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DISPERSAL: POPULATION CONSEQUENCES AND EVOLUTION

MapHAV GADGIL
The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138

Abstract. Most animal and plant populations are divided into a number of local popula-
tions with some dispersal of individuals from one site to another. A theoretical investigation
of the phenomenon of dispersal suggests the following consequences: Isolated and poorly
accessible sites will tend to become less crowded than an average site as a result of dispersal.
An episode of dispersal will result in uneven crowding at the various sites. Variation in the

degree of crowding resulting from dispersal will depress the total population size of a species
over its entire range. Variation in the carrying capacity with time will lead to an analogous
depression of the mean population size. Spatial variation in the carrying capacities of the
sites will favor a sensitive response leading to a rapid increase in the emigration rate with

crowding, while variation with

time will disfavor a response very sensitive to crowding.

Variation in space will favor the emigration of a small fraction of the population, while
variation in time will favor the emigration of a larger fraction.

Dispersal is one of the most important and amongst -

the least understood factors of population biology.
There has been a fair amount of work on gene flow
through populations (reviewed in Moran 1962), but
such work uniformly neglects population dynamics.
Skellam (1951) has considered the rate of spread
of epibiotics and Lidicker (1962) has some interest-
ing suggestions about population consequences of
dispersal. Cohen (1967) has investigated the proper-
ties of proximate factors which could serve as signals
to trigger seasonal migrations. Levins (1969b, 1970)
has recently published some very interesting work
on the basis of considerations of the number of sites
within the total range of a species which may be
occupied by local populations as a function of dis-
persal and extinction rates. He goes on to deduce
results on population control strategies and group
selection.

The stable statistical properties of the populations
subject to dispersal need to be investigated in much
greater depth. This paper is an attempt to explore
two aspects of this; the amount of crowding at any
site and the total population size of the species over
its entire range. The magnitude of the dispersal rate
and its density response have not been separated in
previous studies. The present investigation attempts
to relate the spatial and temporal heterogeneity in
the environment of the species to the evolution of
these two components of dispersal.

THE APPROACH TO CONSTRUCTION OF THEORY

The theory presented in this paper is based not on
a single model, but on a hierarchy of models. The
simpler models in the hierarchy are of course based
on more general assumptions. However, all the
models have two kinds of restrictions. We do not
consider the possibility of an organism indulging in
a search for a suitable site and accepting one when

1 Received April 29, 1970; accepted September 5, 1970.

it is unlikely that a continued search would take it
into a better site. Also, we do not take into account
the possibility of an organism physiologically detect-
ing an impending deterioration of its habitat. We will
continually refer to crowding, not in the sense of
population density by itself, but in the sense of pres-
sure on resources, expressed as the ratio of popula-
tion size to the carrying capacity of the habitat.

The simplest of the models is algebraic in form,
and is the most general, involving very few assump-
tions. It can, however, suggest results only about
crowding at the various sites. As more assumptions
are made, the models apply to fewer systems and
become more complex, but also yield a richer variety
of results about these systems. Thus the computer
simulations with a system of difference equations
represent a much more specific model, but yield
results about total population size and evolution of
dispersal rates as well as crowding. There is thus a
trade-off between the generality of a model and the
richness of its consequences. A more complex model
embodies assumptions which have to be chosen from
amongst several biologically interesting alternatives,
resulting in an array of analogous models. The ob-
vious solution is to investigate more than one analo-
gous model and compare their consequences so as
to isolate those results which have a greater gener-
ality than is implied by the restrictive assumptions of
a single model. This is why we present two different
models of regulation of total population, and base
the later discussion on results common to over 100
simulations, utilizing different relationships and pa-
rameters.

In addition there is always a possibility with the
more complex models that the results of the model
are a consequence, not of a desirable and interestil}g\
feature of the model but of an unimportant simpli-
fication. Therefore, any result of a complex model
should be considered of interest only when the fea-



254

ture of the model which yields that particular result
is identified as being an interesting feature. This is
why I have furnished extensive verbal interpretations
of all the theoretical results presented. I therefore
believe that the results presented in this paper, though
mostly derived from rather specific models, are quite
general with the exception of the two restrictive as-
sumptions mentioned above.

