of
images was carried out to remove overlap areas, and the scenes
were pasted together to create a composite image of the total
study area.

For each pixel in this composite image, we computed the
Normalized Difference Vegetation Index (NDVI; ref. 19),
believed to correlate well with photosynthetic vigor of vege-
tation, and reduce problems of interscene variability. Non-
overlapping sets of 50 3 50 pixels, covering 1.8 3 1.8 km, then
were used to create a ‘‘super-pixel,’’ which was characterized
by the four distribution parameters (mean, SD, skew, and
kurtosis) of the set of NDVI values of the 2,500 constituent
pixels (20).

Detailed, supervised classification of large areas takes enor-
mous effort and inputs in terms of time, manpower, and money
(21). Unsupervised classification is relatively faster and less
expensive, but could lead to a compromise in terms of classi-
fication accuracy (22, 23). It is, however, the only option fast
enough to permit regular mapping for monitoring purposes at
this scale. Super-pixel units of 1.8 3 1.8 km therefore were
input into an unsupervised classification of the study area by
using the i.cluster algorithm of the GRASS 4.1 image-processing
software (24).

This classification delineated 12,164 patches belonging to 14
ecomosaic types. Several of these patches were only a few
square kilometers in extent, which is very small relative to the
size of the total study area. For practical purposes, about 200
patches constitute a manageable number of entities that can be
studied to extrapolate information about the entire ecoregion.
All patches smaller than 100 km2 (a relatively arbitrary cut-off
point) therefore were merged with the ecomosaic type most
predominant in the vicinity, resulting in a total of 205 patches
belonging to 11 ecomosaic types. The distribution of ecomo-
saic types was interpreted with reference to maps of topogra-
phy, rainfall, temperature, forest cover, and agricultural land
use of the Western Ghats (20).

Ecomosaic Scale. At the intermediate, ecomosaic scale of
mapping, 12 landscapes belonging to 5 of 11 ecomosaic types
were taken up for more detailed investigations. This limited
selection was a result of logistic constraints. These land-
scapes range from 9 to 54 km2 in area (Table 1). Single-date
IRS 1B LISS 2 data collected in the premonsoon seasons of
1991, 1992, or 1993 were used in conjunction with ground-
training information collected during the months of Febru-
ary–August 1995 to carry out supervised classifications of
each landscape into ecotope types, by employing the maxi-
mum likelihood algorithm (19). In addition, an unsupervised
classification of each landscape into the same number of
ecotope types was carried out by using the i.cluster algorithm
of the GRASS 4.1 software.

In August and September 1997, between 70 and 120 ran-
domly distributed points were used to estimate the accuracy of
supervised and unsupervised classification for each of the 12
landscapes. From the classified maps, patch sizes for all patches
were calculated as patch area, patch shape as the ratio of patch
perimeter to that of a square patch of the same area (shape
index increasing as patch shape becomes less compact), and
nearest-neighbor distance as distance to the nearest neighbor-
ing patch of the same ecotope type. Mean patch size, mean
patch shape, and mean nearest-neighbor distance then were
determined for each landscape. In addition, ecotope-type
richness and Shannon’s index of ecotope diversity (based on
proportion of landscape area occupied by various ecotope
types) were computed (5). All calculations were carried out
with the help of FRAGSTATS 2.0 (25).

Whether landscapes belonging to different ecomosaic types
differ significantly in parameters of ecotope structure and
composition was assessed on the basis of Monte Carlo simu-
lations. The intratype variance in ecotope parameters was
computed for 7 of 12 landscapes belonging to a single ecomo-
saic type, type 7. These estimates were compared with those for
subsets of 7 landscapes randomly assembled from the total set
of 12 landscapes. This exercise was repeated 100 times. The
intratype variance had to be estimated by using only the
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landscapes belonging to type 7, because no other ecomosaic
type was sufficiently sampled because of logistic constraints.
The exercise was carried out by using structural parameters
calculated from both supervised and unsupervised classifica-
tions. If the actual intratype variance in a landscape structural
parameter for type 7 was less than that for a randomly
assembled set of landscapes, in 95 or more of 100 simulations,
then the null hypothesis that landscapes belonging to different
ecomosaic types do not differ in their ecotope configuration
was rejected at a 95% confidence level.

