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ABSTRACT

Human immunodeficiency virus-1 (HIV-1) infection
leads to changes in cellular gene expression,
which in turn tend to modulate viral gene expression
and replication. Cellular heat shock proteins (HSPs)
are induced upon heat shock, UV irradiation and mi-
crobial or viral infections. We have reported earlier
Nef-dependent induction of HSP40 leading to incre-
ased HIV-1 gene expression; however, the mechan-
ism of induction remained to be elucidated. As
expression of HSPs is regulated by heat shock
factors (HSFs), we have now studied the role of
HSF1 not only in Nef-dependent HSP40 induction
but also in HIV-1 gene expression. Our results show
that HSF1 is also induced during HIV-1 infection and
it positively regulates HIV-1 gene expression by two
distinct pathways. First, along with Nef it activates
HSP40 promoter which in turn leads to increased
HIV-1 gene expression. Second, HSF1 directly inter-
acts with newly identified HSF1 binding sequence
on HIV-1 LTR promoter and induces viral gene ex-
pression and replication. Thus, the present work not
only identifies a molecular basis for HSF1-mediated
enhancement of viral replication but also provides
another example of how HIV-1 uses host cell
machinery for its successful replication in the host.

INTRODUCTION

Cellular heat shock proteins (HSPs) are molecular chap-
erones primarily involved in protein folding, transport and
assembly. In addition, some of these proteins are specific-
ally induced during stress conditions like heat shock, UV
irradiation and microbial/viral infection (1,2). Recent
studies have revealed that HSPs are also involved in apop-
tosis and immune response (3,4). Viruses modulate expres-
sion of many cellular proteins for their successful

replication and induction of HSPs has been reported as
one of the earliest change following viral infection (5).
Human immunodeficiency virus-1 (HIV-1) was reported
to induce HSP27 and HSP70 expression during early in-
fection (6).

HIV-1 Nef, a 27-30 kDa myristoylated phosphoprotein,
contributes to viral pathogenesis by modulating cellular
gene expression and signaling pathways (7). Nef has
been also implicated in the activation of T cells, making
the cells permissible to the virus (8). Although initially
reported as a negative factor for HIV-1 replication in
T-cell lines (9,10), Nef has been later demonstrated to be
an enhancer of virus replication (11-14). However, the
molecular mechanism of this positive effect remains to
be clearly understood. We have carlier shown that Nef
interacts with HSP40, and this interaction was necessary
for Nef mediated increase in viral gene expression and
replication. Furthermore, it was also shown that HSP40
expression increased in HIV-1 NL4-3 transfected cells in a
Nef-dependent manner (15). However, the mechanism of
HSP40 upregulation during HIV-1 infection remains to be
elucidated.

The inducible expression of HSPs is primarily regulated
by heat shock factors (HSFs). HSF1 is the major tran-
scription factor that regulates the transcription of HSP
genes in response to stress. It binds to conserved regula-
tory sequences in the HSP promoters known as heat shock
elements (HSE), which is represented by two or three
inverted repeats of the sequence nGAAn (16). Normally,
HSF1 is predominantly present in a cytoplasmic mono-
meric inactive form; however, upon stress it gets homo-
trimerized and translocated to nucleus and acquires high
affinity HSE binding and transcription enhancing activity.
Recent studies indicate that phosphorylation also plays a
major role in regulation of HSF1 activity; specifically
Ser™®® and Ser’”® are inducibly phosphorylated during
stress resulting in increased transcriptional activity (17,18).
The response of HIV-1 to various stress proteins, including
HSPs, could also lead to modulation of HIV-1 long ter-
minal repeat promoter (LTR)-driven gene expression (19).
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Several studies have suggested that heat shock could acti-
vate the LTR-driven transcription in cells (20,21);
however, the mechanism of activation has not been clearly
understood (22).

During our efforts to understand the mechanism of
Nef-dependent upregulation of HSP40 in HIV-1 infection,
we have identified the importance of HSF1 in HIV-1 gene
expression and replication in the present study. Our results
clearly show that HSF1 positively regulates HIV-1 gene
expression and replication by two distinct pathways. First,
it induces HSP40 expression in association with viral
protein Nef, both of which has been earlier shown to be
required for increased viral gene expression (15). Second,
activated HSF1 directly interacts with LTR to induce viral
gene expression and replication.

MATERIALS AND METHODS
Cell lines, plasmids and reagents

HIV-1 NL4-3 Nef expression vector pcDNA-Nef was ob-
tained from Dr M. Federico (23). NL4-3 Nef and its point
mutants tagged with HA (HA-Nef) plasmids were obtained
from Dr W.C. Greene (24). HSF1 encoding plasmid
pCMV-HSF1-Flag was a gift of Dr J. Goldman. This
HSF1 was further subcloned in pET-28a(+) vector
(Novagen, USA). HIV-1 NL4-3 molecular clone
(pNL4-3) was obtained from the NIH AIDS repository
(25). The nef-deleted NL4-3 molecular clone (pNL4—
3ANef) was obtained from Dr J.C. Guatelli (26). The
HIV-1 LTR reporter vector, pLTR luc was cloned in
our laboratory as reported earlier (27). HIV-1 LTR and
its deletion mutant constructs of CD series were obtained
from Dr T. Okamoto (28). HSP40 promoter construct was
obtained from Dr K. Ohtsuka (29), which was used to
subclone HSP40 promoter in pGL3 luciferase vector.
HEK-293T and Jurkat cells were obtained from the
NCCS Cell Repository, India. CEM-GFP, a CD4"
human T-cell line, was obtained from the NIH AIDS re-
pository, USA (30). A polyclonal anti-Nef serum was
obtained from Dr S. Jameel (31). Monoclonal and poly-
clonal Nef antibodies were obtained from Chemicon,
USA and NIH AIDS Repository, respectively.
Antibodies against HSP40, HA-tag and phospho-HSF1
were obtained from Santa Cruz Biotechnology, USA.
Monoclonal and polyclonal HSF1 antibodies were
obtained from Chemicon and Cell Signaling, USA, re-
spectively. HSF1 Ab-4 cocktail (Clones 4B4 -+ 10H4 +
10H8 Rat monoclonal antibody) was obtained from
Thermo-Fisher Scientific, USA. Mouse monoclonal
Flag-tag and Tubulin antibodies were obtained from
Sigma, USA. Control and Spl siRNA pools were from
Santa Cruz Biotechnology, USA and HSF1 siRNA pool
was obtained from Dharmacon, USA.