DISPERSAL AND CROWDING

Consider a species whose total population is made
up of g local populations occupying g sites over the
entire range of the species. Let N; be the size of the
ith local population, and k; the carrying capacity of
the ith site. We may define the degree of crowding
for the ith local population, ¢;, as:

0 = Ni/k;

Let us consider a single dispersal episode, such that
there is no addition to the population through births,
nor any deaths except those of dispersives over the
duration of the episode. Let «;N; be the total num-
ber of emigrants leaving site i. Further, let $;-N; be
the total number of immigrants arriving at site i.
Then the size of the local population at site i has
changed from N, to N;(1 —a;+ B;) as a result of
the dispersal episode. The degree of crowding at site
i has therefore changed from N,/k; to N;(1 —«; +
B;) /k;. If we designate the change in the degree of
crowding at site i by Ag;, then Ag; = N;(B; — «;) /k;.

An episode of dispersal may bring about signifi-
cant changes in the degree of crowding at the various
sites. Its simplest effect could be a general reduction
in crowding at all of the sites if the dispersives are
subject to high rates of mortality; i.e. if the term a
is much greater than 8. Under this condition, the
changes in crowding at different sites, Ap’s will vary
importantly with the differences in the fraction of
individuals emigrating, i.e. in «’s. Sites which are
located such that agents of dispersal have a strong
impact on them may become relatively less crowded
as a result of a greater fraction of their population
leaving them.

If the total number of immigrants arriving at a
site is comparable in magnitude with the population
left at the site after dispersal, i.e. if B is of the same
order as (1 — @), then immigration will also have a
significant effect on the degree of crowding at the
various sites. Isolated and poorly accessible sites may
be expected to resemble other sites in «’s, but to have
low B’s. Such sites will tend to become less crowded
than others.

Another interesting effect may arise if the ability
of a site to intercept dispersives is independent of,
or at least does not increase as rapidly as its carrying
capacity, k. Then the sites with higher carrying
capacities will receive a number of immigrants lower
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relative to their populations, i.e. will tend to have
smaller B’s. The sites with lower k’s will then tend
to become more crowded than the sites with higher
k’s. If this condition were to hold, then the lower
crowding at larger sites, i.e. sites with higher &, will
distribute a species more uniformly over its range
than the limiting agents determining its carrying ca-
pacity. If, on the other hand, the ability of a site to
intercept dispersives increases at a rate higher than
its k, then high %k sites will become more crowded
and low k sites less crowded as a result of dispersal.
Under these conditions, the species will be less uni-
formly distributed over its range than the limiting
agents determining its carrying capacity.

However, so long as the ability of interception of
dispersives by a site does not increase exactly in pro-
portion to its carrying capacity, a dispersal episode
will result in some sites becoming more crowded
than others. The first case, viz., that the ability of
interception increases less rapidly than k, has been
used in the models presented further on in the paper.
The conclusions from these models are, however, not
dependent on that particular assumption, but merely
on the more general consequence that dispersal
would result in uneven crowding of the various sites.

ToTAL POPULATION SIZE

The way in which the range of a species is divided
up into habitable sites is expected to be of significance
in determining the total population size of the species
in relation to the sum of the carrying capacities of
all the sites. We may distinguish three aspects of this
problem. Firstly, the total size of the range over
which the sites are distributed, widely separated or
close together; secondly, the number of local popula-
tions, few large or many small; and thirdly, the ex-
tent of variation in the accessibility, in isolation or
in the value of the carrying capacities of the various
sites; whether the various sites are more or less equal
or highly unequal in these respects. Territoriality will
introduce special effects not considered in the discus-
sion below.

Size of the range

The size of the range over which the sites are
distributed will have distinct effects on the total pop-
ulation size. The larger the size of the range, the
greater the distances that must be traversed by dis-
persives before reaching another site, and hence the
greater the chance of deaths during dispersal. This
stepping up of death rate should lead to a reduction
in the total population density. A possible experimen-
tal verification of this prediction is furnished by ngf-
faker’s (1958) studies on mite populations. Huffaker
cultured herbivorous mite species on oranges. The
experimental set-up comprised a number of oranges
interspersed with rubber balls on a tray. The amount
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of feeding area per orange was adjusted by coating a
part of the orange and leaving only a fraction of the
area exposed. He could thus adjust the total amount
of food made available on a single tray. The same
amount of food could be offered by exposing large
areas on a few oranges or small areas on many. The
size of the range could be adjusted by clumping the
oranges or distributing them widely amongst the rub-
ber balls. When a 2-orange feeding area was dis-
tributed over a 4-orange range the total population
density had a mean of about 8,000; when an equal
feeding area was distributed over a 40-orange range,
the mean total population density was reduced to
5,500. In both cases the number and feeding areas
of the sites were the same. Field studies of the pop-
ulations of the psyllid Cardiospina albitextura show

a similar pattern (Johnson 1969). This insect feeds

on leaves of Fucalyptus trees in Australia. The mean’
population density of the insect is higher when the
host trees are more closely planted.