Ecotope Scale. For the most detailed ecotope spatial scale,
IRS 1B LISS 2 data of March 1993 were purchased for a single
landscape of 27.5 km2 from Siddapur taluk (i.e., county) of
Karnataka (altitude, 400–600 m; latitude, 14°169–14°199N; and
longitude, 74°529–74°549E). This imagery was used in conjunc-
tion with ground-training information collected in November
1994 to classify the landscape into seven ecotope types:
secondary evergreen forest, secondary moist deciduous forest,
savanna, grassland, Acacia auriculiformis Forst. plantations,
Casuarina equisetifolia L. plantations, and paddy fields (4, 26).
Unsupervised classification into seven ecotope types also was
carried out by using the i.cluster algorithm of the GRASS 4.1
software. During January and February 1995, 246 quadrats of
10 3 10 m were used to record the tree-layer species distrib-
uted in these seven ecotope types. Within these, subquadrats
of 5 3 5 m and 1 3 1 m were used to record the angiosperm
species (excluding grasses, which could not be identified
accurately in the field) present in the shrub and herb layers,
respectively, for all seven ecotope types. Statistical tests were
carried out to determine whether ecotope types as identified
by supervised classification, and by unsupervised classification,
differ significantly in their species composition (4).

RESULTS

Ecoregion Scale. The patch-merging exercise resulted in the
elimination of three ecomosaic types that consisted of patches
less than 100 km2 in extent, so that the resultant map of the
entire ecoregion had 205 patches belonging to 11 ecomosaic
types. Comparison of the distribution of each type with maps
of the Western Ghats topography, rainfall, temperature, forest
cover, and agricultural land use suggests that each ecomosaic
type is associated with a particular climate regime, land use,
and vegetational characteristics. For example, ecomosaic type
3 corresponds mainly to high-altitude complexes of stunted
evergreen forests or sholas and montane grasslands, inter-
spersed with plantations of Eucalyptus. Ecomosaic type 8 is
present mostly on the West Coast and comprises rice, tapioca,
and coconut plantations, interspersed with patches of second-
ary evergreen and semievergreen forest. A more detailed
description of each ecomosaic type, with reference to topo-

graphic, climatic, and vegetational characteristics, can be
found in ref. 20. As noted below, the 11 ecomosaic types also
differ significantly from each other in four parameters reflect-
ing their configurations in terms of constituent ecotope types.

Ecomosaic Scale. The 12 landscapes selected for more
detailed ground truthing belonged to ecomosaic types 5, 7, 8,
9, and 10, which cover 66% of the ecoregion. These represent
composites of evergreen–moist deciduous–tree plantation–
agricultural ecotope types and support high levels of biomass
and species. The more degraded and low-biomass areas of the
Western Ghats and West Coast, as well as small patches of very
high biomass, high-altitude evergreen forest–grassland com-
plexes, could not be represented in this set of landscapes
because of logistic difficulties.

Table 1 presents the accuracy of supervised and unsuper-
vised classification for each landscape. As can be seen,
accuracies of supervised classification range from 70 to 92%
and are uniformly better than those of unsupervised classi-
fication, which range from 31 to 75%. Table 2 presents the
results of the Monte Carlo simulation carried out to deter-
mine whether intratype variation in ecotope structural char-
acteristics for the seven landscapes belonging to ecomosaic
type 7 is less than that expected by chance. Whereas intra-
type variance in patch size for ecomosaic type 7 was not
significantly lower than that of a random assemblage of seven
landscapes, for supervised as well as unsupervised classifi-
cation, it was lower in every 1 of 100 simulations for the other
4 structural parameters analyzed; namely, mean patch shape,
mean nearest-neighbor distance, Shannon index of ecotope
diversity, and ecotope-type richness. Although 12 landscapes
distributed among 5 ecomosaic types do not form a sufficient
sample size for rigorous statistical tests, these results suggest

Table 1. The area, location in terms of latitude and longitude, ecomosaic type, and accuracy of supervised and unsupervised classification
for the 12 landscapes studied at the ecomosaic scale

