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Dynamics of self-gravitating dust clouds and the formation of planetesimals
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Abstract

Due to the gravitational force, clouds of dust and gas in the interstellar medium can contract and form stars and planet systems. Here we show
that if the dust grains are electrically charged then the self-gravitation can be balanced by the “electrostatic pressure” and the collapse can be
halted. In this case, the dust cloud may form soft dust planets, having the weight of a small moon or satellite, but a radius larger than of our Sun.
There exist a critical mass beyond which the dust cloud collapses and forms a solid planet. We here present a simple model for the dynamics and
equilibrium of self-gravitating dust clouds and apply the model to typical parameters for dust in molecular clouds and in the interstellar medium.
© 2005 Elsevier B.V. All rights reserved.

PACS: 52.35.Hr; 52.65.Kj; 52.40.Db
It has become more and more clear that dust plays a cen-
tral role in the formation of stars and planets [1–5] and that
dust is abundant both in planetary rings in our Solar system
[6–8] and in the Earth’s atmosphere [9], as well as in lab-
oratory and processing plasmas [10,11]. The standard model
for the formation of a solar system is that a cloud of gas and
dust collapses to form a central star. Due to the angular mo-
mentum in the material, some of the material forms a proto-
planetary disk of dust and gas which spins around the star.
Dust and ice particles grow by agglomeration [12] or by col-
liding and sticking to each other. Eventually, larger objects are
formed which starts attracting material by their gravitational
forces. Observations of the young (20 Myr) star β Pictoris
reveal that it is surrounded by a dust disk which shows fea-
tures of ∼ 10 µm-sized crystalline silica and olivine grains
near the star, as well as of sub-µm dust grains in bands at a
distance of 6, 16 and 30 AU from the star [1]. It is believed
that most of this material has been generated from comets
and planetesimals after that the original proto-planetary disk
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was formed [13]. This might be an early stage of a Solar sys-
tem.

We here present a scenario which could lead to the forma-
tion of planets directly from interstellar dust without the initial
formation of a central star. This could happen if the dust cloud
has a mass of a satellite or of a small planet, i.e., much less
than the mass of a star. If the dust particles are immersed in
an ionized gas, they will be charged electrically—typically the
electric charge is negative due to the attachment of electrons
onto the grain surface [14]. Various turbulent processes in the
dilute interstellar medium [15] can produce density fluctuations
in the dust. The self-gravity in the dust then leads to an instabil-
ity [16–18] where the dust contracts into separate dust clouds in
space. When the negatively charged dust grains become densely
enough packed in the dust cloud, a large part of the electrons are
absorbed by the dust grains and there will be an overweight of
free positively charged ions compared to free electrons. A neg-
ative potential is then set up in the cloud that balances the ion
pressure and prevents the ions from escaping the dust cloud.
The Coulomb force on the dust due to this potential behaves
like an effective pressure force, i.e., it expels particles from the
regions of high density. Hence it balances the gravitational force
to halt the collapse of the dust cloud. In Fig. 1 we illustrate the
geometry of a dust cloud where the gravitational force acting on
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Fig. 1. The geometry of a spherically symmetric dust cloud with radius R. At
equilibrium, the attractive gravity force mdg acting on a dust grain is balanced
by the repulsive electric force qdE. Here, md and qd are the mass and electric
charge, respectively, of the dust grain, while g and E are the gravity and the
electric field, respectively.

the dust grains is balanced by the electric force. Based on this
physics, dust cloud equilibria have recently been constructed
[19]. Here we concentrate on the time dependent dynamics and
the stability of the dust cloud. It should be noted that these equi-
libria are strictly quasi-neutral and hence are different from the
earlier work where gravitation was balanced by the electric field
arising due to charge separation [16–18].

In a fluid description, the dynamics of a spherically symmet-
ric dust cloud can be described by the dimensionless continuity
and momentum equations
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respectively. Here Nd is the dust particle density, vr is the ra-
dial velocity of the dust particles, and r = √

x2 + y2 + z2 is the
radial coordinate. The spatial variables x, y, z and r have been
normalized by L = (a2T 3/4πGm2

dn0e
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tation constant is G = 6.67 × 10−8 cm3 s−2 g−1, the time t by
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2)1/2, the velocity vr by
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particle density Nd by n0e

2/aT , Z by T a/e2, the pressure-
like term P by n0T/md , the electric potential ϕ by T/e, the
gravitational potential ψ by aT 2/mde2, and the mass M by
M ′ = 4πmdn0e

2L3/aT . The gravitational potential ψ is given
by Poisson’s equation
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where the right-hand side represents the mass density of the
dust cloud which acts as a source for the gravitational potential.
The term P in Eq. (2) which we will denote the electrosta-
tic pressure arises from the electrostatic potential in the dust
Fig. 2. The electrostatic pressure P as a function of the dust number density Nd .
At low densities, the pressure depends on density as P = c2