In this context, Levins (pers. comm.) makes the
interesting suggestion that the decline in mean pop-
ulation density with increasing distance between sites
leads to a limiting density of local populations com-
patible with the species’ survival. Thus, the boundary
of a species might come at some threshold density
and could be quite a sharp boundary.

Number of sites

Even with the same size of the range, a given total
carrying capacity may be distributed amongst few
large or many small sites. If these sites do not vary
in accessibility, isolation or the value of %, the extent
of crowding is expected to be about equal for all
sites, with none very over- or undercrowded.

‘The extent of deaths during dispersal may depend
either on the mean distance between the different
sites, or on the total size of the range. In the former
case the total population size will be greater if the
same carrying capacity of the entire range is divided
up amongst more sites each with smaller k. In the
latter case, the total population size may be expected
to be independent of the number of sites. Huffaker’s
(1958) mites seem to exemplify the latter case. He
made available a total of 2 orange feeding areas
divided up equally amongst 4 large or 20 small areas
dispersed over an approximately equal range. The
mean total population density was about 5,500 in
both the cases.

Variation amongst sites

However, if the different sites vary in their acces-
sibility, isolation from other sites or in their k’s,
different local populations are expected to be crowded
to different extents with some under- and others
overcrowded relative to the average. The greater the
variation amongst the different sites in their accessi-
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bility, isolation or k, the greater will be the extent
of under- and overcrowding. It is therefore pertinent
to investigate how such under- or overcrowding of
the various local populations will affect the total
population size. We need to postulate some mech-
anism of population regulation in order to investigate
this problem. It is widely accepted that population
regulation must be negatively density dependent;
i.e. the growth rate of the population declines with
an increase in population size relative to k.

1 dN
'I—\f -at—- < f(N,k)

where f(N,k) is a monotonically decreasing function
of N/k. In particular, for the logistic model:

1 dN N
—_ ol ] ——
N dt k

In general, it is reasonable to assume that the de-
gree of regulation depends on N/k. But if the degree
of regulation (i.e. change in population size in terms
of the fraction of population size) is dependent on
N/k, the magnitude of regulation (i.e. the change in
terms of actual numbers) is dependent on N X (N/k)
= N2/k. Hence the magnitude of regulation is greater
for a given degree of overcrowding in comparison
with the same degree of undercrowding (where the
degree of under- or overcrowding is specified by
|1 — (N/k)|. This leads, as shown below, to the con-
sequence that overcrowding of some local populations
and undercrowding of others leads to the mainte-
nance of a total population size lower than the total
k.

This argument can be verified on the basis of two
different analytic models. The first model can be
represented by the following system of a pair of
coupled difference equations:

N,(t+1)=(1 — P1){N1(t)

+rN1(r)(1 _ N }

ky
+ Pz{Nz(t) + rNQ(t)(l ——Iy—?{(—t))} (1la)
2

No(t+1) = (1 —p2) {Nz(f)

v 1 N0
2
oo o (1= )L a
1

These equations represent the following model:
there exist two local populations between which or-\
ganisms may disperse. The generations are nonover-
lapping. The number of offspring produced is related
to the initial density for the local population in a
logistic fashion. A fraction p; of the offspring born
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disperses to the other local population, p; being char-
acteristic of a given local population. There are no
deaths during dispersal.

If we assume the system to be in a steady state,

N(t+ 1) =N(2).

For such a steady state situation it can be shown
that the total population (N; + N,) can never exceed
the total carrying capacity (k; + k), but can equal
it if and only if N, = k;” and Ny = k,, otherwise the
total population is less than the sum of k; and k,
and declines as k; and k, become more and more
unequal. Proof of this result is presented in Appen-
dix 1. Computer simulation of the behavior of a
similar system, but with the number of local popula-
tions greater than two showed that this result holds
in general for any number of local populations.

As suggested earlier, we consider it important to
verify that these results are not unique to the logistic
model. Therefore, we investigated a second model
which includes the possibility of deaths during dis-
persal. This model is represented by the following
system of equations:

Ny(t+ 1) = AN, (2) —thulz@-
1
+ hbcNL2(t) /us (2a)
Ny(t 4+ 1) = hNs(t) — hbN%(t) /us
+ hbeN2(t) /uy (2b)

This model assumes a constant birth rate (7). A
fraction of the offspring produced emigrates. This
fraction increases with the degree of crowding, u
being some linear function of the carrying capacity
of the site. The term (AbN2/u) represents this emi-
gration. A constant fraction (1 — ¢) of the emigrants
dies during dispersal; the survivors settle in the other
site. It is possible to show that for this system as
well the total number maintained at steady state
(N3 + N3) declines as the carrying capacities of the
sites become more disparate (see Appendix 2).