Landscape Area, km Latitude, °N Longitude, °E Ecomosaic type
Accuracy of supervised

classification, %
Accuracy of unsupervised

classification, %

1 12 18°209–239 72°539–55 5 91.7 64.3
2 54 14°329–349 74°489–509 10 91.5 59.4
3 31 14°259–279 74°339–359 7 86.5 56.8
4 9 13°399–419 75°279–299 7 88.5 42.3
5 29 13°289–309 74°599–75°019 9 70.3 55.1
6 39 12°589–13°019 75°289–319 7 88.8 53.9
7 30 12°399–429 75°369–389 7 85.5 54.8
8 17 11°279–299 75°279–299 7 82.1 40.5
9 20 10°549–569 76°349–369 7 83.3 31.4

10 14 10°529–549 76°369–389 7 84.6 75.4
11 32 10°079–099 76°419–439 8 70.8 30.8
12 14 8°399–419 77°089–109 9 80.7 41.3

Table 2. Results of the Monte Carlo simulations carried out to
determine whether intratype variation in ecotope structural
characteristics for the seven landscapes belonging to ecomosaic type
7 is less than that expected by chance

Supervised
classification

Unsupervised
classification

Mean patch size 84* 82*
Mean patch shape 100 100
Mean nearest-neighbor distance 100 100
Ecotope diversity: Shannon index 100 100
Ecotope diversity: Richness 100 100

Values in the Table represent the number of times out of 100 that
intratype variance in the structural parameter specified by the column
heading, using the classification method specified by the row heading,
was less than the variance for a randomly assembled set of seven
landscapes. If a value is greater than 95, the null hypothesis that
landscapes belonging to different ecomosaic types do not differ in their
ecotope structure is rejected at a 95% confidence level.
*Value not significant at a 95% confidence level.
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that the ecomosaic scale classification does result in classes
that differ significantly in terms of the configurations of their
constituent ecotopes.

Ecotope Scale. At the ecotope scale, the accuracy of super-
vised and unsupervised classification of the single landscape at
which species diversity studies were carried out was 88% and
56%, respectively. Analysis of the data on angiosperm species
distributions (excluding grasses) revealed that the seven ec-
otope types identified by supervised classification do differ
significantly in their species composition, whereas those iden-
tified by unsupervised classification do not, at a 95% confi-
dence level (4).

DISCUSSION

This case study of the Western Ghats–West Coast moist forest
ecoregion of India thus demonstrates the feasibility of a
multispatial scale methodology by employing a classification of
ecological entities in the form of a nested hierarchy for
assessing species diversity with the aid of satellite based remote
sensors.

Table 3 summarizes the methodology and results. At the
ecoregion scale, the area of 170,000 km2 is classified by a
relatively rapid and simple, unsupervised classification by
using NDVI data into 11 different ecomosaic types. The
smallest individual element distinguished at this scale extends
more than 100 km2. Each ecomosaic type is a complex of
different types of ecotopes, whose structure is reflected in the
distribution parameters of the NDVI. At the ecomosaic scale,
12 selected landscapes belonging to 5 ecomosaic types, ex-
tending over 9–54 km2, were mapped into between 5 and 9
ecotope types each by using supervised and unsupervised
classification. The smallest ecotope element that can be dis-
tinguished at this scale covers about 1/10th of a hectare. The
ecotope classes are based on vegetation composition, struc-
ture, and phenology. At this scale, supervised classification
provides better information on ecotope-type distribution com-
pared with unsupervised classification. At the lowest ecotope
scale, quadrats of 100 m2 are used to sample angiosperm
species distributed among different ecotope types in a land-
scape of 27.5 km2. Ecotope types delineated by supervised
classification harbor distinctive sets of flowering plant species;
those delineated by unsupervised classification fail to do so.

Previous large-scale studies using remote sensing to assess
biodiversity mainly have been carried out in temperate, rela-
tively homogeneous, and species-poor areas (4). This exercise
in the tropics explicitly investigates the linkages between

information collected at such widely different spatial scales,
combining remote sensing and field-based species inventories.
The scheme suggested here may provide a basis for organizing
programs of assessing biodiversity for other species-rich trop-
ical areas.
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