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Optimal control of vibrational transitions of HCl
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Abstract. Control of fundamental and overtone transitions of a vibration are studied for the diatomic molecule,
HCl. Specifically, the results of the effect of variation of the penalty factor on the physical attributes of the system
(i.e., probabilities) and pulse (i.e., amplitudes) considering three different pulse durations for each value of the
penalty factor are shown and discussed. We have employed the optimal control theory to obtain infrared pulses
for selective vibrational transitions. The optimization of initial guess field with Gaussian envelope, phrased as
maximization of cost functional, is done using the conjugate gradient method. The interaction of the field with the
molecule is treated within the semiclassical dipole approximation. The potential and the dipole moment functions
used in the calculations of control dynamics are obtained from high level ab-initio calculations.
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1. Introduction

Many phenomena in chemistry, such as bond breaking
and making, occur in ultrafast time-scale. The control
of energy flow in a relatively short time-scale (∼10 fs),
in a nuclear degree of freedom that causes a particular
relavant mode which involves bond breakage is a chal-
lenging task. Control of quantum phenomena using
lasers has been a long-standing dream since their inven-
tion way back in 1960 [1]. Lasers have the advantage of
depositing energy in a non-statistical fashion. Shaped
femtosecond laser pulses, due to technological advance-
ment of lasers, can be employed as a new class of reagents
to alter the course of chemical reactions. The applica-
tion of shaped pulses to control quantum processes has
been successfully shown in experiments [2–4].

Theoretically, the design of optimal pulses can be
formulated by utilizing the coherence property of laser
light to steer the dynamics of a quantum system [5].
The two broad approaches to design such optimal
pulses are the following. One approach in the time
domain, was by Tannor and Rice [6,7] and the other in
the frequency domain, by Brumer and Shapiro [8–10].
In the former approach, the frequencies, amplitudes
and phases of the pulse (train of pulses) are tailored
to steer the wave packet dynamically to reach the target

state. This scheme has been experimentally demonstra-
ted by Baumert and Gerber [11]. The latter approach
is based on the principle of quantum mechanical inter-
ference between coherent optical excitation of multiple
independent pathways and is demonstrated experimen-
tally by Gordon and coworkers [12]. A variant of the
Tannor–Rice scheme exploits control of amplitude,
phase and interference (which is local in time) by
pump–dump pulse seperation for the manipulation of
population dynamics [13]. This leads to the interfer-
ing pathways interpretation of pump–dump scheme.
Hence, pump–dump control can be viewed entirely
from the perspective of Brumer–Shapiro formulation.

The most general mathematical framework for con-
trolling the dynamics of a quantum system by design-
ing suitable laser fields is formulated as quantum
optimal control theory (QOCT) [14–16]. The control
schemes mentioned earlier are special cases of this gen-
eral theory. Within QOCT, both strong and weak field
limits can be handled. QOCT seeks the best solution
to a given problem under the stated goals with time-
dependent Schrödinger equation as quantum system
constraint along with other constraints. The problem
of designing a pulse is phrased in terms of optimiza-
tion of ‘cost functional’ which includes an objective
term defining the dynamical goal, a penalty term that
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accounts for minimization of laser fluence and a con-
straint to satisfy the dynamical equation of the system
interacting with the field.

Many H-abstraction reactions in chemistry involve
halides like HCl, HBr and HI. And they often need
to undergo coherent vibrational excitation to promote
the reaction (for instance, the late-barrier reactions in
chemistry require vibrationally hot reactant molecules
to have the reaction promoted) efficiently. This is the
general motivation to study HCl. The second point,
worth mentioning here, is that obtaining the correct
dipole moment function, ab-initio, at large distances is
difficult as one goes to higher halides. In this regard,
here we were able to calculate the same for the HCl
molecule and hence have made use of it to study vibra-
tional transitions. This makes the calculations more ri-
gourous and hence more useful in shaping infrared
pulses. We hope that this serves well as a prototype for
higher halides which participate in the kind of reactions
mentioned above.

