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Styrene can be oxidised by TBHP to styrene oxide with high

selectivity/yield using barium oxide (with or without gallium

oxide support) as a simple, inexpensive and reusable solid

catalyst; compared to the other alkaline and rare earth metal

oxides, barium oxide showed a much better performance in the

styrene epoxidation.

Styrene oxide (which is an important organic intermediate in the

synthesis of fine chemicals and pharmaceuticals) is conventionally

produced by epoxidation of styrene using stoichiometric amounts

of peracid as an oxidizing agent.1 However, peracids are very

expensive, corrosive, hazardous to handle, non-selective for the

epoxide formation and also lead to formation of undesirable

products, creating voluminous waste. In order to overcome these

limitations, a number of studies have reported on the epoxidation

of styrene over easily separable solid catalysts, containing Ti,2–7 Fe

or V4 or nanosize-gold,8 using safer oxidizing agent, such as TBHP

(tertiary butylhydroperoxide)2,8 or H2O2.
3–7 With H2O2 as an

oxidizing agent, although the styrene conversion was high, the

selectivity for styrene oxide was very poor. Recently Choudhary

and coworkers9 used bohemite or alumina as a catalyst for the

selective epoxidation of styrene by anhydrous H2O2 with a

continuous removal of the reaction water. It is, therefore,

interesting to know whether other simple metal oxides, such as

alkaline and rare earth oxides have activity in the selective

epoxidation of styrene. The present work was undertaken for this

purpose. In this communication, we report, for the first time, the

use of a simple, inexpensive and reusable metal oxide, such as

BaO, for the selective epoxidation of styrene by TBHP with a very

good selectivity/yield for styrene oxide. However, the other alkaline

earth oxides and also rare earth oxides show a much lower

performance in the epoxidation.

The styrene epoxidation by anhydrous TBHP over commercial

BaO and other alkaline and rare earth metal oxides and

supported BaO [prepared by impregnating barium nitrate

(2 mmol g21(support)) on different supports (viz. SiO2, Ga2O3,

Al2O3, In2O3 and Si-MCM-41) by incipient wetness technique,

drying and calcining at 500 uC for 4 h] was carried out under

reflux, using a reaction mixture containing 10 mmol styrene,

15 mmol TBHP and 0.1 g of catalyst, by procedures described

earlier.8 Results of the epoxidation over the different catalysts are

presented in Tables 1 and 2.

The results in Table 1 reveal the following important

information:

(1) Among the alkaline earth metal oxides, the BaO catalyst

showed the best performance, i.e. the highest styrene oxide

selectivity (79%) and yield (32%) in the epoxidation.
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Table 1 Performance of different alkaline and rare earth metal oxides
for the epoxidation of styrene to styrene oxide by anhydrous TBHP
(SO = styrene oxide, PA = phenylacetaldehyde, Bzh = benzaldehyde,
OP = other products)

Catalyst

Conversion (%) Selectivity (%) SO
Yield
(%) TOFbStyrene TBHP SO PA Bzh OPa

Nil 7.5 16.5 11.0 7.7 1.7 81.7 0.8 —
MgO 15.9 28.0 19.8 7.0 4.9 68.2 3.2 1.1
CaO 0.9 45.3 — — — 100 $0.0 0.0
SrO 15.2 24.2 60.2 8.0 0.0 31.8 9.2 3.1
BaO 40.7 32.1 78.7 8.9 1.1 11.2 32.0 10.7
BaOc 33.1 26.0 78.5 9.0 1.0 11.5 26.0 10.8
La2O3 3.2 19.5 69.0 4.7 0.0 26.3 2.2 0.7
CeO2 28.7 52.4 38.9 6.0 4.2 50.7 11.2 3.7
Nd2O3 20.0 23.2 62.8 8.0 1.1 28.0 12.6 4.2
Sm2O3 9.8 14.2 48.6 5.2 0.0 46.1 4.8 1.6
Eu2O3 9.8 12.1 50.2 5.3 0.0 44.4 4.9 1.6
Gd2O3 15.7 16.0 60.0 10.8 0.0 29.0 9.4 3.1
Tb2O3 9.8 10.5 48.3 8.2 0.0 43.5 4.7 1.5
Er2O3 7.4 13.0 60.0 3.6 0.5 35.8 4.4 1.5
Yb2O3 10.9 21.7 4.1 2.9 0.0 88.3 0.4 0.1
a Benzoic acid and phenylacetic acid. b Defined as mmols of styrene
oxide formed per gram of catalyst per hour. c For its 5th reuse
(amount of catalyst used was 0.08 g).