Transient transfection and luciferase assay

HEK-293T cells were transfected with reporter constructs
along with other expression vectors using calcium phos-
phate precipitation method and cells were harvested 36 h
post-transfection for luciferase assay. For siRNA experi-
ments, cells were first transfected with siRNA using

Lipofectamine 2000, followed by second transfection
with other vectors after 24h. The cells were then lysed
and analyzed for luciferase activity using Luclite substrate
(PerkinElmer Life Sciences, USA). Luciferase assays were
analyzed using TopCount microplate reader (PerkinElmer
Life Sciences, USA). The results were normalized with
EGFP expression using Fluoroskan Ascent microplate
reader (Thermo Labsystems, USA).

HIV-1 infection and virus quantitation

CEM-GFP or Jurkat cells (5 x 10%) were infected with
HIV-1 NL4-3 virus at 0.1 multiplicity of infection (MOI)
in the presence of Polybrene (1 pg/ml) as described earlier
(15). Human peripheral blood was collected from normal
seronegative donors and PBMCs were isolated using
Ficoll-Hypaque (Amersham Bioscience, USA). The cells
were activated with PHA and later infected at 0.5 MOI of
NL4-3 virus as described in detail earlier (15). The culture
supernatants from NL4-3 infected and transfected cells
were used to determine virus production by p24%€
antigen capture ELISA (PerkinElmer Life Sciences, USA).

Immunoprecipitation, His pull-down and immunoblotting

HEK-293T cells overexpressing HA-Nef and HSF1 were
lysed in lysis buffer (50mM Tris-HCI pH 7.4, SmM
EDTA, 0.12M NacCl, 0.5% NP40, 0.5mM NaF, 1mM
DTT, 0.5mM PMSF) on ice for 45min. Clarified lysates
were incubated with anti-Flag antibody and the antigen—
antibody complex was pulled down by an equal mixture of
protein A and G agarose beads followed by resolution on
12% SDS-PAGE. Proteins were transferred on to PVDF
membrane and probed with HA antibody. The blots were
developed by the ECL Plus system (Amersham
Biosciences, USA). Similar co-immunoprecipitation ex-
periment was performed with HIV-1-infected CEM-GFP
cell lysates, which were immunoprecipitated with Nef
antibody followed by immunoblotting with HSFI
antibody.

Escherichia coli BL21 (DE3) cells expressing His-HSF1
were induced with isopropyl B-p-thiogalactoside followed
by purification of His-HSF1 protein using Ni-NTA beads
(Qiagen, Germany). Transfected 293T cells, over-
expressing wild-type and different mutants of Nef were
lysed in cold lysis buffer 25mM HEPES, pH 7.3, 0.1 M
NaCl, 5mM EDTA, 0.5% Triton X-100 and 1 mM DTT)
with protease inhibitor cocktail (Roche Applied
Bioscience, Germany). The clarified lysates were incubated
with His-HSF1 protein in binding buffer pH 8.0 (50 mM
NaH,PO, 300mM NaCl, 10mM Imidazole and 0.1%
Tween-20) overnight at 4°C followed by pull down with
Ni-NTA beads. The complexes were then resolved on 12%
SDS-PAGE. Proteins were transferred onto PVDF
membrane and were probed with polyclonal HA-Nef
antibody. Furthermore, HIV-1-infected CEM-GFP and
Jurkat cell lysates were run on SDS-PAGE, followed by
immunoblotting for HSP40 and HSF1, respectively.

Reverse transcription PCR

RNA was prepared from 2 x 10° HIV-1 NL4-3-infected
CEM-GFP cells using TRIzol Reagent (Invitrogen, USA).



The cDNA was prepared using MMLV Reverse
Transcriptase (Invitrogen, USA) followed by PCR ampli-
fication for HSP40 and human B-Actin with Taq polymer-
ase (Invitrogen, USA) using standard conditions and
gene-specific primers listed in Supplementary Table S1.

Construction of HSP40 promoter point mutant reporter
vectors by site-directed mutagenesis

HSP40 wild-type promoter construct was used as a
template for creating mutation at different transcription
factor binding sites by PCR amplification using different
mutagenic primers (see Supplementary Table S2) and
Quik change site directed mutagenesis kit (Stratagene,
USA) following manufacturer’s instructions.

Preparation of nuclear and cytoplasmic fraction

Uninfected and HIV-1-infected Jurkat cells were used to
prepare nuclear and cytoplasmic extracts using ProteoJet
Cytoplasmic and Nuclear Extraction Kit (Fermentas,
Germany). These extracts were used to study phosphoryl-
ation of HSF1 using pHSF1 (Ser230) antibody.

Chemical cross-linking by ethylene glycol
bis(succinimidylsuccinate)

Uninfected and HIV-1-infected CEM-GFP cells (5 x 10°)
were resuspended in 100-200 pl cold lysis buffer followed
by lysis on ice for 30min. The cell lysate was spun at
12000 rpm for 10min at 4°C. About 100pg of protein
was used for cross-linking using ethylene glycol bis(succini-
midylsuccinate) (EGS) as described in details elsewhere (32).