Extensive exploration of numerical approaches in
developing iterative methods to solve quantum control
equations in the area of QOCT has been done by Zhu
et al [17]. Balint-kurti et al [18–20] used the conju-
gate gradient (CG) method [21] for optimization in the
control of vibrational excitation of H2 molecule where
polarization forces are taken into account. Recently,
studies of controlling HF fundamental and overtone
excitations using an iterative method, the CG, and
a genetic algorithm (GA) [22–24] have been applied
by Singh et al [25] and the results so obtained were
compared. Here, we employ the CG method for the
optimization of a cost functional within QOCT, for-
mulated by Rabitz and coworkers [14,15] to control
fundametal and overtone transitions using calculated
ab-initio potential and dipole moment functions and
the results of the effect of variation of the penalty factor
on the physical attributes of the system and on the pulse
shape for different time durations considered, are
analysed. This is not done in the previous vibrational
control of HCl molecule.

In this work, we carry out the calculation of optimal
pulses and analysis of their spectral content and
temporal profile within the framework of QOCT for
vibrational control of the HCl molecule for the following
transitions:

HCl(υ = 0) → HCl(υ = 1),

HCl(υ = 0) → HCl(υ = 2).

These calculations are done for three pulse durations,
i.e., 30000, 60000 and 90000 a.u., for a given value of

penalty factor. The suggested time-scales range from
subpicosecond to picosecond time-scales in real time.
Hence, the time-scales chosen are optimal guess to start
with, for these vibrational transition calculations.

2. Quantum optimal control theory

2.1 Formalism

We formulate the problem such that we seek a desired
value of an observable at t = T , by applying a field. In
a realistic system, the field is not deterministic. There
may be several sources of noise.

After the application of control field, ε(t), the Hamil-
tonian of the system can be written as follows:

Ĥ = Ĥ0 + V̂ − μ̂[ε(t) + η(t)], (1)

where μ̂ is an electric dipole operator and η(t) is a
noise term.

This is within semiclassical dipole approximation
[26,27].

The crucial step is to optimize a cost functional,
J [ε(t)], given by (atomic units are used throughout the
text, h̄ = 1)

J [ε(t)] = |〈ψi(T )|φf〉|2 − α0

∫ T

0
ε(t)2dt

−2Re

[∫ T

0
〈χf(t)| ∂

∂t
+ iĤ |ψi(t)〉

]
. (2)

The function ψi(t) is the initial wave function propa-
gated in time t by the optimal laser field, ε(t), and φf

is the target state specified at the final time, T. The func-
tion χf(t) can be regarded as a Lagrange multiplier
function introduced to assure satisfaction of the Schrö-
dinger equation. The factor α0 is a positive weighting
parameter to adjust the contribution of the radiation
energy to the functional.

The first term in eq. (2) refers to the transition proba-
bility. Second term is a penalty term for the electric
field strength with the weight α0. The last term ensures
the physics of the dynamics, the time-dependent
Schrödinger equation (TDSE), that should be followed
exactly.

Each of these terms depends explicitly or implicitly
on the unknown driving field, ε(t), and the goal is to
maximize J [ε(t)] by demanding (∂J [ε]/∂ε) = 0. Set-
ting the first-order variations of the cost functional with
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respect to χf(t), ψi(t), and ε(t) to zero yield, we get the
following nonlinear pulse design equations:
∂J

∂χf
= 0 ⇒ i

∂ψi(t)

∂t
= Ĥψi(t),

ψi(0) = φi, (3)
∂J

∂ψi
= 0 ⇒ i

∂χf(t)

∂t
= Ĥχf(t),

χf(T ) = 〈φf|ψi(T )〉|φf〉, (4)
∂J

∂ε
= 0 ⇒ α0ε(t) = −Im(〈χf(t)|μ|ψi(t)〉). (5)

The desired field can be obtained from eq. (5). The
numerical complexity of solving these equations arises
because eq. (3) gives the evolution of the initial state
in time. Equation (4) gives the magnitude of χ(t) at
t = T , and both are required at each point of time to
calculate the field. In general, these coupled differen-
tial equations should be solved iteratively due to their
nonlinear nature.

