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The article presents a methodology for examining future
rainfall scenario using fuzzy clustering technique from
the General Circulation Model (GCM) projections.
GCMs might capture large-scale circulation patterns
and correctly model smoothly varying fields such as
surface pressure, but it is extremely unlikely that these
models properly reproduce nonsmooth fields such as
precipitation. The model developed in the present study
is a linear regression model for estimation of rainfall,
using GCM outputs of mean sea-level pressure and
geopotential height as explanatory variables/regressors.
To reduce the dimensionality of the dataset, the Princi-
pal Component Analysis (PCA) is used. Fuzzy clustering
technique is applied to classify the principal components
identified by the PCA and the fuzzy membership val-
ues are used in the regression model, with an assumption
that the effects of circulation patterns on precipitation
in different clusters are different. The regression model
is then modified with an appropriate seasonality term.
A major advantage of the proposed methodology is
that while being computationally simple, it can model
rainfall with a high goodness-of-fit (R®) value. The
methodology is applied to forecast monthly rainfall over
Orissa.

Keywords: Fuzzy clustering, General Circulation Model,
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GENERAL Circulation Models (GCMs) are tools designed to
simulate time series of climate variables globally, accounting
for effects of greenhouse gases (GHGs) in the atmosphere'.
They attempt to represent the physical processes in the
atmosphere, ocean, cryosphere and land surface. GCMs are
currently the most credible tools available for simulating
the response of the global climate system to increasing
greenhouse gas concentrations, and to provide estimates of
climate variables (e.g. air temperature, precipitation, wind
speed, pressure, etc.) on a global scale. They are good for the
prediction of large-scale circulation patterns, but unfortunately
precipitation, which is the main input in hydrologic models,
cannot be well modelled by GCMs”. Another drawback of
GCMs is that the spatial scale on which a GCM can operate
(e.g. 3.75° long. x 3.75° lat. for Coupled Global Climate
Model (CGCM2)) is coarse compared to that of the hydro-
logical process (e.g. precipitation in a region, streamflow
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in a river, etc.) to be modelled in the climate change impact
assessment studies'. Methodologies to model the hydrologic
variables (e.g. precipitation) at a smaller scale based on
large-scale GCM outputs are known as downscaling. They
include dynamic downscaling, which uses complex algo-
rithms at a fine grid-scale (typically of order of 50 km x
50 km) describing atmospheric process nested within the
GCM outputs’ (commonly known as Limited Area Models
or Regional Climate Models (RCM)) and statistical down-
scaling, that produces future scenarios based on statistical
relationship between large-scale climate features and hydro-
logic variables like precipitation®’. The assumption of
statistical downscaling is that there are certain physical
relationships underlying the statistical relationships devel-
oped, and these physical relationships hold, regardless of
whether the model simulation is a control (stationary) experi-
ment or an experiment incorporating changed climate®. Com-
pared to dynamic downscaling, statistical downscaling has
the advantage of being computationally simple and easily
adjusted to new areas. It requires few parameters and this
makes it attractive for many hydrological applications’. A
comparative study of statistical and dynamic downscaling
may be found in Murphy®. Detailed discussions on different
models used for downscaling GCM outputs may be found in
Prudhomme et al.’. A brief overview of statistical down-
scaling models developed earlier and used to study climate
change impact on hydrology is now presented.

Models are available on downscaling based on classifi-
cation of circulation patterns (CP) and using this classi-
fied CP in estimation of precipitation. Bardossy ef al.'’ used a
fuzzy rule-based technique for classification of CP into
different states. Stochastic models such as Markov chains
may be used to model rainfall from different states of classi-
fied circulation patterns'"'>. Semi-Markov chain was used
by Bardossy and Plate" to model daily rainfall incorpo-
rating duration of the state of CP from daily GCM outputs.
Hughes er al."* used Classification and Regression Tree
(CART) to classify the principal components obtained from
CP into different weather states. Hughes and Guttorp"
have used Nonhomogeneous Hidden Markov Model (NHMM)
to downscale CP, as obtained from GCM. The underlying
feature of NHMM is the hypothesis of an unobserved weather
state which transcends the differences in scales between
the two processes, circulation patterns and precipitation.
The weather state is not explicitly defined a priori; rather,
the model attempts to find distinctive patterns in the at-
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mospheric data that are predictive of particular patterns in
the hydrologic process'>. Wetterhall e al.'® used analogue
method for downscaling GCM output of circulation pat-
terns to rainfall. A hard clustering-based analogue method
for short-term weather forecasting may be found in Gutierrez
et al.'’. A review of different models used to simulate the
effects of climate change on water resources is presented
by Leavesley'®.