Electrophoretic mobility shift assay

Various synthetic oligonucleotide probes spanning the
NF-kB-Spl region of HIV-1 LTR were labeled using
[v**P] dATP by T4 polynucleotide kinase (NEB, USA)
for 30min at 37°C and were purified by Probequant
G-50 columns (Amersham Biosciences, USA). Binding re-
actions were set up with both recombinant His-HSF1
protein and nuclear extract from HIV-1-infected Jurkat
cells. Binding reactions were incubated at 37°C for
15 min and loaded on 6% polyacrylamide gel. The nucleo-
tide sequence of probes P1, P2, P3 and P4 are listed in
Supplementary Table S3.

Chromatin immunoprecipitation

CEM-GFP cells (2 x 107) were infected with NL4-3 virus
at 0.1 MOI. On Day 5 post-infection, cells were harvested
and fixed with 1% formaldehyde. Following fixation,
chromatin immunoprecipitation (ChIP) was performed
by primary immunoprecipitation with Nef polyclonal
antibody using ChIP assay kit (Upstate Biotechnology,
USA) according to manufacturer’s instructions. In se-
quential ChIP experiment, the eluate after Nef immuno-
precipitation was re-incubated with either rat monoclonal
HSF1 antibody or rabbit polyclonal Spl antibody over-
night at 4°C. The occupancy on HSP40 promoter was
checked using different primers as schematically shown
in Figure 2C. The primers used for PCR amplification
of HSP40 promoter region is given in Supplementary
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Table S4. Similar ChIP analysis was also performed for
recruitment of HSF1 on the HIV-1 LTR promoter using
HSF1 antibody. The sequence of primers used in the LTR
ChlIP is listed in Supplementary Table S5.

Immunofluorescence microscopy

HEK-293T cells grown on cover slips were transfected
with both pcDNA-Nef and pCMV-HSF1 or pNL4-3 by
Lipofectamine 2000 and harvested 24 h post-transfection
for immunofluorescence studies. Paraformaldehyde-
fixed and permeabilized cells were blocked with 10%
FCS and stained with HSF1 and Nef antibody, respect-
ively. The secondary antibodies used for HSF1 and Nef
were Cy3-conjugated goat anti-rabbit IgG and Cy2-
conjugated to goat anti-mouse IgG, respectively. After
washing, cells were counterstained with DAPI present in
the mounting media and the slides were analyzed with a
confocal microscope (Zeiss LSM 510, Germany).
Similarly, uninfected and infected Jurkat cells were fixed
and were spun on a glass slide to obtain a monolayer of
cells. Then the cells were stained with polyclonal HSF1
antibody or pHSF1 (Ser230) antibody. The secondary
antibody used was Cy3-conjugated goat anti-rabbit IgG.
Cells were counterstained with DAPI and analyzed with a
confocal microscope.

Quantitation of HSF1 expression by RT-PCR

HSF1 expression was analyzed by quantitative real-time
RT-PCR in a 10 pl reaction mixture containing SYBR
Green 1Q supermix (Bio-Rad, USA) and 10 pmol concen-
tration of each of the human GAPDH and HSF1 primer
pairs (see Supplementary Table S6) using the Realplex*
Mastercycler (Eppendorf, Germany). The amplification
was performed using one cycle of 95°C for 2min and
40 cycles of 94°C for 1 min, 60°C for 30s and 68°C for
I min followed by melt curve analysis. The changes in
the threshold cycle (C7) values were calculated by the
equation AC7 = C7arget—Crinpur. The fold difference
was calculated as follows:

fold difference = 2~ (AACT),

Statistical analysis

All experiments were repeated at least three times. The
error bars represent the mean &= SEM of three independ-
ent experiments. Statistical analysis of the experimental
data was performed using Student’s z-test, with the levels
of significance defined as *P <0.05.

RESULTS
HIV-1 Nef induces HSP40 promoter activity

We have reported earlier that HSP40 is induced in Nef-
dependent manner in HIV-1 NL4-3 virus transfected
HEK-293T cells (15). In order to confirm this finding
in HIV-l-infected T cells, we first infected CEM-GFP
cells with wild-type and nef-deleted NL4-3 virus and
analyzed HSP40 expression on different days post-
infection by both RT-PCR and immunoblotting.
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As shown in Figure 1A and B, HSP40 was induced in
HIV-1 NL4-3-infected cells in a time-dependent manner.
However, this increase was not observed in Nef deleted
NL4-3-infected cells (Figure 1C and D) confirming that
HSP40 upregulation during HIV-1 infection is dependent
on the Nef protein.

In order to understand the mechanism of HSP40 induc-
tion, we first looked at the role of HIV-1 and Nef on the
HSP40 promoter activation, if any. HEK-293T cells were
co-transfected with HSP40 promoter-luciferase construct
along with wild-type or nef deleted NL4-3 molecular clone
followed by analysis of luciferase activity. The result
clearly shows that HSP40 promoter activity was signifi-
cantly induced by wild-type NL4-3 but not with the nef
deleted clone (Figure 1E) suggesting thereby that Nef was
responsible for induction of HSP40 promoter activity. In
order to confirm this observation, we then co-transfected
some individual HIV-1 protein expressing vectors along
with HSP40-luciferase construct in 293T cells. The
results clearly show that Nef specifically induces HSP40
promoter activity whereas Tat and Rev did not show any
significant effect (Figure 1F). We then wanted to identify
the region of HSP40 promoter (29) involved in Nef-
mediated induction of its activity, for which we created
different deletion and point mutations in the promoter

as represented in Figure 1G. These mutant constructs
were then used in co-transfection assay along with Nef
in 293T cells followed by luciferase activity analysis. As
there was no significant change in the activity of —246
promoter mutant with Nef as compared to the wild-type
HSP40 (—277) promoter-luc construct, the point mutants
were made in the —246 HSP40 promoter sequence. The
activity analysis of mutants show that HSE elements
in the HSP40 promoter were necessary for Nef-mediated
upregulation, whereas CAAT box did not seem to play
any role (Figure 1H). Mutation at Spl sites also seems
to moderately inhibit Nef-induced HSP40 promoter
activity (Figure 1H). Thus above results indicate the pos-
sible involvement of HSF1 and Spl transcription factors
in Nef-mediated upregulation of HSP40 promoter
activity.