1N
γ
d

with the effec-
tive “heat ratio” γ = 2, while for large dust densities, γ decreases.

cloud which balances the ion pressure. It is derived in the fol-
lowing manner. In the large-scale dust cloud, there will be a
quasi-neutral equilibrium where the charge density of the dust
will balance almost exactly the ones of the ions an electrons.
This can be expressed as Ni = ZdNd +Ne where the subscripts
“i” and “e” denotes ions and electrons, respectively. The coef-
ficient Zd represents the number of electrons attached to the
surface of the dust grain; it will vary with the density of the
dust grains, as discussed below. If the ions and electrons are in
thermal equilibrium with each other, their densities can be as-
sumed to obey a Boltzmann distribution, viz. Ne = exp(ϕ) and
Ni = exp(−ϕ), where ϕ is the normalized electrostatic poten-
tial. We thus have ZdNd = exp(−ϕ) − exp(ϕ) = −2sinh(ϕ).
The electric force acting on the dust fluid is related to the elec-
trostatic pressure P as

(4)F = ZdNd
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where P = 2[cosh(ϕ) − 1] enters into the first term of the
right-hand side of Eq. (2). The electrostatic potential ϕ is re-
lated directly to the background density Nd through the quasi-
neutrality condition mentioned above and the condition that the
dust grain should be in charge equilibrium with its surround-
ing, so that the net electric current to the dust grain vanishes.
By balancing the ion and electron currents, Ii + Ie = 0, one
can obtain a condition which relates the dust charge Zd to the
surface potential of the dust grain and to the potential of the
plasma surrounding the dust grain. Approximate formulas have
been derived by Havnes [20], which relate the electrostatic po-
tential ϕ to the dust number density via the rational function
ϕ = (c1Nd + c2N

2
d )/(1 + d1Nd + d2N

2
d ). Numerical values on

the constants are tabulated in Table 1 of Ref. [20] for a few
cases; here it is assumed that the plasma consists of electrons
and protons, and that dust charging by photoelectric effects can
be ignored, so that c1 = −1.26, c2 = −0.21, d1 = 1.04 and
d2 = 0.112. We note that the relation between P and Nd (via
the relation between ϕ and Nd ) constitutes an equation of state
in a similar manner as in thermodynamics. In Fig. 2, we have
plotted P as a function of Nd . For low dust particle densities,
Nd � 1, the electrostatic pressure depends on the dust density
as P = c2

1N
γ

d with the heat ratio γ = 2, while for large dust den-
sities, the pressure will increase more slowly with increasing
dust densities. In the language of thermodynamics, the heat ra-
tio γ will decrease from 2 to zero, and this will set a limit MAS
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Fig. 3. The dust particle number density (left panels) and gravity potential (right
panels) for the total cloud mass M = 1.95 (upper panels), M = 3.9 (middle
panels) and M = 4.90 (lower panels).

on the total mass of the dust cloud above which the electro-
static pressure cannot balance the gravitational force [19]. The
reason for the instability of the dust clouds with large masses is
that the dust grains become less electrically charged when they
are densely packed. An estimate for the charge state is given
by [20] Z = (a0 + a1Nd)/(1 + b1Nd + b2N

2
d ) with a0 = 2.5,

a1 = 0.764, b1 = 1.09 and b2 = 0.12, which is a decreasing
function of Nd . When the charge of the dust grains decreases,
the electric force acting on the dust grains weakens and can no
longer balance the gravitational force, with the result that the
dust cloud collapses and forms a small planet with a hard sur-
face.

An expression for the equilibrium (∂/∂t = 0 and vr = 0)
inside the dust cloud is obtained by setting the left-hand side
of Eq. (2) to zero, and taking the divergence of its right-hand
side. The result, after reordering of terms, is
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where the last equality comes from Eq. (3). In the limit of low
density (Nd � 1), we have the approximate equation of state
P = c2

1N
2
d and one can show that the exact solution of Eq. (5)

for this case is Nd(r) = Ncc1
√

2 sin(r/c1
√

2)/r , where Nc is
the peak value of Nd at the center of the dust cloud. From this
solution we see that the density goes to zero where r/c1

√
2 =

π , and we thus have the radius of the cloud R = c1π
√

2 ≈ 5.6.
For large densities, the equilibrium solutions are obtained

numerically. Fig. 3 displays the distributions of the dust den-
sity (left panels) and the gravitational potential (right panels)
for different masses M of the dust cloud, where the total dust
mass is obtained as the integral of the dust density over the
volume of the dust cloud, M = ∫ R

0 Ndr2 dr . Outside the dust
cloud (|r| > R) the gravitational potential has the exact solution
ψ = −M/|r| + const. The dust density is largest in the center
of the dust cloud, where the gravitational potential has its mini-
mum. At a radius r = R ≈ 5 we see that the dust density falls to
zero (indicated in the upper left panel). We observe from Fig. 3
that the density in the central core of the dust cloud becomes
more peaked for larger masses, while the radius of the dust
cloud remains almost constant, R ≈ 5, and we can conclude that
the typical radius of the dust cloud can be estimated by its linear
value for R = c1π

√
2. The mass M = 4.9 is close to a maxi-

mum value, which we will denote the critical mass of the dust
cloud, above which we could not find equilibrium solutions. In
Ref. [19], the time independent equations were solved and the
limiting value of the normalized mass was computed to be 0.85.
To convert this into the mass limit obtained in this Letter we
must multiply 0.85 with (

√
2c1)

3 on account of different length
normalization. For c1 = 1.26 we have 0.85(

√
2c1)

3 = 4.8. This
confirms the numerically evaluated mass limit (≈ 4.9) in the
present Letter.