Summary.—Thus any undercrowding and over-
crowding which is very likely to result from dispersal
of organisms between different sites will depress the
total population size. The extent of such under- and
overcrowding will be greater, the greater the variation
between the sites. The reduction in the total popula-
tion size is therefore enhanced with an increase in
the variability amongst the sites.

Analogy of temporal variation

The effects of variation in k with time on the mean
population size are analogous to the effects of vari-
ation in k in space. Let us assume that there is only
one population with no emigration and immigration
and a logistic population control. Let k vary with
time such that it takes the values k(1) and k(2)
alternately. At steady state the population size will
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take two values, N(1) and N(2) at alternate time
intervals. Let N(1) be the population size when k
equals k(1) and N(2) when k equals k(2). Then:

_ N(1)

N(2) =N(1) + rN(l)(l — W (3a)
_ _N@)

N(1) =N(2) +rN(2)(1 __k(2) (3b)

This system gives rise to equations identical to
those arising from l1a and 1b. Hence it follows that
N(1) +N(2) = k(1) + k(2) and (N(1) +N(2))
decreases as k(1) becomes progressively different
from k(2) (see Appendix 3).

Summary.—Increasing variation in k with time
thus depresses the mean population size increasingly
below the mean k. For a more detailed discussion of
the effects of variation with time on population size,
see Levins (1969a).

EVOLUTION OF DISPERSIBILITY

So far we have considered the parameters of dis-
persibility as being given. We must now investigate
how these parameters themselves evolve. Any dis-
persive stage is very vulnerable to risks of death.
Hence, there must be some overriding advantages
which favor the tendency to disperse. Any increase
in vulnerability to death during dispersal would tend
to disfavor dispersibility. Thus, we find that the in-
cidence of dispersive pelagic larval phase decreases
in prosobranch mollusks and echinoderms as we pass
from the temperate lattitudes towards the poles. This
has been explained as a result of decrease in the time
over which larval food supply persists, rendering the
dispersive larval stages more vulnerable (Thorson
1936, 1950).

Crowding and fitness

In spite of the heavy toll of death exacted during
dispersal a very strong tendency to disperse obtains
in a large number of groups of plants and animals.
In a very general way, the factor favoring dispersal
would be the chance of colonizing a site more favor-
able than the one that is presently inhabited. In the
population dynamic formulation, such a more favor-
able site is defined to be one which is less crowded;
i.e. has a lower N/k ratio than the site presently in-
habited. An organism should disperse if the expected
gain from the chance of reaching a better site ex-
ceeds the expected loss from the risk of death during
dispersal or the chance of reaching a poorer habitat.
In many cases a mixed strategy of a proportion of
organisms staying on in the same habitat, while the
rest disperse could be the most advantageous stra{igy.

The model

The problem of determining the fittest strategy of
dispersal for some species for any specified environ-
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mental regime necessitates the investigation of a
model complex enough to be tractable only through
numerical experiments on a digital computer. Of
course, the quantitative predictions of such numer-
ical experiments are of no value, because no precise
quantitative estimates of the parameters of the model
are available for any natural populations, However,
the results of such numerical experiments can sug-
gest qualitative trends. Thus the fittest strategy of
dispersal may always change towards higher dispersal
rates when the amplitude of fluctuation in the k’s of
the various sites is increased. If such a trend holds
without exception in a large number of simulations
employing different sets of values for the parameters
of the model, it is reasonable to suspect such a trend
as being a rather general trend. Further, if one can
find an interpretation for the trend in very general
terms, one’s confidence in the validity of the trend is-
strengthened.