3. Conjugate gradient method

The laser field, ε(t), is given by
ε(t) = s(t)· ε0(t), (6)

where s(t) is the Gaussian envelope which ensures
smooth decay of the laser field ε(t) at initial and final
time and ε0(t) is a sinusoidal function. The envelope
function, s(t), implemented is given by

s(t) = exp
−(t − T/2)2

(T /4)2
, (7)

where T is the total time of pulse duration. The gradi-
ent of J with respect to ε0(t) at time t after k number of
iterations in the optimization cycle is written as

gk(t) = ∂J k

∂εk
0(t)

= −2s(t)

[
α0ε

k(t)−Im〈χ(t)| ∂Ĥ

∂εk(t)
|ψ(t)〉

]
. (8)

Both ψ(t) and χ(t) are propagated in time using the
split-operator technique [28,29]. The time evolution is
done in discrete time steps (ti). One can proceed to
search for the parameter space of the electric fields
ε(ti) that maximizes the cost functional value. Then
a line search is performed along the Polak–Ribiere–
Polyak search direction [30]. The search direction is
defined as follows:

dk(ti) = gk(ti) + λk· dk−1(ti), (9)

where the conjugate gradient parameter, λk , is given as

λk =
∑

i gk(ti)
T (gk(ti) − gk−1(ti))∑

i gk−1(ti)T gk−1(ti)
. (10)

Here, T indicates the transpose, k = 2,3,..., and d1(ti) =
g1(ti). During the line search, the search direction
dk(ti) is projected [31] to avoid higher values of ε(ti)

from the predefined range.
In order to achieve a pulse having simple frequency

structure, the frequency range of the laser pulse has to
be restricted within the specified range (ωmin : ωmax)
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Figure 1. Potential energy curve for HCl: Morse potential calculated by ab-initio CCSD method with aug-cc-pVTZ basis
set.
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Figure 2. Dipole moment curve for HCl: calculated by ab-initio CASSCF(8,8) method with aug-cc-pVTZ basis set.
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Figure 3. Optimized laser fields as a function of time (a1, b1 and c1), frequency spectra of the optimized laser fields (a2,
b2 and c2), population dynamics of vibrational states (a3, b3 and c3) and convergence of the transition probability, P, and the
cost functional, J, with the number of iterative steps involved in the optimization (a4, b4 and c4) are shown. Plots a5, b5 and
c5 show the overlap of laser-driven evolved probability density at the end of pulse duration (shown as the blue curve) with
the target probability density, for transition υ = 0 →1 for pulses of duration 30000, 60000 and 90000 a.u.; α0 is set as 1.0.
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Table 1. Results for fundamental transition (υ = 0→υ = 1)
for pulses of duration 30000, 60000 and 90000 a.u. for
α0 = 1.0, 0.1 and 0.01. P refers to the transition proba-
bility, J refers to the cost functional value, εpeak refers to the
value of maximum amplitude of the optimized laser field.
All quantities are in atomic units.

α0 Pulse duration (T) P J εpeak

30000 0.924 0.523 0.802×10−2

1.00 60000 0.982 0.783 0.323 ×10−2

90000 0.990 0.852 0.203×10−2

30000 0.998 0.943 0.883×10−2

0.10 60000 0.999 0.975 0.355×10−2

90000 0.999 0.983 0.241×10−2

30000 0.999 0.993 1.028×10−2

0.01 60000 0.999 0.997 0.505×10−2

90000 0.999 0.999 0.344×10−2

[32]. The frequency filtering is done with a 20th-order
Butterworth band-pass filter [33] by filtering the pro-
jected search direction,

h(ω)=
[(

1+
(ωmin

ω

)40
)(

1+
(

ω

ωmax

)40
)]−1/2

. (11)