In this study, a linear regression model is used to
downscale the GCM outputs for estimation of monthly
rainfall over Orissa. The methodology is based on fuzzy
clustering technique. Appropriate seasonal component is
added to the regression model for improving the goodness
of fit. Development of the methodology is presented in
the following sections.

Data

The GCM model used for the analysis is Coupled Global
Climate Model (CGCM2), developed in Canadian Center
for Climate Modelling and Analysis (CCCma). IPCC-IS92a
scenario is selected for the estimation of monthly rainfall
in Orissa. The CCCma-coupled global climate model,
CGCM2, represents the net radiative effect of all green-
house gases (GHGs) by means of an equivalent CO, con-
centration. The equivalent CO, concentration is necessarily
higher than the observed CO, concentration, since it
represents the climate forcing due to CO, and also the forcing
associated with all other GHGs. In transient climate
change simulations, the change in GHG forcing is repre-
sented in the model as a perturbation relative to the 330 ppmv
equivalent CO, concentration, used in the control simulation,
i.e. 330 ppmv is taken as a reference value and climate
change simulations involve changes relative to this value
(http: //www.cccma.bc.ec.gc.ca/data/cgcm/cecm  forcing.
shtml). The first report by Intergovernmental Panel on
Climate Change (IPCC) was published in the year 1992,
which describes six alternative scenarios (IS92a to f). These
scenarios embodied a wide array of assumptions affecting
how future GHG emission might evolve. Out of these
scenarios, 1S92a was widely adopted by the scientific
community during the last decade. According to the scenario,
population rises to 11.3 billion by 2100 and economic
growth averages 2.3% per annum between 1990 and 2100,
with a mix of conventional and renewable energy sources
being used. CGCM2 output used in the present anlysis
considers IPCC-IS92a forcing scenario in which the change
in GHG forcing corresponds to that observed from 1900
to 1990 and increases at a rate 1% per year thereafter, un-
til 2100. The direct effect of sulphate aerosols is also in-
cluded.

Although GCM runs are available at timescales as
small as 15 minutes, there is little confidence in GCM
outputs for timescales shorter than 1 month’. The selection
of appropriate predictor or characteristics from the large-

CURRENT SCIENCE, VOL. 90, NO. 3, 10 FEBRUARY 2006

scale atmospheric circulation, is one of the most important
steps in downscaling using statistical methods. The predictors
used for downscaling should be' (1) reliably simulated
by GCMs, (2) readily available from archives of GCM
outputs, and (3) strongly correlated with the surface variables
of interest. GCMs are more accurate for free atmospheric
variables such as air pressure. Precipitation can be related
to air mass transport and thus related to atmospheric circu-
lation, which is a consequence of pressure differences and
anomalies®. Based on the literaturez’lo’m, monthly data of
mean sea-level pressure and geopotential height at 500 mb
are used as predictors.

Data from January 1950 to December 2099 are ex-
tracted from the official website of CCCma (http://www.
cccma.be.ec.ge.cal). Twelve grid points are selected for
the study ranging from 16.70 to 24.12°N lat. and 78.75 to
90.00°E in long. Figure 1 shows the grid points super-
posed on the map of Orissa. The dimension of the GCM out-
put dataset extracted is 12x2 =24 (mean sea-level
pressure and geopotential height (500 mb) at each of the
twelve grid points). Multi-dimensionality of the predic-
tors may lead to a computationally complicated and large-
sized model with high muticollinearity (high correlation
between the explanatory variables/regressors). To reduce
the dimensionality of the explanatory dataset, Principal
Component Analysis (PCA) is performed.

PCA is a statistical procedure to identify the patterns of
multidimensional variables and to transfer correlated variables
into a set of uncorrelated variables. Starting with the set
of twenty-four variables (GCM outputs), the method gener-
ates a new set of variables called principal components.
Each principal component is a linear combination of the
original variables. All the principal components are orthogo-
nal to each other, so there is no redundant information.