The model employed is one of competition amongst
poninterbreeding types which differ from each other
only in their strategy of dispersal, and are identical
in all other ways. The equations describing the model
are the difference form of competition equations,
modified to include dispersal, with all the competi-
tion coefficients equalling one. If there are g hab-
itable sites, and m competing types, the model is a
system of m X g difference equations of the follow-

ing type:

Nyt +1) =
§1 Ny;(2)
(1—py(O) | Ni(t) +rNz()\ 1 — %)____
13 Pis(®) * 2y | Nio(t) + rNio(2)
i
1= I N
X w1
k(1)
4)

where the first subscript denotes the type and the
second subscript the site for all doubly subscripted
variables and where

N,;(¢) = population size of ith type on site j at time ¢.

pi;(¢) = fraction of the local population of the ith
type dispersing from site j at time ¢.

k;(t) = carrying capacity of the site j at time ¢, as-
sumed to be equal for all types at that site for
any given time interval.

z,; = fraction of the dispersives leaving site s which
settle on site j. The value of z is assumed to be the
same for all types and at all times for any pair
of sites concerned.

r = intrinsic rate of natural increase, considered to
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be the same for all types, over all sites, for all time

intervals.

k, the carrying capacity is considered to vary both
with site and with time. In general, k£ for any site j
was considered to vary in the manner of a sine curve
with time.

ki(2) =y; - [1 +v; - sin (n(t — ¢;)/0)]  (5)
where 1 = v; = 0 for all j. Then y; specifies the mean
carrying capacity, and v; the amplitude of variation
in k; with time. ®, common to all k’s specifies the
frequency of fluctuation in the k’s. {; specifies the
difference in phase of fluctuations in &’s for the vari-
ous sites.

Z,; is the fraction of dispersers from site s reaching
site j. For most simulations z;; was taken .to be
(1/[g — 11) for all s and j, where s %= j. This implies
the assumption of no dispersal deaths and equal dis-
tance and accessibility for all the sites. However,
other assumptions, e.g. z a function of distance be-
tween sites disposed around a circle were tried out,
but led to no differences in the conclusions presented
below.

The most crucial part of the model is that pertain-
ing to rates of dispersal. The various types were
assumed to differ from each other in this respect.
The fraction of the local population of a type dis-
persing was given by the following expression:

m

pii(t) = a; (g§1 Nuj(t))/kj(t))“ (6)
where a; and x; are constants characteristic of the
type i. The dispersal response of any type is thus
specified by two component parameters: a is the
fraction of the population dispersing at any given
degree of crowding and takes values between zero
and one. It will be referred to as the magnitude of
dispersal. x specifies the response to crowding. Note
that the factor to which x serves as an exponent in
the expression (6) is the degree of crowding as de-
fined before, but now including the local populations
of all types at a site. When x = 0, a constant fraction
of the local population disperses. When x > 0 the
fraction dispersing increases with crowding. We ne-
glect the case of x < 0.

The complete equation derived by substituting the
equations (5) and (6) for ks and p’s in equation
(4) specifies the transition in the size of local pop-
ulation of one type, at one site, from one time inter-
val to the next. For each time transition we thus
need (mgq) such equations to completely specify the
system. Given these, and given all the initial values,
and the constraint that no population can take neg-
ative values, the simulations could be carried over as
many time intervals as desirable, We carried out a
large number of simulations for various sets of pa-
rameter values, initiating them with the local pop-
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ulations of each type equal in size over all the sites.
As any simulation progressed one of the several
competing types increased in population size, while
the others gradually decreased. The pattern was quite
smooth, with types having values of a and x closest
to the fittest type decreasing slowly, while those types
with values of a and x most different from the fittest
type decreasing most rapidly. Generally, the simula-
tions were carried over approximately one hundred
complete periods of fluctuation in & with time. By
this time, one of the types was clearly displacing all
others and the simulation was stopped.

A total of over 100 different simulations were thus
carried out, trying out a wide variety of parameter
sets. From these similations a very clear pattern of
the relation of fitness of type with certain magnitude
of dispersal and certain density response to the en-
vironmental regime could be discerned. This is the
pattern presented in Table 1.

TaBLE 1. Characteristics of the type with superior fitness
for different kinds of environmental regimes

Variability in space

Low High
High Sensitivity of Sensitivity of
response low; response medium;
magnitude of magnitude of
dispersal high dispersal medium
Variability in time
Low Sensitivity of Sensitivity of

response high;
magnitude of
dispersal low

response medium;
magnitude of
dispersal medium

I have omitted presenting the numerical results of
any simulation as serving no particular purpose, but
the mechanism at operation during the simulations
leading to the pattern presented in Table 1, is ex-
plained in the interpretations of the results which
make up the rest of this section.