The projected search direction is Fourier transformed
to obtain a function of frequency, and this function is
further multiplied by h(ω) and transformed back to the
time domain, which can be expressed as

dk
p,filter(t) =

∫
h(ω)Fω[dk

p(t)]e−iωtdω, (12)

where Fω[dk
p(t)] is the Fourier component at frequency

ω.
The updated electric field is expressed as

εk+1(ti) = εk(ti) + λs(ti)d
k
p,filter(ti), (13)

where λ is determined by the line search.
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Figure 4. Optimized laser fields as a function of time (a1, b1 and c1), frequency spectra of the optimized laser fields (a2,
b2 and c2), population dynamics of vibrational states (a3, b3 and c3) and convergence of the transition probability, P, and
the cost functional, J, with the number of iterative steps involved in the optimization (a4, b4 and c4) are shown. Plots a5, b5
and c5 show the overlap of laser-driven evolved probability density at the end of pulse duration (shown as the blue curve)
with the target probability density, for transition υ = 0 →1 for pulses of duration 30000, 60000 and 90000 a.u.; α0 is set
as 0.1.
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4. Model system and ab-initio calculations

HCl molecule in its ground electronic state is con-
sidered as the model system. Potential and dipole
moment functions are shown in figures 1 and 2, respec-
tively. They are obtained by plotting the data calculated
by ab-initio CCSD method with aug-cc-pVTZ basis
and CASSCF(8,8) method with aug-cc-pVTZ basis set,
respectively, using the Molpro suite of the program
package [34]. The ground and excited state potentials
are obtained by curve fitting as follows:

V (R) = De[1 − e−β(R−Re)]2, (14)

where De = 0.278475, Re = 2.412412037 and β =
0.918055 in a.u., and the dipole moment operator is
given as

μ(R) =
6∑

n=0

μnR
ne−σR2

, (15)

where μ0 to μ6 values are: 1.06511, −5.2444, 10.9834,
−10.7007, 5.51494, −1.43929, 0.159831, respectively,
and σ = 0.316883 (in a.u.).

4.1 One-dimensional treatment

For a simple one-dimensional treatment, it is assumed
that the HCl molecule is oriented along the direction
of the linearly polarized laser field. The molecular
Hamiltonian and the interaction Hamiltonian take the
following forms:

Ĥ0 = −1

2m

∂2

∂R2
+ V (R), (16)

Ĥint = −μ(R)· ε(t), (17)

where, V(R) and μ(R) are of the form given in eqs (14)
and (15), m is the reduced mass of HCl molecule and
ε(t) is the electric field amplitude.

5. Results and discussion

In this section, results for the population control of
the fundamental and overtone transition of the HCl
molecule from its ground vibrational state to the
desired target state are discussed within the dipole

0 10000 20000 30000

-0.005

0

0.005

0.01

0 20000 40000 60000

-0.004
-0.002

0
0.002
0.004
0.006

0 30000 60000 90000
-0.004

-0.002

0

0.002

0.004

2000 4000 6000 8000
0

10

20

30

40

2000 4000 6000 8000
0

15

30

45

60

2000 4000 6000 8000
0

15

30
45

60

0 10000 20000 30000
0

0.2
0.4
0.6
0.8

1

0 20000 40000 60000
0

0.2
0.4
0.6
0.8

1

0 30000 60000 90000
0

0.2
0.4
0.6
0.8

1

0 40 50 60

0.4

0.6

0.8

1

0 5 10 20 25 30
0.88

0.92

0.96

1

4 60 10 20 3 15 0 2 8 10
0.9

0.925

0.95

0.975

1

4 5
0

0.02

0.04

0 1 2 3 6 7 0 1 2 3 4 5
0

0.02

0.04

4 56 7 0 1 2 3 6 7
0

0.02

0.04

t (a.u.) t (a.u.)t (a.u.)