HSF1 is required for Nef-mediated upregulation of
HSP40 in HIV-1-infected cells

In order to establish the requirement of HSF1 and Spl for
Nef-mediated induction of HSP40 promoter, endogenous
HSF1 and Spl expression was then silenced by gene spe-
cific siRNA transfection in 293T cells (Figure 2A, inset).
These cells were then co-transfected with Nef and HSP40
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Figure 1. Heat shock elements are required for Nef-dependent upregulation of HSP40 promoter-driven gene expression. (A and B) Expression profile
of HSP40 in HIV-1 NL4-3-infected CEM-GFP cells as analyzed by RT-PCR and immunoblotting. (C and D) Expression profile of HSP40 in HIV-1
NL4-3ANef-infected CEM-GFP cells as analyzed by RT-PCR and immunoblotting. (E) Nef is required for HSP40 promoter activation by NL4-3
virus in transfected 293T cells. (F) HSP40 promoter is specifically activated by HIV-1 Nef but not Tat and Rev in 293T cells. (G) Schematic
representation of HSP40 promoter and its mutants. Star marks indicate the mutated site. (H) Nef induces HSP40 promoter through HSE elements.
293T cells co-transfected with various HSP40 promoter-luc construct along with Nef expression vector were analyzed for luciferase activity (top) and
Nef expression (bottom). The error bars represent the mean + SEM of three independent experiments. Statistical analysis was performed using

Student’s -test, with the levels of significance defined as *P < 0.05.
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Figure 2. Nef and HSF1 proteins are co-recruited on HSE of HSP40 promoter in HIV-1-infected cells. (A) HSF1 is required for Nef-mediated
activation of HSP40 promoter. HSF1 and Spl depleted 293T cells were co-transfected with HSP40-luc and Nef expression vectors and analyzed for
luciferase activity. Gene silencing efficiency of HSF1 and Spl siRNAs are shown as inset. (B) Both HSF1 and Nef activate HSP40 promoter-driven
gene expression in 293T cells as analyzed by luciferase assay. (C) Schematic representation of HSP40 promoter showing the position of primers used
in ChIP analysis. (D) Nef is recruited on HSP40 promoter during HIV-1 infection. ChIP analysis was performed with HIV-1-infected CEM-GFP
cells using Nef antibody followed by PCR amplification using F2 and RI1 primers. (E) Nef and HSFI are co-recruited on HSP40 promoter as
analyzed by sequential ChIP. Primary immunoprecipitation was performed with Nef and secondary immunoprecipitaion with HSF1 or Spl antibody
followed by PCR analysis using F2 and R1 primers. (F) Nef and HSF1 is recruited specifically at HSE elements on HSP40 promoter. Sequential
ChIP analysis was performed as in E above using either F1 and R2 or F2 and R1 primer sets. The error bars represent the mean &+ SEM of three
independent experiments. Statistical analysis was performed using Student’s r-test, with the levels of significance defined as *P < 0.05.

promoter-luciferase construct. Our results show that
silencing of Spl did not significantly reduce Nef-
mediated induction of HSP40 promoter, whereas HSF1
knockdown resulted in significant reduction in promoter
activity as compared to control siRNA transfected cells
(Figure 2A). When both Spl and HSF1 were silenced,
the HSP40 promoter activity was the same as that ob-
served with HSF1 alone silenced cells. These results sug-
gest that HSF1 plays an important role in Nef induced
HSP40 expression. As HSF1 was known to be involved
in regulation of HSP promoters by interacting with HSE
elements and Nef was also observed to mediate its effects
through HSE elements above, we then co-transfected
HSF1 or Nef along with HSP40 promoter-luciferase con-
struct to analyze the promoter activity. The results
indicate that although Nef or HSF1 alone can induce
the promoter activity but when expressed together, they
show significantly more effect (Figure 2B).

As the inducible effect of Nef on HSP40 promoter seems
to be associated with HSFI1, we then looked at the

recruitment of Nef on HSP40 promoter at HSE elements
as shown in Figure 2C by ChIP assay. Cross-linked chro-
matin from HIV-1-infected cells was pulled down with Nef
antibody followed by PCR amplification using primers F2
and R1 (Figure 2C) spanning HSE region of HSP40
promoter. Strong PCR signal was observed only in in-
fected cells (Figure 2D, lane 3) indicating recruitment of
Nef on HSP40 promoter sequence encompassing HSE
elements. Since HSE is the consensus site for HSF1, we
then checked the co-occupancy of Nef/HSF1 or Nef/Spl
on the HSE elements (Figure 2E) by sequential ChIP
assay. Co-recruitment of Nef and Spl was not detected
(Figure 2E, lane 2), whereas recruitment of both Nef
and HSF1 on HSE elements was clearly observed in
HIV-1-infected cells (Figure 2E, lane 3). Also, no detect-
able amplification was observed in PCR using F1 and R2
primers encompassing a region upstream to HSE elements
(Figure 2F, lane 1) whereas strong PCR signal was
observed with primers F2 and R1 encompassing the
region containing just HSE elements (Figure 2F, lane 2),
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indicating thereby specific recruitment of HSF1 and Nef
at this site. These results further potentiate our finding
that HSF1 is necessary for Nef induced HSP40 gene
expression.