Consequences of dispersal parameters

The rest of this section is devoted to presenting a
somewhat informal verbal interpretation of the re-
sults presented in Table 1, which themselves were
derived rigorously from the simulations explained
above. Results of these simulations are essentially
explicable on the basis of the role of parameters a
and x of equation (6) in determining the distribu-
tion of a given type in colonies with different de-
grees of crowding. Let us consider dispersal during
one time interval over which the values of k remain
constant. Firstly, let us compare two types with the
same value of x, but different values of a, a; and as
with a; > as. Let us for the purpose of all further
discussion assume that the various sites differ only
in k. Analogous results would follow if they differed
in accessibility or isolation instead. For our particular
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TasLE 2. Effect of magnitude of dispersal on the distri-
bution of type amongst more or less crowded sites

Type Site 1 2 3
all together Carrying capacity 300 600 900
Population before dispersal 300 600 900
P before dispersal 1 1 1
Population after dispersal 420 600 780
P after dispersal 1.4 1 0.87
Before Numbers 100 200 300
dispersal ~ Fractionb 17 .33 .5
18
After Numbers 175 200 225
dispersal ~ Fractionb .29 .33 .38
Before Numbers 100 200 300
dispersal ~ Fractionb 17 .33 .5
2a
After Numbers 130 200 270
dispersal ~ Fractionb .22 .33 .45
Before Numbers 100 200 300
dispersal ~ Fractionb 17 .33 b
3a
After Numbers 115 200 285
dispersal ~ Fractionb .19 .33 .48

ag=0 for type 1, 0.2 for type 2, 0.1 for type 3, =0 for all three types.
The distributions shown represent the outcome of a single dispersal episode, un-
complicated by births and deaths.

bFraction of the total population of a given type on that site. Dispersives
distribute themselves equally amongst the other two sites.

model the lower k sites should become more crowded
compared to higher k sites as a result of dispersal.
For a given distribution of k over the sites, this effect
will be more pronounced for a, than a,. The high
k sites become less crowded because they send off
relatively more emigrants than they receive immi-
grants. Since a higher a implies greater proportions
being sent off from each local population, this over-
and undercrowding of the various sites is more pro-
nounced. When a is very low, very few emigrate
and the numerical changes through dispersal are
quite small. Hence the over- and undercrowding fol-
lowing dispersal will also be very small. A more
pronounced overcrowding of low k sites and under-
crowding of high k sites implies a greater proportion
of the population in more crowded sites and a smaller
proportion in less crowded sites.

Summary.—Therefore a greater magnitude of dis-
persal leads to a greater proportion of the total pop-
ulation occupying more crowded sites provided that
k’s have remained unchanged. (See Table 2.)

The effect of higher values of x, i.e. more sensitive
density response is quite the opposite for small values
of x. A more sensitive response implies emigrating
in larger proportions with increasing crowding. This
can then serve as a corrective response leading to
equitable crowding. Very high values of x can %d
to tremendous emigrations with even slight over-
crowding and produce instabilities. We will deal only
with the range of moderate values of x from zero to
two. Over this range a higher x type ends with greater
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TaBLE 3. Effect of the sensitivity to density response on
the distribution of the population of a type amongst
more or less crowded sites

Type Site 1 2 3
A together Carrying capacity 100 200 300
Population before dispersal 160 200 240
P before dispersal 1.6 1 0.8
Population after dispersal 160 206 234
P after dispersal 1.6 1.03  0.78
Before Numbers 80 100 120
dispersal ~ Fractionb .27 .33 4
12
After Numbers 95 100 105
dispersal  FractionP .32 .33 .35
Before Numbers 80 100 120
dispersal ~ Fractionb .27 .33 4
28
After Numbers 65 106 129
dispersal ~ Fractionb .22 .35 .43

aThe distributions shown represent the outcome of a single dispersal episode
uncomplicated by births and deaths. @ = 0.5 for both types 1 and 2. & = 0 for
type 1 and z = 1 for type 2. 3 3 . 5

bI'raction of the total population of a given type on that site. Dispersives
distribute themselves equally amongst the other two colonies.

tendency to stay put in undercrowded and leave over-
crowded environments.

Summary.—Hence a more sensitive density re-
sponse leads to a greater proportion of the total
population occupying less crowded sites, provided
that k’s have remained unchanged. (See Table 3.)

Environment constant with time

As suggested above, a greater proportion of the
population occupying more crowded sites will imply
a lowering of fitness for that type. This is the result
of higher values of a and lower values of x for a
type, provided that k’s remain unchanged. The over-
crowding of certain sites, and undercrowding of
others is enhanced by an increase in the variation in
values of k for different sites. Hence the fitness of
higher ¢ and lower x types will be more drastically
lowered as the variation in k amongst the sites in-
creases. These conclusions were supported by the
results of simulations.