For performing principal component analysis®, first the
covariance matrix of the normalized variables is computed.
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Figure 1. GCM grids superposed on map of Orissa.
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Each variable is normalized by subtracting the mean from
it and then dividing the result by the standard deviation of
the original variable. Eigen vectors resulting from the covari-
ance matrix are used for PCA. The eigen vectors are or-
thonormal and the indices are arranged so that the first
eigen vector corresponds to the largest eigen value and in
general the kth eigen vector to the kth largest eigen value A;.
The kth principal component at time ¢ (pcy,) is computed as:

peu= Y ey, [pda) - pP@)IS(@)], (1)
q

where p,(q) is the value of gth variable (mean sea-level
pressure/geopotential height at any node) at time . p(g)
and S(q) are the mean and standard deviation of the vari-
able p(q). ey, is the gth element of the eigen vector corre-
sponding to kth eigen value. The percentage of total variance
@, explained by the kth principal component is given by:

My
M—kxmo, )

m=l" "

(Dk:

where M is the dimensionality of the original dataset
(twenty-four in the present study).

The advantage of PCA is that using a small number of
principal components, it is possible to represent the variability
of the original multivariate dataset. In the present study
the number of principal components, which can together
preserve more than 97% of the total variance of original
dataset is used.

The monthly area-weighted rainfall data of Orissa,
which extends from January 1950 to December 2003, is
extracted from the website of the Indian Institute of Tropical
Meteorology, Pune (http://www.tropmet.res.in). This dataset
is used for regression analysis. Primary source of data is
India Meteorological Department (IMD). Details of develop-
ment of methodology for modelling rainfall using these
datasets are presented in the following section.

Model development

Linear Regression Model is used to predict the monthly
rainfall in Orissa using the principal components as explana-
tory variables. For IS92a scenario, the first three principal
components together preserve more than 97% of the variabi-
lity of the original 24-dimensional dataset (Table 1). Only
the first three principal components are used as explanatory
variables with the constant term in the linear regression
model, which results in the following equation with R’
value of 0.676.

RAIN, = 688.354 + 312.132 X pc, + 114.136

X pcy—347.795 X pesg, (3)
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Table 1. Percentage of variance explained by principal components
Eigenvalue Percentage variance explained
12.7076 52.9483
10.5460 43.9415
0.4861 2.0254
0.0999 0.4161
0.0657 0.2740
0.0291 0.1214
0.0209 0.0872
0.0158 0.0659
0.0076 0.0317
0.0073 0.0305
0.0047 0.0198
0.0026 0.0108
0.0019 0.0079
0.0015 0.0062
0.0011 0.0044
0.0007 0.0028
0.0005 0.0022
0.0003 0.0013
0.0003 0.0011
0.0001 0.0006
0.0001 0.0004
0.0001 0.0004
=~ 0.0000 =~ 0.0000
=~ 0.0000 =~ 0.0000

where RAIN; is the monthly rainfall of Orissa in 10~ mm/
month. The same regression model is applied without a
constant term using SPSS-9.05, a data-modelling tool. It
gives R’ value as 0.797, which is a measure of the propor-
tion of the variability of the dependant variable about the
origin explained by the regression model.

RAIN,; =324.753 X pcy; + 289.706 X pcy;
—1707.706 X pcs,. 4)

The R® value thus evaluated in this regression model is
unsatisfactory. The reason behind this may be the existence
of different classes of atmospheric circulation patterns,
and also the relationships of rainfall with the principal
components different for different classes or seasons.
Studies are available™ " in support of the existence of
different classes in the circulation patterns. Methods based
on Classification and Regression Trees (CART), fuzzy
rule-based systems have been applied to classity the atmos-
pheric circulation in these studies. In the present analysis,
the atmospheric circulation pattern is classified based on
clustering technique.

Overview of clustering method

Clustering refers to partitioning of a dataset into a number
of classes. The objective of clustering technique is to mini-
mize the Euclidean distance between each datapoint in a
cluster and its cluster centre, and to maximize the Euclid-
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ean distance between cluster centres*. There are two broad
methods of clustering: hard clustering; and fuzzy clustering.
Hard clustering is used to classify data in a crisp sense. By
this method each datapoint will be assigned to one and
only one data cluster. If ¢ partitions/classes/clusters of a sam-
ple set X, having » data samples, can be defined as a fam-
ily of sets {A;, i =1, 2,..., c}, then the following set theoretic
properties for hard clustering can be observed®':

Us =x, )
ANA =0 Vi#j, (6)
dcA X Vi (N

where 2 <c<n. c=1 places all data samples into the
same class and ¢ = n places each datum into its own class;
neither case requires any effort in classification and is also
of any use. Equation (5) expresses the fact that the set of
all classes exhausts the universe of data samples. Equation
(6) indicates that none of the classes overlaps, i.e a data
sample cannot belong to more than one class. Equation
(7) indicates that a class cannot be empty and it cannot
contain all the data samples. Application of hard clustering
in climatic sciences may be found in Gadgil and Iyengar™.