Nef interacts with human HSF1 both in vitro and in vivo

In order to test whether the co-recruitment of Nef and
HSF1 on HSP40 promoter in vivo was a result of their
physical interaction, we performed co-immunoprecipita-
tion with lysates of 293T cells expressing Flag-HSF1 and
HA-Nef. The Nef protein co-immunoprecipitated with
human HSF1 (Figure 3A, lane 3) in cells expressing
both the proteins. Similar co-immunoprecipitation experi-
ment with HIV-1-infected CEM-GFP cell lysates also
showed interaction of HSF1 with Nef in infected cells
(Figure 3B). We have also looked at the possible

interaction of Nef with Spl in HIV-1-infected CEM-
GFP nuclear extract, but we did no find any interaction
between Nef and Spl (Figure 3C). Thus both HSF1 and
Nef seem to interact in HIV-I-infected cells and might
exist as a complex on HSP40 promoter for its induction.
To further identify the HSF1 interacting domain of Nef,
purified His-HSF1 was incubated with 293T cell lysates
expressing Nef wild-type or mutant proteins followed by
pull down of complex by immobilization on Ni-NTA
beads (Figure 3D). As expected Nef protein was specific-
ally pulled down by His-HSF1. Although there was some
reduction in binding with all the nef mutants but mutation
in proline-rich motif of Nef between amino acids 6978
completely abolished its interaction with HSF1 (lane 5,
Figure 3D). This result further confirms that Nef and
HSF1 specifically interact with each other and proline
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Figure 3. HIV-1 Nef physically interacts and co-localize with HSF1 both in vitro and in vivo. (A) HSF1 and Nef interact in 293T cells overexpressing
HA-Nef and Flag-HSF1 as analyzed by co-immunoprecipitation. The input indicates lysate prepared from 293T cells co-transfected with HA-Nef
and Flag-HSF1 expression vectors. (B) Nef co-immunoprecipitates with HSF1 in HIV-1-infected CEM-GFP cells. The input indicates lysate prepared
from CEM-GFP cells infected with HIV-1. (C) Nef and Spl do not interact in HIV-1-infected CEM-GFP cells. The input indicates lysate prepared
from CEM-GFP cells infected with HIV-1. (D) Proline-rich motif of Nef is important for interaction with HSF1. Lysates of HEK-293T cells
expressing different HA-tagged Nef and its mutants were used for His-pull down with purified His-tagged HSF1. The input indicates the lysates

prepared from wild-type and mutant Nef transfected 293T cells. (E) Nef and HSFI co-localize in Nef and HSFI

expressing cells.

Immunofluorescence studies were performed with 293T cells transfected with Nef and HSF1 vectors (left column), pNL4-3 transfected 293T cells
(middle column) and HIV-1-infected Jurkat cells using Nef and HSF1 antibody (right column). The bottom panel in each column is a magnified
image of one cell from the merged image panel. Arrows indicate co-localization of Nef and HSF1.



rich motif of Nef seems to play an important role in this
interaction.

HSF1 has been reported to be localized in the nucleus
after heat shock or stress (16,33), whereas Nef was
reported to be a predominantly cytoplasmic protein but
was also shown to be present in the nucleus of HIV-
I-infected cells (34,35). As these proteins were found
to physically interact, we then performed immunofluores-
cence staining for both HSF1 and Nef in transfected 293T
and HIV-1-infected Jurkat cells. As shown in Figure 3E,
confocal microscopic analysis clearly indicate that both
proteins co-localize in the nucleus of Nef and HSFI
cotransfected, pNL4-3 transfected and HIV-1-infected
cells (Figure 3E). All these results further confirm that
Nef and HSFI not only interact with each other but
they also co-localize in nucleus and get recruited on
HSP40 promoter during HIV-1 infection as a complex.

HSF1 is induced in HIV-1-infected cells

As HSF1 expression status has not been studied during
HIV-1 infection, we then assessed HSF1 expression in
HIV-1-infected Jurkat cells by both immunoblotting and
immunofluorescence. The results show that HSF1 was up-
regulated in HIV-1-infected Jurkat cells (Figure 4A and B).
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We further confirmed this finding by quantitative real-
time PCR using RNA prepared from uninfected and
HIV-l-infected (Day 5) Jurkat cells and human PBMCs.
As shown in Figure 4C and D, HSFI1 expression was
induced in HIV-1-infected Jurkat and PBMCs. All these
data clearly indicate upregulation of HSF1 during HIV-1
infection.

HSF1 enhances HIV-1 LTR-driven gene expression

As HSFI expression is induced during HIV-1 infection
and it has been implicated in LTR-mediated gene expres-
sion, we then analyzed the effect of HSF1 on LTR-driven
gene expression (Figure 5A). HSF1 overexpression along
with Tat or Nef significantly induced LTR-driven gene
expression, as compared to Tat or Nef alone or together
(Figure 5B). This result indicates that HSF1 activates
LTR-driven gene expression.

As HSP40 gene expression was induced in Nef-
dependent manner during HIV-1 infection, we then invest-
igated role of Nef in HSFIl-mediated induction of
LTR-driven gene expression. As shown in Figure 5C,
HSF1 induced LTR-driven gene expression in both wild-
type and nef-deleted NL4-3 transfected cells, indicating
that activity of HSFI on LTR was Nef independent.