ω

|ε(
ω

)|

ω ω

  (
ar

bi
tr

ar
y 

un
it)

|ε(
ω

)|

|ε(
ω

)|  
(a

rb
itr

ar
y 

un
it)

  (
ar

bi
tr

ar
y 

un
it)

Po
pu

la
tio

n

Po
pu

la
tio

n

Po
pu

la
tio

n

t (a.u.) t (a.u.) t (a.u.)

Number of iteration steps Number of iteration steps Number of iteration steps

T
ra

ns
la

tio
n 

Pr
ob

ab
ili

ty
(P

)

T
ra

ns
la

tio
n 

Pr
ob

ab
ili

ty
(P

)

T
ra

ns
la

tio
n 

Pr
ob

ab
ili

ty
(P

)

C
os

t F
un

ct
io

na
l(

J)

C
os

t F
un

ct
io

na
l(

J)

C
os

t F
un

ct
io

na
l(

J)

Pr
ob

ab
ili

ty
 D

en
si

ty

Pr
ob

ab
ili

ty
 D

en
si

ty

Pr
ob

ab
ili

ty
 D

en
si

ty

R (a  ) R (a  ) R (a  )

Figure 5. Optimized laser fields as a function of time (a1, b1 and c1), frequency spectra of the optimized laser fields (a2,
b2 and c2), population dynamics of vibrational states (a3, b3 and c3) and convergence of the transition probability, P, and
the cost functional, J, with the number of iterative steps involved in the optimization (a4, b4 and c4) are shown. Plots a5, b5
and c5 show the overlap of laser-driven evolved probability density at the end of pulse duration (shown as the blue curve)
with the target probability density, for transition υ = 0→1 for pulses of duration 30000, 60000 and 90000 a.u.; α0 is set as
0.01.
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approximation. The Fourier grid Hamiltonian (FGH)
[35–37] method is used to compute the vibrational
energies and eigenfunctions of the model system.
The nuclear wave function is represented on a one-
dimensional grid along the internuclear coordinate, R;
its magnitude ranging from 0.530a0 to 6.031a0.

The initial guess laser field has the following form:

ε(t) = E0 sin(ωinitt) · s(t), (18)

where E0 is the field amplitude and ωinit= ωf − ωi cor-
responds to the frequency for transition from the initial
to the target vibrational state of the HCl molecule. The
factor, s(t), is a Gaussian envelope function (eq. (7))
to ensure smooth decay of the pulse and is preserved
during the optimization to design an experimentally
feasible pulse. In eq. (11), ωmin and ωmax are set as
10 and 10000 cm−1, respectively.

5.1 Fundamental transition: HCl(υ = 0)→
HCl(υ = 1)

Here, our goal is to design a suitable pulse at three
different time durations, i.e., for T = 30000, 60000

and 90000 a.u., that can selectively transfer the pop-
ulation from the initial vibrational state to the target
vibrational state. The initial guess amplitude, E0, and
the penalty factor, α0, are set as 0.005 a.u. and 1.0,
respectively.

In figure 3, plots a1, b1 and c1 show optimized elec-
tric fields as a function of time for pulse durations
30000, 60000 and 90000 a.u., respectively. It is clear
from the structure of the pulses that as we increase
the pulse duration the field amplitude decreases and
the shape of the pulse gets broadened in the time
domain, which is in accordance with the pulse-area
theorem [38,39]. The associated frequency spectra for
each pulse duration are shown in plots a2, b2 and c2. It
is clear that the plot c2 shows sharp peak at 3447 cm−1