In the fuzzy clustering technique, the crisp classifica-
tion is extended to fuzzy classification using the concept
of membership values. A family of fuzzy sets/clusters/
classes may be defined as {A;, i=1, 2,..., c}, which differs
from the crisp sets generated by hard clustering by the
following properties®':

Membership values are assigned to the various datapoints
for each fuzzy set/cluster/class. Hence a single point can
have partial membership in more than one class. The
membership value, U, of the rth datapoint x, in the ith
class has the following restrictions’":

Wi = g (x) € [0, 1, &)

(10)

Zuit =1
i=1

Equation (10) ensures that the sum of membership values
for a single datapoint in all classes is unity. The goal of
the fuzzy clustering is to determine the clusters with their
centres and to compute the membership value of all data-
points in each class. For example, at any time period ¢,
the datapoint made up of the first three principal compo-
nents (i.e. pcy, pca and pes) will have ¢ membership values,
one in each of the ¢ clusters, with values ranging between
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0 and 1 (eq. (9)) and with a sum of the ¢ membership values
equal to 1 (eq. (10)). Details of algorithms of hard clus-
tering and fuzzy clustering may be found in Ross”'.

Hard clustering technique is not used in the present
analysis because a slight change in the mean sea-level
pressure or geopotential height lying in a particular class,
using this method may lead to a different class with a different
regression equation, which may not be realistic. Furthermore,
the circulation pattern generated by GCM for the future
may constitute a new class, having few members of the
past and present circulation patterns. This may lead to an
erroneous regression model. On the other hand, fuzzy
clustering assigns membership values of the classes to
various datapoints, and it is more generalized and useful
to describe a point not by a crisp cluster, but by its mem-
bership values in all the clusters. A brief overview of
fuzzy c-means clustering, an algorithm widely used for
fuzzy clustering, is given in Appendix 1. For the present
study, three clusters have been used and membership of all
the datapoints in each of the three clusters has been calcu-
lated. These values are used in the regression equation for
modelling rainfall.

Regression with cluster membership

Regression analysis is performed using membership values
obtained from the fuzzy clustering method. First, it is assumed
that for different clusters only the intercept (constant
terms) of the regression equation is different. The following
equation is used for regression analysis:

2 3
RAIN, = Y B, xu;, +Y v X pey,. (11)

i=1 k=1

B; and v, are the coefficients of y; (i.e. membership in
cluster i of rth data) and pcy. The membership values p;;
in each cluster are assigned to different points based on fuzzy
c-means algorithm (Appendix 1, eqs (27)-(31)). These
membership values lie between 0 and 1. The centre of a
cluster will have a membership value of 1 in that cluster,
and 0 in the other clusters. To demonstrate the effect of
inclusion of membership values in the regression model,
equations for the centres of different clusters are given here.
The regression equation for the centre of cluster 1 having
complete membership in cluster 1 ((y;= 15 Wy =0; U3, =0)
can be given by:

3
RAIN, =B, + Y v, x pey,. (12)

k=1

The constant term/intercept in this regression equation is
B,. Similarly, for the centre of cluster 2 (W, =0; Wy = 1;
U3, = 0), the intercept term can be given by B, (eq. (13)).
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3
RAIN, =B, + Y v, X pey,. (13)

k=1

The equation for the centre of cluster 3 (U, =0; Hy,=0;
M3 = 1) can be given by:

3
RAIN, = Y v, x pey,.
k=1

(14)

For all of the cases shown in eqs (12)—(14), the slopes
will be the same (i.e. y;, ¥, and ¥3) for pcy, peyr and pes;
respectively). Using this equation R* value is obtained as
0.811, which is better than the regression equation with
only the principal components as the explanatory vari-
ables (R* = 0.797). The values of By, By, Y1, 7> and y; are
obtained as 1051.839, 136.782, 411.611, 143.749 and
—491.605 respectively. The assumption of difference only
in the intercept term is now relaxed and it is considered
that both the slope and intercept terms are different for
different clusters. The following regression equation is
used to predict the rainfall:

2 3 2 3
RAIN; = Z B x W, +ZY/< X Py +ZZ Pir XM X PCpy-
i=1 k=1

i=1 k=1
(15)

A new set of coefficients p; is introduced in the equation,
considering different slopes for different clusters, in the
linear regression model. For the datapoint having full
membership in cluster 1 (W, = 1; Wy, = 0; U3, = 0), the re-
gression equation will be:

3
RAIN, =B, + Y () + py) X pe,. (16)

k=1

Similarly, the regression equations for datapoint having
full membership in cluster 2 (W;;=0; Wy = 1; U3, =0) and
cluster 3 (Wi, = 0; Wy = 0; W3 = 1) respectively, are as fol-
lows:

3
RAIN, =B, +) (¥ +po)X pey for wy=1 (17

k=1

3
RAIN, = Y v, x pcy, for py=1. (18)

k=1

The results of the regression analysis is given in Table 2.
It gives an R? value as 0.841, a better one than that ob-
tained from regression eq. (11); i.e. 0.811. To improve the
model fitness or goodness-of-fit, the seasonal component
is now introduced in the model. Details are presented as
follows.
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Table 2. Results for regression analysis considering only cluster member-
ship (R* = 0.841)

Coefficients Value t-statistics Significance
By 299.989 1.274 0.203
B2 404.085 0.624 0.533
Vi 527.232 12.323 0.000
Y2 184.369 2.365 0.018
v —249.320 —2.060 0.040
P —491.716 —6.766 0.000
pi2 —-195.553 -1.962 0.050
pi3 320.759 1.652 0.099
P2 —668.167 -3.789 0.000
P22 -3.925 -0.011 0.991
P2 —952.224 —-1.652 0.099

Modification for seasonal component

The coefficient values in the regression equation should
have some seasonal/periodic component. This should be
considered and properly incorporated for correct estima-
tion of rainfall. In the present analysis all the coefficients
used in the regression equation (eq. (15)) are rewritten in
terms of seasonal component. The seasonal component is
assumed to be different for different months with a perio-
dicity of 12.

Bi=Bo+BiIx (2 #/12) + B i xcos(2m 1/12), (19)
where ¢ is the serial number of the datapoint. The equation
will take care of the seasonal/periodical term. Similarly,
the modifications for other coefficients will be as follows:

Ye= Yo+ YExsin(2R #/12) + ¥ x cos(2m 1/12), (20)

Pik = P + Pie X sin(2W #/12) + pix X cos(2m /12).  (21)

The modified regression equation is fitted to model the
monthly rainfall. Details of the model results are given in
Table 3. The model is improved by incorporating the sea-
sonal component with a good R value of 0.900. But the
major drawback of this regression equation is that the #-
statistics is insignificant for the coefficients of most of
the explanatory variables/regressors, and with 95% confi-
dence, we cannot reject the null hypothesis that these coeffi-
cients are significantly different from zero. It may also
lead to overfitting of the model. Furthermore, there may
exist a high correlation between the regressors used in the
regression equation leading to multicollinearity. It can be
tested by the condition index, defined as the ratio of maxi-
mum to minimum eigen values of the matrix formed by
the explanatory variables. A thumb rule® for any linear
regression model without multicollinearity, is that the
condition index should be less than 30. A high condition
index of 253.033 in the present case indicates that there
exists multicollinearity, which may lead to high standard
error in the estimation of coefficients. The following section
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presents a methodology based on F-statistics, for screening
of regressors used in the regression equation, without a
significant loss in R” value.

Selection of explanatory variables using F-statistics

To get over this problem the backward method of SPSS-
9.05 (a data modelling tool) based on F-statistics is used,
which removes regressors having insignificant z-statistics
one by one from the regression equation, without a significant
change in R’ value. The significance of the change in R value
is tested with a statistical measure (F), which follows F-
distribution.

Fo RI-R)Im

20 (22)
(=R /df

Table 3. Results for regression analysis considering seasonality

where R% is the R? value without any restriction (i.e. with
all the regressors), R% is the R? value with restrictions (i.e.