F N

Jurkat

w

Fold difference HSF1 mRNA
- N

a

PBMC

N w L)

Fold difference HSF1 mRNA

Figure 4. HSF1 is upregulated during HIV-1 infection. (A) HSF1 expression in HIV-1 NL4-3-infected Jurkat cells on Day 5 post-infection as
analyzed by immunoblotting. (B) Immunofluorescence analysis of HSF1 expression in HIV-1-infected Jurkat cells. (C) qRT-PCR analysis of HSF1
mRNA expression in HIV-I-infected Jurkat cells on Day 5 post-infection. (D) qRT-PCR analysis of HSF1 mRNA expression in HIV-1-infected
PBMCs on Day 5 post-infection. GAPDH was used as internal control for normalization. The error bars represent the mean = SEM of three
independent experiments. Statistical analysis was performed using Student’s z-test, with the levels of significance defined as *P <0.05.
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Figure 5. HSF1 induces HIV-1 LTR-driven gene expression in Nef independent manner. (A) Schematic representation of HIV-1 LTR and the
LTR-luc mutants used in the present study. (B) HSF1 enhances HIV-1 LTR-driven luciferase expression in 293T cells co-transfected with Tat and
Nef. (C) HSF1 induces LTR-driven luciferase expression independent of Nef. 293T cells were transfected with pNL4-3 or Nef deleted pNL4-3 along
with LTR-luc and HSF1 vectors and were analyzed for luciferase activity. (D) HSF1 induces HIV-1 LTR activity through its enhancer region. 293T
cells were transfected with different LTR-luc mutants along with HSF1 and pNL4-3 and luciferase activity was analyzed 36 h post-transfection. The
error bars represent the mean = SEM of three independent experiments. Statistical analysis was performed using Student’s ¢-test, with the levels of

significance defined as *P < 0.05.

We then wanted to identify the region of LTR which was
involved in HSF1-mediated induction of LTR activity. We
used different LTR deletion mutants (schematically pre-
sented in Figure 5A) for co-transfection with HSF1 and
pNL4-3 in 293T cells followed by reporter assay. The
results indicate that, region encompassing NF-xB and
Spl elements (—117 to —65) is involved in HSFI-
mediated induction of LTR activity (Figure 5D).
Deletion of this region, as present in CD52 luc (—65 luc)
did not show any induction with HSFI, suggesting
the role of NF-kB-Spl enhancer region of LTR in
HSF1-mediated activation.

HSF1 induces HIV-1 gene expression by interacting with
newly identified HSF1 binding sequence in the LTR

We have shown above that HSF1-mediated induction of
LTR is dependent upon the enhancer region. In order to
identify the HSF1 binding sequence in HIV-1 LTR, we
then analyzed the LTR nucleotide sequence using
TFSEARCH program version 1.3 (36), which revealed
putative HSF1 binding site in LTR enhancer region
(—69 to —91, data not shown). Based on this prediction,

we made four overlapping oligonucleotide probes P1, P2,
P3 and P4 encompassing the enhancer region as shown
in Figure 6A. Recombinant His-HSF1 protein was used
in electrophoretic mobility shift assay (EMSA) with these
four probes along with consensus HSE probe as a positive
control. Interestingly, probes P1, P3 and P4 failed to form
any complex whereas P2 formed nucleoprotein complex
with His-HSF1 (Figure 6B). P2 comprises of nucleotide
sequence from —69 to —91 of LTR promoter. To further
confirm the specificity of HSF1 binding, we analyzed P2
binding with increasing amount of His-HSF1 protein,
which resulted in a dose dependent increase in complex
formation (Figure 6C). Binding specificity of P2 for HSF1
was also confirmed by competition experiments with
specific and non-specific oligo (Figure 6D). In order to
see the binding with cellular HSF1, we then used nuclear
extract from HIV-1-infected Jurkat cells. P2 formed nu-
cleoprotein complex with HIV-1-infected nuclear extract
(Figure 6E). Loss of P2 binding was observed in pre-
incubation with HSFI antibody; however, post-
incubation with anti-HSF1 did not show any effect on
binding (Figure 6E). This shows that HSF1 antibody
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Figure 6. HSF1 interacts with novel HSF1 binding site on LTR and gets functionally activated during infection. (A) Schematic representation of
HIV-1 LTR showing the positions of oligonucleotide probes (P1 to P4) and primers (F1-F3 and R) used in EMSA and ChIP analysis, respectively.
(B) His-HSF1 specifically binds to probe P2 in EMSA analysis. HSE consensus sequence was used as positive control (lane 2). (C) His-HSF1 binds to
probe P2 in dose-dependent manner. (D) His-HSF1 binding to P2 is inhibited by cold P2 oligo but not by non-specific P1 oligo. (E) Probe P2 binds
to Jurkat nuclear extract which is inhibited by HSFI antibody pre-incubation. P2 binding remains unaffected by post-incubation with HSF1
antibody. (F) P2 probe binds with nuclear extract in dose-dependent manner. (G) P2 binding to nuclear extract is competitively inhibited by cold
P2 oligo but not by non-specific P1 oligo. (H) HSF1 is recruited on the putative HSF1 binding sequence in HIV-1 LTR during HIV-1 infection of
Jurkat cells. ChiP analysis was performed with Nef antibody followed by PCR amplification using F1 to F3 and R primers. (I) HSF1 trimerization
increases during HIV-1 infection. HIV-1-infected CEM-GFP cell lysates were used for chemical cross-linking by EGS followed by gel electrophoresis
as described in the text. (J) HSF1 is phosphorylated and translocated in to the nucleus of HIV-I-infected cells. HIV-1-infected Jurkat cells were used
for immunostaining with polyclonal phospho-HSF1 (Ser230) antibody. The extreme right panel in each row is a magnified image of one cell from the
merged image panel. Arrows indicate localization of phospho-HSF1 in the cell. (K) HSF1 is phosphorylated in HIV-l-infected Jurkat cells as
analyzed by immunoblotting of nuclear and cytoplasmic fractions.
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Furthermore, increased P2 binding was observed +12 and —93 to +12, respectively. However in the same
with infected nuclear extract (Figure 6F), which could be experiment no _PCR signal was obtained with E3/R primer
explained by increased HSF1 expression during HIV-1 set encompassing a region downstream to third Spl site