Summary.—Hence, selective forces will always fa-
vor a low magnitude of dispersal, but a more sensi-
tive density response in an environment constant with
time, These selective forces will be accentuated as
the environment, constant in time, becomes more
variable in space.

Variation with time in phase

The pattern is entirely different when variations in
k’s of different sites with time are taken into con-
sideration. With an environment variable in time, a
site which is very overcrowded in this time interval
may have its k markedly increased, and become a
very undercrowded site. On the other hand, a site
which is quite undercrowded may have its £ markedly
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decreased and become overcrowded. This will, how-
ever, not be the case if the k’s for various colonies
change in time, but completely in phase with each
other. In that case, all the sites may become more
or less crowded than previously but the relative de-
grees of crowding amongst the colonies will be main-
tained. In this case, the type which has the tendency
to maintain a greater proportion of its total popula-
tion in more crowded environments will continue to
do so and will be selected against. This conclusion
was supported by simulations.

Summary.—Therefore, selective forces will always
favor a low magnitude of dispersal, but a more sen-
sitive density response in an environment which
varies with time, but completely in phase over its
entire spatial range. These selective pressures will,
as for environment constant in time, be accentuated
as the environment becomes more variable in space
at any given time.

Variation with time out of phase

If, on the other hand the variation in k with time
is out of phase with each other for the various sites,
different results follow. In that case there are excel-
lent chances of a site which is undercrowded at this
time interval becoming overcrowded at the next, and
a site which is overcrowded at this time interval be-
coming undercrowded at the next. By dispersing an
organism can gain in the former eventuality and
lose in the latter. Since the fitness of an individual
is greater in the undercrowded colony, there is-apt
to be more gain from going away from an under-
crowed site of this time to another site, which, though
overcrowded now, may become undercrowded the
next time. The exact magnitude of this gain will
depend on the phase difference and the extent of
the variation of k between the different sites. The
only point to be made is that selective forces may
favor dispersibility, in contrast to environments con-
stant with time.

The degree of crowding in this time interval may
be correlated with crowding in the next time interval
sometimes negatively and sometimes positively in a
time-dependent environment. There may therefore be
no overall gain from a sensitive density response
prompting the organism to leave an overcrowded
environment more rapidly. The exact balance will
of course depend on the precise regime of the phase
difference in and the extent of variation of k with
time. The results from the simulations agree with
the expectation suggested above.

Summary—For a given distribution of mean k’s
(i.e. given y’s) for various colonies and for given
phase differences in the variation of k£ with time, se-
lective pressures favor an increasing magnitude of
dispersal and a decreasing sensitivity of density re-
sponse with an increase in the extent of variation
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in k with time (i.e. higher v’s). Also, for a given
regime of variation in k& with time (i.e. given v’s),
selective pressures favor a decreasing magnitude of
dispersal and a more sensitive density response with
an increase in the variability of mean k’s (higher
variance of y’s) for the various colonies. (See Table
1.)

Many naturalists have intuited (e.g. Southwood
1962) and Cohen (1967) has formally proven that
an increase in the variability of £ with time will favor
a higher magnitude of dispersal. Brown (1951) has
obtained excellent field evidence for this, showing
that the corixid water bugs of temporary water bodies
are much more dispersible than those belonging to
more permanent water bodies.

TESTS FOR NEW PREDICTIONS

The present study has led to five new conclusions
pertaining to dispersal:

(1) Variation in the carrying capacities of the
various sites in time and space reduces the total pop-
ulation size.

(2) An episode of dispersal results in more un-
even crowding at the various sites.

(3) A species which inhabits sites more variable
in their carrying capacities will tend to have a lower
dispersibility in terms of the proportion of the local
population at a site which emigrates during a time
interval.

(4) Such a species which inhabits sites more vari-
able in their carrying capacities will have a more
sensitive density response in dispersal; i.e. the pro-
portion of local population emigrating will rise more
rapidly with increase in crowding.

(5) A species inhabiting an environment more
variable in time will have a less sensitive density re-
sponse in dispersal.