Table 4. Results of the forecast model (R* = 0.898)

(R* = 0.900)
Coefficients Value t-statistics Significance
By _852.451 -1.057 0.291
Bi 260.944 0.254 0.800
B 615.669 0.680 0.497
B 5109.470 3.646 0.000
B ~230.709 ~0.104 0.917
B3 ~2816.291 ~1.290 0.198
¥ ~243.256 ~1.237 0.217
7 —884.011 -5.651 0.000
7 ~695.669 -3.550 0.000
% 262.348 0.952 0.341
7 284.945 1.072 0.284
v 284.812 0.954 0.341
% 888.144 1.638 0.102
7 1278.630 2.399 0.017
v 973.748 1.899 0.058
o) 45.085 0.159 0.874
NE 716.607 2777 0.006
o) 831.383 2.416 0.016
o) -50.236 ~0.139 0.889
Pis -531.498 ~1.580 0.115
oh -499.944 ~1.569 0.117
ol ~1446.770 ~1.963 0.050
pl3 ~670.092 ~0.979 0.328
pls —466.058 ~0.635 0.526
pY 346.953 0.515 0.607
Py 1951.155 2.876 0.004
3 1784.396 3.506 0.000
P ~383.565 ~0.419 0.676
a2 ~1647.925 ~1.441 0.150
p3 -309.752 -0.316 0.752
Y ~2312.361 ~1.222 0.222
pa3 ~3171.496 ~1.724 0.085
Pk —537.540 -0.266 0.791
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Coefficients Value t-statistics Significance
B 2956.666 7711 0.000
B3 -2060.101 ~5.462 0.000
7 ~684.799 ~28.392 0.000
7 —422.772 ~18.805 0.000
- 359.749 4.385 0.000
3 296.648 2782 0.006
ol 577.439 13.134 0.000
oh 427.741 14.055 0.000
o) ~490.832 -3.856 0.000
P11 1433.725 5.658 0.000
03 1021.475 -3.900 0.000
b ~610.797 ~1.441 0.000
200
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Figure 2. Frequency distribution of residuals.
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Figure 3. Normal Q-0 plot of residuals.
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Figure 4. Box-plot for monthly predicted rainfall.

after removing some insignificant regressors), n; is the
number of regressors removed, and df is the degree of free-
dom of the unrestricted model. The resulting F-statistics
determines which of the regressors should be removed
without significant loss in R* value.

Results for the coefficients of variables selected for the
regression model with the backward method are given in
Table 4. The final R* value is obtained as 0.898 which is
a satisfactory one.

The condition index for the model is obtained as 7.524
which is less than 30, signifying that there is no multicol-
linearity. For testing autocorrelation in the residuals, Durbin—
Watson test is performed. The Durbin—Watson statistics
(d) of a regression model is given by:

(23)

where u, is the rth residual. For a model without a signifi-
cant autocorrelation between the residuals, the d value
should be close to 2 and it should lie between d; and 4 — dy.
The values of d; and dy depend on the number of observa-
tions and number of explanatory variables. In the present
study, the d value is 1.875. The number of observations
used here is 648. For any regression having observations
more than 200 the standard d; and dy values are not
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available, but here the d value is close to 2, which signifies
that there is no significant autocorrelation in the residuals.
Breusch—Godfrey test for autocorrelation also reveals that
autocorrelation is absent among the residuals. Breusch—
Pagan—Godfrey (BPQ) test is performed for heteroscedasity
(variance of the residuals not being constant). As the pat-
tern of residuals for different clusters is different, the
BPG test reveals heteroscedasity. But, heteroscedasity
has never been a reason to throw out an otherwise good
model***’. The frequency distribution of the residuals is
plotted in Figure 2, which shows that the distribution
closely resembles a normal distribution. Figure 3 shows
the normal Q—Q plot of the residuals supporting the fit of
normal distribution for the residuals. Based on these tests
and the R” value of 0.898, the model given by eqs (15),
(19)—(21) with values of coefficients given in Table 4, is
selected for projection of monthly rainfall over Orissa in
future.