infection. P2 binding specificity was further checked  between —75 to +12 (Figure 6H). Thus our in vitro and

by Competition experiment that showed loss of blndlng cellular studies have shown for the first time b1nd1ng and
with excess cold oligo but not with non-specific oligo ~ recruitment of HSF1 on a newly identified HSF1 binding
(Figure 6G). We also analyzed the in vivo HSF1 recruit- site in HIV-1 LTR (=69 to =91, GGGACTTTCCAGGG

ment on HIV-1 promoter by ChIP assay. Cross-linked AGGTGTGGO).
chromatin from HIV-Il-infected Jurkat cells was pulled
down with HSF1 antibody and recruitment on LTR was
checked by PCR amplification using forward primers
(F1, F2, F3) and reverse primer (R) spanning the Earlier reports have shown induction of HSFI transacti-
enhancer region as shown in Figure 6A. Strong signal in vation activity by its phosphorylation, trimerization and
PCR with primers FI/R and F2/R was obtained, which nuclear translocation (17,18). We then looked at the

HSF1 is functionally activated during HIV-1 viral
infection
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trimerization of HSF1 by chemical cross-linking using
EGS followed by immunoblotting with monoclonal
HSF1 antibody (Figure 61). HSF1 was seen as an inactive
monomer in uninfected cells but upon infection it was pre-
dominantly present as a trimer (Figure 61). Furthermore,
immunostaining with phospho-HSF1 (S230) antibody
showed cytoplasmic localization of pHSF1 in uninfected
cells but following infection, it was predominantly local-
ized in the nucleus (Figure 6J). Notably, co-localization of
pHSF1 with DAPI was distinctly visible in infected Jurkat
cells (Figure 6J). This was further confirmed by immuno-
blotting of nuclear and cytoplasmic fraction of HIV-
I-infected Jurkat cells using pHSFI1(S230) antibody.
Phospho-HSF1 was predominantly observed in the cyto-
plasm of uninfected cells whereas most of it was present in
the nucleus of infected cells (Figure 6K). Put together all
these data clearly suggest that HSF1 is functionally
activated during HIV-1 infection and in turn regulates
HIV-1 gene expression and replication.
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HSF1 regulates HIV-1 gene expression and replication

Our observation of HSF1 induced HSP40 promoter and
LTR-driven gene expression led us to further investigate
whether expression of HSF1 directly modulates HIV-1
replication or virus production. We thus performed a
single cycle replication study in 293T cells by co-
transfecting pNL4-3 along with HSF1 and virus produc-
tion was analyzed in culture supernatants by p24 antigen
capture ELISA. HSF1 overexpression resulted in enhanced
virus production as compared to control cells (Figure 7A).
Similar result was also obtained with Jurkat cells, trans-
fected with HSF1 first, followed by infection with NL4-3
virus (Figure 7B). This finding was further validated by
looking at the effect of HSF1 silencing on virus produc-
tion. HSF1 silencing was followed by transfection with
pNL4-3 in 293T cells and infection in Jurkat cells and
virus production was analyzed by p24 ELISA assay.
HSF1 silencing in both 293T and Jurkat cells lead to sig-
nificant reduction in virus production (Figure 7C and D),
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Figure 7. HSF1 overexpression increases HIV-1 replication whereas it’s silencing leads to inhibition of HIV-1 replication. (A) HSF1 overexpression
increases virus production. Culture supernatants of 293T cells transfected with pNL4-3 and HSF1 vectors were analyzed for virus production using
p24 antigen capture ELISA. HSF1 overexpression is shown in the inset (B) HSF1 overexpression leads to increased virus production in HIV-1
NL4-3-infected Jurkat cells. (C) HSF1 downregulation reduces HIV-1 virus production. Culture supernatants from 293T cells co-transfected with
pNL4-3 and increasing concentrations of HSF1 siRNA were analyzed for virus production using p24 ELISA. Efficiency of gene silencing was
checked by RT-PCR (inset). (D) HSF1 silencing leads to inhibition of virus production in HIV-l-infected Jurkat cells. Jurkat cells were first
transfected with HSF1 siRNA followed by infection with NL4-3 virus. Cells were analyzed for HSF1 silencing by RT-PCR as shown in (inset)
and culture supernatant was used for p24 ELISA. The error bars represent the mean + SEM of two independent experiments. Statistical analysis was
performed using Student’s z-test, with the levels of significance defined as *P < 0.05.



clearly indicating the importance of HSF1 in the viral life
cycle.

Taken together, all these results indicate that HSF1
positively regulates HIV-1 gene expression and replication
by two distinct pathways. Firstly, it induces HSP40
promoter activity along with Nef and secondly it directly
interacts with HIV-1 LTR to induce viral gene expression
and replication.