1t should be possible to test these conclusions either
experimentally or in the field. Huffaker’s (1958) ex-
perimental setup with the oranges, rubber balls and
mites should be ideal for testing the first two conclu-
sions. Quantitative field studies of spatial distribution
of organisms have been very few indeed; the first two
conclusions could provide concrete, testable hypoth-
eses for such future studies. The most suitable sub-
jects for such studies would probably be provided by
inhabitants of disjunct habitat islands such as fresh-
water ponds. Conclusions (3) and (4) could be ap-
proached by a comparison of contrasting species,
some of which colonize habitat islands over a more
restricted size range of habitats than others. Thus
there may be groups of aquatic insects or molluscs
with some species restricted to only small or large
ponds and other species occurring over the entire
size range of ponds. The latter kind of species would
be expected to be less dispersible in terms of propor-
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tion emigrating, but more sensitive in their density
response. The sensitivity of density response could be
compared for species inhabiting more or less perma-
nent habitats in order to test the fifth conclusion. It
will be necessary to collect data on rates of immigra-
tion and emigration for a number of colonies of a
given species to arrive at any valid inferences about
the density response, though much more incomplete
data could allow interesting conclusions about the
magnitude of dispersal (e.g. Brown 1951). The vari-
ance of rates of emigration for a number of local
populations of a given species will increase with the
sensitivity of the density response of that species and
this statistic can be used to compare various species.
More elaborate experiments including artificial ma-
nipulation of densities will be necessary to specify the
form of the density response in greater detail.
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APPENDIX 1

For steady state, addition and subtraction of the
equations la and 1b yields

Nlﬁl Nllz-“—Ol
1“‘k1+2_k2-— (1c)

Ny
r(1 — 2p1)N1(1 — k—l')
Ny
—r(l— 2p2)N2(1 — 7{;—)

+ 2(peNe — p1Ny) =0 (1d)
Equation 1c can be solved to give N, in terms of N;.
ks + [ke® + 4N ko (1 — Nv/Ky) 1
= > (1e)

and

Ny

where only the positive root for N, has been retained.

Using (le)
(ky + kg) — (N1 + Np) =

1
T(mkl — Ny + ko]

— Ul + 4l (1 = N/ ) (1)

Note that the term 2(ky — N;) + k, can be ex-
pressed in terms of the quantity under the square
root as

[2(ky — N1) + kol =

N, ks \7*
[k22 + 4k2N1 1 I + 4(k1 - N1)2 1 +_"‘ ]
kl kl

(1g)
This implies that (ky + k2) — (N + N3) cannot
be negative since the first term in (1f) either exceeds
or equals the second. Moreover, from (1g) the two
terms are equal only if N; = k; which also implies
Ny, =k, from (1f). Thus the total population
(N; + N,) is less than or equal to the total carrying
capacity (k; + k). The point at which it equals
(ky + ky) is given by Ny = k;, Ny = k,. This point
N;=k;, Ny =k, is a solution of the set (lc, 1d)
if piky = poks. Any departure from this set of p; o,
ky, o will depress the total population below the value
(k1 + k2).

APPENDIX 2

At steady state, the equations 2a, 2b have the fol-

lowing solution for the case u; = u,
u;(h—1)

Ny =No=0""57p

(2¢)
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Let (u; + uy) be constant. Then the change in
total population (N; + N,) produced by changing
u; from this value of (u; + up)/2 is given at the
point (2c) by

O(Ny + Ns)
N2 N2
= (1——0)(—2--——1—)::0
Ug 1Z5%

Therefore the value u; = u, is an extremum for
N; + N,. Evaluating the second derivative at this
point
9%(N; + Nj)
aulz
N;2

aul Uy

_ -4 [6N1
AT

which is always negative. Thus (N; + Np) is max-
imum at u; = u, and any departure from this causes
a depression in the total population.

APPENDIX 3

At steady state, the equations 3a, 3b have the solu-
tion:

N(1) =NQ2) =k(1) =k(2) (3¢c)
for the case k(1) = k(2).
Let [k(1) 4+ k(2)] be constant. Then
O[N(1) + N(2)] _ 2-N(1) ON(1)
9 k(1) k(1) 2 k(1)
2:N(2)9N(2) [N(1)2 N(2)2
k(2) 2k(1) | k(1) "k(z)z] (3d)

At the point of equilibrium (3c) the above re-

duces to:
9[N(1) + N(2)] _ N(1)2 N(2)*®
d k(1) Tk(E k(D)2

=0

N(1)=N(2)

Hence this point is an extremum of the sum
[N(1) + N(2)] regarded as a function of k(1) where
[k(1) 4+ k(2)] is constant. Further differentiation of
(3d) yields:

2IN(1) +N(2)] _ —2 [oN() ,7*
D k(1)2 T k(1) L 2k(1) ]
2 [AN() 2

wnlarn 1] <0

Therefore, [N(1) + N(2)] is maximum at k(1) =
k(2) and any departure from this causes a depression
in the mean population.
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