Future rainfall scenario

The methodology based on regression and fuzzy cluster-
ing thus developed is used for modelling monthly rainfall
in Orissa for 2004 to 2099 for 1S92a scenario, with a basic
assumption that this regression relationship will not change
in the future. A negative value generated by the regression
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is set to zero. The box-plot for different months has been
plotted for the periods 2004-25, 2026-50, 2051-75, and
207699 (Figure 4). Figure 4 shows that there is a possi-
bility of decrease in rainfall during the dry period (Septem-
ber-February). The summer and monsoon (March—August)
rainfall has an increasing trend, with an increase in the
maximum/peak rainfall. A possibility of increase in hydro-
logic extremes (droughts/floods) may be indicated by these
results, based on the 1S92a scenario of CCCma, CGCM-2.
A recent study” on the impact of future climate change
on Indian summer monsoon revealed that there is a possi-
bility of decline in all-India rainfall in the winter season,
which may lead to droughts. Also the possibility of increase
in summer/monsoon rainfall is predicted in that analysis.
The present analysis results in similar rainfall scenario
for Orissa. Figure 5 a and b shows trends in the predicted
dry season and wet season rainfall. Under this scenario,
severe drought conditions are indicated during the period
2076-99.

Conclusion

The methodology described here for predicting future
rainfall from GCM outputs, is based on linear regression
and fuzzy clustering, and is computationally simple. Use of
fuzzy clustering overcomes the limitation of rigidity of hard
clusters. Membership values obtained from fuzzy clustering
are used as dummy variables in regression analysis. Sea-
sonal components have been taken care by appropriate sine
and cosine components. SPSS-9.05 is used to perform the
backward regression analysis based on [F-statistics. The
required tests like Durbin—Watson test, multicollinearity
test, etc. have been performed to validate the assumptions
of the linear regression model. The goodness-of-fit (R”)
value of the regression model is comparable to similar
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Figure 5. Predicted rainfall for wet (@) and dry (b) periods.

CURRENT SCIENCE, VOL. 90, NO. 3, 10 FEBRUARY 2006

models used for downscaling of rainfall. The rainfall pro-
jection, based on IS92a scanario, shows that there is a
possibility of increase in hydrologic extremes in Orissa in
future. High value of goodness-of-fit and different tests
on the assumptions on linear regression (multicollinearity,
normality of residuals, etc.) suggest that this model can
be used to realistically simulate precipitation at regional
scale, and hence can be used for climate change impact
studies.
Appendix 1. Fuzzy c-means clustering algorithm.

A brief overview of fuzzy c-means clustering algorithm®'
is presented here. To determine the fuzzy partition matrix
U for grouping a collection of n datasets with m dimen-
sions/coordinates into ¢ classes, an objective function J,,
which is to be minimized, is defined as:

1,@.v=Y Y )" @, (24)
=1 i=l
m 1/2
dy =] ) (=) (25)
k=1

Subscript i and k stand for the ith cluster and kth coordinate
respectively. xy, is the kth coordinate of the rth data-point.
m’ is a parameter called weighting factor and has a range
[1, o). This parameter controls the amount of fuzziness in the
classification process. In general, higher the m’, the fuzzier
are the membership assignments of the clustering. Con-
versely, as m” — 1, the clustering values become hard,
i.e. 0 or 1. There is no theoretical optimum choice of m,
but it is suggested to use a value’' in between 1.25 and
2.00. v denotes the set of cluster centres. The ith cluster
centre v; can be described by m features (m coordinates)
in a vector form v; = {v;, vp,.. . » Uim}. Ui can be de-
fined as:

T

n ’
m
E |
_ 1=l

oy = (26)
Y g
r=1

An effective algorithm for fuzzy classification called it-
erative optimization, was proposed by Bezdek®. The
steps of the algorithm are as follows®':

(i) Fix ¢(2 £c¢ <n) and select a value of parameter m’.
Initialize the partition matrix e ®. Each iteration
of the algorithm will be labelled r, where r =10, 1,
2,0

(i) Calculate the ¢ centres {v{} for each step.
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(iii) Update the partition matrix for the rth step, T as
follows:

-1

S =Y @nay | =9, (27)
1=l

or
Y =0 Vv iel, (28)

where

I, ={il2<c<n; d” =0} (29)
and

I ={1,2,..,c}—1, (30)
and

Y uit =1 (31)

JEl,

(v) If 10"+ D - UPl <e,, stop; otherwise r=r+ 1 and
return to step (ii),

where €, is a small number used as a level of accuracy. In
step (iii), eq. (27) will be invalid when the denominator of
the fraction d;, will be zero. I; and I’; are used as a book-
keeping parameter to handle this situation. Equations (29)
and (30) are used to describe these parameters. In the pre-
sent analysis, Fuzzy logic toolbox of MATLAB 6.5 is
used for this algorithm.
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