DISCUSSION

Expression of HSP family members is modulated in
various disease conditions like cancer (37) and sepsis
(38). Acute infection of cells with viruses also induces ex-
pression of stress proteins (39,40). In case of acute HIV-1
infection modulation of HSP27 and HSP70, expression in
CD4" T cells have been reported earlier (6); however, the
molecular mechanism of this modulation remains obscure.
We have shown earlier that HSP40 is upregulated in pres-
ence of Nef (15). Here, we first confirm this Nef-dependent
phenomenon in HIV-1-infected T cells followed by the
identification of the mechanism. Normally the gene ex-
pression of HSPs is regulated by heat shock elements
(HSE) present on the promoter (41) and HSF protein,
which specifically bind to these HSE sequences and
enhance HSP gene expression (42). In case of HIV-1 in-
fection, there is one report showing Vpr-dependent modu-
lation of HSP27 expression through HSF1 (43). We report
here for the first time that Nef induces HSP40 expression
by forming a complex with HSF1. Nef, initially reported
to be a transcriptional repressor of HIV-1 LTR (9,44) has
been later shown to act as a positive regulator of LTR by a
variety of mechanisms (12,45). In our effort to understand
mechanistic details of Nef-dependent HSP40 upregula-
tion, we find that positive effect of Nef on HSP40 expres-
sion was mediated by its interaction with HSF1. As, HSF1
is known to regulate expression of HSPs by being re-
cruited on the promoter of HSPs, we also investigated
the recruitment of Nef on HSP40 promoter. Nef seems
to be recruited at HSE elements on HSP40 promoter
along with HSF1. This finding was further supported by
overexpression and gene silencing studies, where overex-
pression of HSF1 enhanced HSP40 expression in
Nef-dependent manner whereas its silencing resulted in in-
hibition of HSP40 promoter activity in presence of Nef.
Our results thus imply that the co-occupancy of Nef and
HSF1 on HSP40 promoter activates the promoter to
increase HSP40 expression in HIV-1-infected cells, which
in turn enhances viral gene expression and production as
elucidated earlier (15).

In addition to stress response, HSF1 is also reported to
be involved in developmental processes by regulating ex-
pression of some other genes like inflammatory cytokines
(46). It can act both as transcriptional activator as well as
repressor depending on the presence of HSE elements and
cohort of additional factors which it recruits (46). In view
of the role that HSF1 plays for regulating the transcrip-
tion of non-HSP genes, in second part of our study, we
have analyzed direct role of HSF1 in LTR-driven gene
expression. This study was also supported by several
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previous observations where activation of LTR-driven
gene expression was reported under hyperthermic condi-
tion (20-22). Suppression of HIV-1 LTR by a mutant
HSF has been also reported (47); however, the modulation
of LTR activity by HSF1 remains to be clearly elucidated.
Our transient transfection studies clearly show that HSF1
enhances Tat induced LTR-driven gene expression.
Furthermore, our studies with mutant LTR-luc constructs
indicate the role of enhancer region of the LTR in positive
regulation by HSF1. Computational analysis of HIV-1
LTR enhancer region resulted in identification of a
putative HSF1 binding site in this region. We then con-
firmed binding of HSF1 with the putative binding site
(=69 to —91) in the enhancer region on HIV-1 LTR
both in vitro and in vivo. Furthermore, enhanced expres-
sion of HSF1 observed in HIV-1-infected cells may play a
role in enhancing the positive effect of HSF1 on
LTR-driven gene expression.

The activation of HSF1 is associated with transition of
the monomeric inactive to trimeric active form and con-
comitant post-translational modification like phosphoryl-
ation and translocation into the nucleus (42). So to further
explore the mechanism of HSF1-driven LTR gene expres-
sion we have tried to correlate its LTR DNA binding
activity with the transcriptionally active state. We
observed that following HIV-1 infection, HSF1 not only
shows increased trimerization but also shows increased
phosphorylarion and nuclear re-localization in infected
cells. This functional activation seems to facilitate the
binding of HSF1 on both HSP40 promoter and LTR to
enhance viral gene expression. However, it is still unclear
how this binding activates the promoters. This binding
might induce some molecular and physical changes in
promoter at the chromatin level that allow binding of
some activator molecules to mediate activation as
observed in case of IL-6 gene, where the binding of
HSF1 on its promoter led to opening of chromatin for
binding of activator or repressor molecules (48). Future
studies on the molecular details of this phenomenon at
chromatin level may unravel novel mechanistic details
about HIV-1 gene regulation.

Activation of HSFI1-mediated stress response in
reaction to microbial infection is functionally important
for elevated expression of HSPs, which generally act as an
alert signal for host to elicit anti-microbial immune
response (49). We have attempted to understand the func-
tional relevance of increased HSF1 expression and activa-
tion during HIV infection and our results clearly show
that HSF 1 positively regulates HIV-1 gene expression
and replication as HSF1 overexpression enhanced viral
gene expression whereas its knockdown reduced virus pro-
duction. As regulation of HIV-1 gene expression involves
interplay between viral and cellular host factors, our
present study adds another complex layer of regulation
in HIV-1 gene expression by HSF1. In summary, we
conclude that HSF1 regulates viral replication by two
distinct pathways. It interacts with Nef and both are re-
cruited on the HSP40 promoter to enhance HSP40 expres-
sion in infected cells. HSP40 enhances viral replication by
binding to Cdk9 and modulating the activity of P-TEFb
(15). Second, it also regulates the viral transcription by
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Figure 8. Mechanistic model showing HSF1-mediated regulation of HIV-1 transcription and replication by two distinct pathways. First pathway
involves Nef-dependent activation of HSP40 promoter activity leading to increased viral gene expression as detailed in the text whereas the second
pathway involves Nef independent direct activation of HIV-1 LTR promoter activity to increase viral gene expression and replication.

directly interacting with newly identified HSF1 binding
site. on HIV-1 LTR independent of Nef (Figure 8).
Increased expression, hyper-phosphorylation and incr-
eased nuclear translocation of HSF1 in HIV-l-infected
cells contribute to its enhanced activity. So our present
work not only identifies HSF1 as a pro-viral cellular
factor but also provides a molecular mechanism for
HSF1-mediated enhancement of viral gene expression
and replication. Finally, the study also provides another
example of how HIV-1 uses host cell proteins for its suc-
cessful replication in the host and identifies a possible
anti-viral target for future studies.
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