Let us discuss a few scenarios with parameters typical for a
molecular cloud and the interstellar medium. The radius and
mass of the dust grains are taken to be a = 3.0 × 10−5 cm
and md = 2 × 10−13 g, respectively. In our model, we have
for simplicity assumed spherical dust grains that are equally
sized and have the same mass—in reality observations have
revealed that the size distribution obeys a power law in the
sub-µm range [21] and that they are irregularly shaped [22].
Typical parameter values for a molecular cloud is [23–25]
n0 = 10−3 cm−3 and T = 100 K, giving a typical length scale
L = 5 × 1010 cm, time scale t ′ = 1011 s (≈ 3000 years) and
mass scale M ′ = 1017 g. For the interstellar medium, typical
values are n0 = 0.1 cm−3 and T = 104 K, giving the length
scale L = 5 × 1012 cm, time scale t ′ = 1011 s and mass scale
M ′ = 1023 g. For the parameters relevant to a molecular cloud,
R = 5 corresponds to a radius of ≈ 2.5 × 1011 cm (≈ 3.5 so-
lar radii), while for the parameters relevant to a interstellar gas,
R = 5 corresponds to a radius of ≈ 2.3 × 1013 cm (≈ 1.6 AU).
The masses of the dense dust clouds range from ∼ 1017 to
∼ 1023 g, which is comparable with a satellite or a small
planet.

The time-dependent dynamics for a dust cloud of total mass
M = 1.95 is illustrated in Fig. 4. For this case, the dust cloud
exhibits damped pulsations, and after some time it reaches a
stable equilibrium. The pulsations have a periodicity in time
of Tp ≈ 33 corresponding to ≈ 105 years for the parameters
of the interstellar medium and molecular cloud. The collapse
of a dust cloud illustrated in Fig. 5, where we have taken the
mass M = 4.9, which is slightly below its critical mass. Here,
the dust cloud starts contracting slowly. At t ≈ 9, the core of
the dust cloud starts collapsing and we see a rapid increase of
the dust density in the center of the cloud. Due to the inertia
of the contracting dust cloud, it collapses even though its mass
is slightly below the critical mass. Our scenario for the forma-
tion of planetesimals is that the interstellar grains first undergo
a gravitational instability [16,18]. This instability saturates to
form tenuous, stable dust clouds of the type constructed here
with masses below the critical mass MAS. As more and more
charged dust falls into the dust clouds, some of them reach their
mass limits where they collapse and form planets with hard
surfaces. We can thus see the dust clouds as prestates of plan-
etesimals or satellites.
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Fig. 4. The time-dependent dynamics of a dust cloud, showing the initial and
final particle density distribution of the dust cloud (upper panel), the radial
dust particle density distribution Nd as a function of time (middle panel) and
the value of the particle distribution at the center of the cloud, Nc = Nd,r=0,
as a function of time (lower panel). The initial condition was taken to be
Nd = 0.181 sin(r/1.81)/r , giving the total mass M = 1.95.

Fig. 5. The collapse of a dust cloud. The radial density distribution of the dust
cloud at different times (upper panel), the radial dust particle density distribu-
tion Nd as a function of time (middle panel), and the value of the distribution
at the center of the cloud, Nc = Nd,r=0, as a function of time (lower panel).
The initial condition was taken to be Nd = 0.475 sin(r/1.81)/r , giving the total
mass M = 4.90.

In summary, we have here presented a study of the dynam-
ics of self-gravitating astrophysical dust clouds. For low-mass
dust clouds, the attractive gravitational force is balanced by the
repulsive electric force inside the dust cloud and a stable equi-
librium can be reached. However, the dust clouds have a critical
mass limit above which they collapse and form planetesimals
with hard surfaces. The physics of this mass-limit is similar to
Chandrasekhar’s mass-limit for black-holes and white dwarfs
[26]. Typical masses of the dust clouds are comparable with the
ones of satellites or small planets, while the sizes can be larger
than our Sun. Even though our model is simplified (we have
assumed only spherical symmetry, neglected that the dust has
a size distribution, etc.) it constitutes a first step towards un-
derstanding the dynamics and collapse of self-gravitating dust
clouds where the electrostatic force is as important as the grav-
itational force.
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