Table 2 Performance of different supported BaO catalysts for the
epoxidation of styrene by anhydrous or aqueous TBHP

Catalyst

Conversion (%) Selectivity (%) SO
Yield
(%) TOFaStyrene TBHP SO PA Bzh OP

Epoxidation using anhydrous TBHP
BaO/SiO2 25.0 29.0 18.0 0.2 0.6 79.2 4.5 4.9
BaO/In2O3 23.6 28.6 36.2 3.8 2.0 58.0 8.5 9.2
BaO/Ga2O3 49.3 45.3 58.0 1.2 6.0 34.9 28.6 30.9
BaO/Ga2O3

b 42.2 38.9 58.3 1.1 55.8 34.8 24.6 31.8
BaO/Al2O3 25.5 40.2 30.0 8.7 1.3 60.0 7.7 8.3
BaO/Si-MCM-41 27.4 45.6 30.0 5.6 4.4 60.0 8.2 8.9
Epoxidation using aqueous TBHP
BaO/In2O3 31.0 38.3 40.2 6.8 0.3 52.7 12.5 13.5
BaO/Ga2O3 40.1 58.6 56.1 0.6 2.3 41.1 22.5 24.3
BaO/Al2O3 20.4 32.4 41.0 6.5 2.5 50.0 8.4 9.1
BaO/Si-MCM-41 30.8 48.0 36.2 3.1 2.7 58.0 11.1 12.0
a Defined as mmols of styrene oxide formed per gram of BaO
deposited on the support per hour. b For its 4th reuse (amount of
catalyst used was 0.085 g).
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(2) The CaO showed the lowest performance (high conversion

of TBHP but ,1% conversion of styrene). The observed high

conversion of TBHP is due to its decomposition over the catalyst

(with the evolution of oxygen) according to the reaction:

(CH3)3COOH A (CH3)3COH + 0.5O2 (1)

This catalyst in fact inhibits the styrene oxidation; even in the

absence of any catalyst, the styrene conversion is much higher than

that obtained in the presence of the CaO catalyst.

(3) The SrO catalyst also showed a good styrene oxide selectivity

(60.2%) but at a low conversion of styrene (15.2%).

(4) Among the rare earth metal oxides, the CeO2, Nd2O3 and

Gd2O3 catalysts showed a good performance in the epoxidation

of styrene. When comparing the styrene oxide yield, the three

catalysts showed a somewhat comparable performance. However,

they differed in their styrene conversion activity and epoxide

selectivity; the CeO2 catalyst was more active but less selective

for the epoxidation. Also, the Nd2O3 and Gd2O3 showed higher

styrene oxide selectivity (62.8 and 60%, respectively) but at a low

styrene conversion (20 and 15.7%, respectively).

(5) The Er2O3 and La2O3 also showed high epoxide selectivity

(60 and 69%, respectively) but at a very low conversion of styrene

(7.4 and 3.2%, respectively). The Yb2O3 showed very poor epoxide

selectivity and also low styrene conversion activity. The other rare

earth oxides Tb2O3, Sm2O3 and Eu2O3 catalysts showed good

epoxide selectivity (about 50%) but low styrene conversion activity

(,10% conversion).

The alkaline and rare earth metal oxides showed the following

order for their performance in the epoxidation (the value in

brackets shows the styrene oxide yield): BaO (32%) & Nd2O3

(12.6%) > CeO2 (11.2%) > Gd2O3 (9.4%) > Eu2O3, Sm2O3, Tb2O3

and Er2O3 (4.4–4.9%) > MgO (3.2%) > La2O3 (2.2%) > without

catalyst (0.8%) > Yb2O3 (0.4%) > CaO (0.0%).

Among the supported BaO catalysts (Table 2), the BaO/Ga2O3

showed the best performance (28.6% styrene oxide yield). It may

be noted that both the conversion and selectivity/yield were

more when anhydrous TBHP was used instead of aqueous TBHP.

However, in case of the other supported BaO catalysts, the

selectivity/yield was better for aqueous TBHP. Among the

different supports used for the supported BaO catalyst, Ga2O3

was found to be the best one, probably because of its redox

properties. The TOF for the BaO/Ga2O3 catalyst was much higher

[30.9 mmol g21(BaO) h21] than that observed for the BaO

(without support) catalyst [10.7 mmol g21(BaO) h21]. This is

expected most probably because of the finely dispersed BaO on the

support.

Both the Ga2O3-supported and unsupported BaO catalysts

showed excellent reusability in the epoxidation (Tables 1 and 2). It

is also interesting to note that the TOF of the BaO (without

support) catalyst (which is an inexpensive metal oxide) is quite

comparable to that [11–12 mmol g21(cat.) h21] of the very

expensive supported nanosize-gold,8 Ti/SiO2
3 and Ti–HMS10

catalysts, reported earlier for the styrene epoxidation by TBHP.

The very high activity of BaO, as compared to other alkaline

and rare earth metal oxides, may be attributed to the relatively

easier formation of barium peroxide species by the reaction of

barium oxide with TBHP, and its further reaction with styrene

(Scheme 1). Further work is necessary to understand/confirm the

reaction mechanism.

The epoxidation would be a totally green process if the oxidant

TBHP is replaced by H2O2 (which after consumption leaves

water as a side product) or, more preferably, by molecular oxygen.

Unfortunately, barium oxide is a highly basic metal oxide and

hence has high H2O2 decomposition activity. It showed almost no

epoxidation activity when molecular oxygen was used as an

oxidizing agent.

In summary, unsupported or Ga2O3-supported BaO is a highly

active and environmentally friendly (easily separable, reusable

and non-toxic) and also inexpensive catalyst for the difficult to

accomplish epoxidation of terminal alkenes, such as styrene, with

high conversion and selectivity/yield.
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