compared to plot a2 and plot b2 at their respective tran-
sition frequencies. The population transfer dynamics
associated with the application of the pulse with dura-
tions 30000, 60000 and 90000 a.u., is shown in a3, b3
and c3 respectively. As time inceases, the population
is transferred to the target state from the initial state for
three pulse durations. During laser-driven dynamics,
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Figure 6. Optimized laser fields as a function of time (a1, b1 and c1), frequency spectra of the optimized laser fields (a2,
b2 and c2), population dynamics of vibrational states (a3, b3 and c3) and convergence of the transition probability, P, and
the cost functional, J, with the number of iterative steps involved in the optimization (a4, b4 and c4) are shown. Plots a5, b5
and c5 show the overlap of laser-driven evolved probability density at the end of pulse duration (shown as the blue curve)
with the target probability density, for transition υ = 0 →2 for pulses of duration 30000, 60000 and 90000 a.u.; α0 is set as 1.0.
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some of the population is transferred to the υ = 2 state,
considerably for the 30000 and 60000 a.u., pulses but
negligibly small for the 90000 a.u. pulse. However, at
the end of each pulse duration, 100% population trans-
fer occurs to the target state (i.e., υ = 1). The plots a4,
b4 and c4 show the variation in transition probability
and cost functional with iteration steps of optimization
for each duration of pulse considered, respectively. The
convergence of the algorithm is found to be faster for
the 30000 a.u. pulse duration. After a few steps, for
the application of 90000 a.u. pulse, the cost functional
converges to a value 0.85 (plot c4) which corresponds
to more than 99% population transfer.

The time evolution of the initial state probability den-
sities under the action of the three pulses is shown in
plots a5, b5 and c5 respectively at the end of their dura-
tion. They show good overlap for 30000 and 60000 a.u.
pulse and complete overlap for 90000 a.u. pulse with
target probability density at the final time, T, of each
pulse.

We show in table 1 and in figures 4 and 5, the effect
of penalty factor, α0, on transition probability, P, cost

functional value, J and the field peak amplitude, εpeak,
by setting its value as 0.10 and 0.01 respectively for
three pulse durations. It is observed that for α0 = 0.01,
the three pulses of duration 30000, 60000 and 90000
a.u. are almost equally efficient in transferring popula-
tion to the target state following an expected trend of
decrease in field amplitudes and increase in probability
densities and higher values of cost functional and its
faster convergence with the increase of time duration.
Exactly the same arguments would go through for α0 =
0.1 also, but with slightly less performance in driving
population to the target state, comparatively.

5.2 Overtone transition: HCl(υ = 0)→ HCl(υ = 2)

As for the fundamental transition, here too, we aim
to design suitable pulse for three different time-scales
of pulse duration that can achieve maximum population
transfer selectively to the target state. We observed that for
this transition, α0 plays a crucial role for all the three
time-scales in the design of optimal pulses. Here, in
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Figure 7. Optimized laser fields as a function of time (a1, b1 and c1), frequency spectra of the optimized laser fields (a2,
b2 and c2), population dynamics of vibrational states (a3, b3 and c3) and convergence of the transition probability, P, and
the cost functional, J, with the number of iterative steps involved in the optimization (a4, b4 and c4) are shown. Plots a5, b5
and c5 show the overlap of laser-driven evolved probability density at the end of pulse duration (shown as the blue curve)
with the target probability density, for transition υ = 0 →2 for pulses of duration 30000, 60000 and 90000 a.u.; α0 is set as 0.1.
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this case, for instance, setting α0 to 1.0 with amplitude,
E0 = 0.005 a.u. leads to an optimized field with sec-
ondary frequency structure and showing highly poor
performance in mimicking the initial state with the

target state. The results for α0 = 1.0 are shown in
figure 6.

As we decrease the penalty factor by a factor of 10 twice
successively and run the optimization calculations,
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Figure 8. Optimized laser fields as a function of time (a1, b1 and c1), frequency spectra of the optimized laser fields (a2,
b2 and c2), population dynamics of vibrational states (a3, b3 and c3) and convergence of the transition probability, P, and
the cost functional, J, with the number of iterative steps involved in the optimization (a4, b4 and c4) are shown. Plots a5, b5
and c5 show the overlap of laser-driven evolved probability density at the end of pulse duration (shown as the blue curve)
with the target probability density, for transition υ = 0 →2 for pulses of duration 30000, 60000 and 90000 a.u.; α0 is set as
0.01.

Table 2. Results for overtone transition (υ = 0 →υ = 2) for pulses of duration
30000, 60000 and 90000 a.u. for α0 = 1.0, 0.1 and 0.01. P refers to the transition
probability, J refers to the cost functional value, εpeak refers to the value of maximum
amplitude of the optimized laser field. All quantities are in atomic units.

α0 Pulse duration (T) P J εpeak

30000 4.8680 ×10−12 −9.4845 ×10−8 0.10622 ×10−6

1.00 60000 5.3980 ×10−10 −1.1048 ×10−7 6.8567 ×10−6

90000 1.04212 ×10−8 −1.6954 ×10−7 4.985 ×10−6

30000 0.9920 0.8385 2.43 ×10−2

0.10 60000 0.9991 0.9393 0.78 ×10−2

90000 0.9996 0.9618 0.48 ×10−2

30000 0.9996 0.9730 2.76 ×10−2

0.01 60000 0.9999 0.9935 0.83 ×10−2

90000 0.9999 0.9959 0.51 ×10−2
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we begin to see efficient population transfer to an
intermediate state (υ = 1) and a small amount to
the higher state (υ = 3) but with a fair amount of
population transference to the target state (υ = 2)
involved during the laser-driven dynamics for all three
time-scales. However, at the end of pulse durations, the
entire population is transferred to the target state. The
secondary structure of the frequency spectrum for each
pulse duration is fairly reduced for α0 = 0.01 and
0.1. However, the reduction of the secondary struc-
ture of frequency is better for α0 = 0.01, compared
to α0 = 0.1. The width in the peaks accounts for
involvement of other states during population transfer
dynamics. We can also observe that, as we decrease
the α0 value from 1.0, the pulse has complex temporal
behaviour for all three pulse durations considered.
The interesting fact observed for two α0 values, with
each involving three different time-scale pulses is
that, as pulse duration increases, the splitting of initial
Gaussian-enveloped pulse into a train of subpulses,
shows that excitation with a train of pulses is needed
to achieve maximum population transfer to the target
for overtone transition unlike fundamental transition.
It is clear that the pulse structure accounts for small
oscillations of population of the initial and the target
states, during the laser-driven dynamics. The effect
of oscillation of population is more pronounced for
90000 a.u. pulse for both α0 values, as is revealed by
its pulse stucture compared to 30000 and 60000 a.u.
However, it is much more pronounced for α0 = 0.01.
The results are shown in plots of figures 7 and 8 for
α0 = 0.1 and 0.01, respectively.

We show in table 2 and in figures 7 and 8, the effect
of α0 on the transition probability, P, the cost func-
tional, J, the field peak amplitudes, εpeak, by varying
its value to 1.0, 0.10 and 0.01, for three different pulse
durations for each value of α0. Here too, it is observed
that for α0 = 0.01, the three pulses of duration 30000,
60000 and 90000 a.u. are almost equally efficient in
transferring population to the target state, following
a trend in the amplitudes, the cost functional conver-
gence and the probability densities, as expected, as is
explained earlier in fundamental transition control.

6. Conclusions

Reliable optimized laser fields are obtained using the
CG method within the framework of QOCT by con-
sidering the calculated ab-initio potential and dipole
moment functions. As expected, we observed that for
each pulse duration considered, with decrease in the

value of the penalty factor α0, the field amplitude
increases. As we increase the pulse duration for a par-
ticular α0, for the transitions treated in the text, the
amplitude of field decreases. The results of the cost
functional convergence with the variation of the pe-
nalty factor for the pulse durations considered, clearly
illustrates the interplay of penalty factor and ampli-
tude term in the penalty function, (−α0

∫ T

0 ε(t)2dt),
with former always showing a dominating role. As we
increase the time duration for a particular α0, more
iterative steps are needed for the convergence of tran-
sition probabilities. It is almost 100% transfer for both
the transitions at the end of each pulse duration for
α0 = 0.1 and 0.01. The optimized fields obtained with
smooth switch on and off behaviour can possibly be
implemented experimentally with judicious choice of
other parameters such as α0, T and εpeak as discussed
in the text for respective transitions considered here.
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