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We show that if X is a d-dimensional scheme of finite type over
an infinite perfect field k of characteristic p > 0, then Ki(X) = 0
and X is Ki-regular for i < −d − 2 whenever the resolution of
singularities holds over k. This proves the K -dimension conjecture
of Weibel [C. Weibel, K -theory and analytic isomorphisms, Invent.
Math. 61 (1980) 177–197, 2.9] (except for −d − 1 � i � −d − 2) in
all characteristics, assuming the resolution of singularities.
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1. Introduction

It is by now well known that the negative K -theory of singular schemes is non-zero in general and
bears a significant information about the nature of the singularity of the scheme. Hence it is a very
interesting question to know how much of the negative K -theory of a singular scheme can survive.
A beautiful answer was given in terms of the following very general conjecture of Weibel.

Conjecture 1.1. (See Weibel [23].) Let X be a Noetherian scheme of dimension d. Then Ki(X) = 0 for i < −d
and X is K−d-regular.

This conjecture was proved recently by Cortinas, Haesemeyer, Schlichting and Weibel [4, Theo-
rem 6.2] for schemes of finite type over a field of characteristic zero. If X is a scheme of finite type
over a field of positive characteristic, the above conjecture was proved by Weibel [24] provided the
dimension of X is at most two. Our aim in this paper is to prove the conjecture for a d-dimensional
scheme in the positive characteristic (except for i = −d − 1,−d − 2) assuming the resolution of sin-
gularities. A variety X in this paper will mean a scheme of finite type over a ground field k.
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Definition 1.2 (Resolution of singularities). We will say that the resolution of singularities holds over k
if given any equidimensional scheme X of finite type over k, there exists a sequence of monoidal
transformations

Xr → Xr−1 → ·· · → X1 → X0 = X

such that the following hold:

(i) the reduced subscheme X red
r is smooth over k,

(ii) the center Di of the monoidal transformation Xi+1 → Xi is smooth and connected and nowhere
dense in Xi .

The resolution of singularities holds over fields of characteristic zero by the work of Hironaka [11,
Theorem 1*]. For fields of positive characteristics, this problem is still not known though widely ex-
pected to be true. Recently, Hironaka [12] has outlined a complete program to solve this problem and
work on this program is in progress. We will assume throughout this paper that our ground field k is
an infinite perfect field of characteristic p > 0 and the resolution of singularities holds over k.

For a variety X over a field k, let X[T1, · · · , Tr] denote the polynomial extension X ⊗k k[T1, · · · , Tr]
over X . Recall that a variety X is said to be Ki -regular if the natural map Ki(X) → Ki(X[T1, · · · , Tr])
is an isomorphism for all r � 1, where Ki(X) is the ith stable homotopy group of the non-
connective spectrum K (X) of perfect complexes on X . We shall often write the polynomial extension
X[T1, · · · , Tr] in short as X[T ] in this paper, where r can be any natural number. It is known from a
result of Vorst [22, Corollary 2.1] that a scheme which is Ki -regular, is also K j-regular for j � i. For
an abelian group A, let A{p} denote the p-primary torsion subgroup of A. We now state the main
result of this paper.

Theorem 1.3. Assume that the resolution of singularities holds over k and let X be a variety of dimension d
over k. Then

(i) Ki(X,Z/n) = 0 for i < −d − 1 and for all n � 1.
(ii) K−d−2(X[T ]) is a divisible group and K−d−2(X[T ]) = K−d−2(X[T ]){p}.

(iii) Ki(X) = 0 and X is Ki -regular for i < −d − 2.

We now briefly describe the organization of this paper. We briefly review our main objects, the
topological cyclic homology and the cyclotomic trace map from the K -theory to the topological cyclic
homology in the next section. In Section 3, we prove the cdh-descent for the homotopy fiber of the
cyclotomic trace map using a characteristic p variant of Haesemeyer’s criterion [9]. This is used in
the next section to prove some vanishing results for the homotopy groups of this fiber. In Section 5,
we compare the Nisnevich and the cdh-cohomology of the sheaf of the first negative topological
cyclic homology using Witt vectors, and then prove some vanishing and homotopy invariance for the
homotopy groups of K (−,Z/pn). The main theorem is finally proved in the last section by combining
the vanishing of the negative K -theory with finite coefficients and with the rational coefficients.

To end this introduction, we mention that a few days after this paper appeared on the math arXiv
(cf. arXiv:0811.0302v1), Geisser and Hesselholt posted the joint paper [7], which also proves the main
result of this paper (including the case of i = −d − 1,−d − 2), except the K -regularity part of our
theorem.

2. K -theory and topological cyclic homology

In this section, we briefly recall the topological cyclic homology of rings and schemes and the
cyclotomic trace map from the K -theory to the topological cyclic homology. We will show in the next
section that the homotopy fiber of this trace map satisfies the descent for the cdh-topology.
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Let p be a fixed prime number. Let A be a commutative ring which is a Noetherian k-algebra,
where k is a perfect field of characteristic p. Recall from [5] that the topological Hochschild spectrum
T (A) is a symmetric S-spectrum, where S is the circle group. Let Cr ⊂ S be the cyclic subgroup of
order r. Then one defines

T Rn(A; p) = F
(
S/C pn−1

, T (A)
)S

to be the fixed point spectrum of the function spectrum F (S/C pn−1
, T (A)). There are the frobenius

and the restriction maps of spectra

F , R : T Rn(A; p) → T Rn−1(A; p).

The spectrum T Cn is defined as the homotopy equalizer of the maps F and R . That is,

T Cn(A; p) = eq
(
T Rn(A; p)

R,F−−→ T Rn(A; p)
)
,

and the topological cyclic homology spectrum T C(A; p) is defined as the homotopy limit

T C(A; p) = holim TCn(A; p).

One similarly defines

T R(A; p) = holim
R

TRn(A; p),

T F (A; p) = holim
F

TRn(A; p).

It was shown by Geisser and Hesselholt in [5] that the topological Hochschild and cyclic homol-
ogy satisfy descent for a Cartesian diagram of rings and they were able to define these homology
spectra for a Noetherian scheme X using the Thomason’s construction of the hypercohomology spec-
trum [18, 1.33]. Recently, Blumberg and Mandell [1] have made a significant progress in the study of
the topological Hochschild and cyclic homology of schemes. They globally define the spectrum T (X)

for a Noetherian scheme X as the topological Hochschild homology spectrum of the spectral category
D(Perf/X) which is the Thomason’s derived category of perfect complexes on X [19]. They then de-
fine the topological cyclic homology T C(X) spectrum in exactly the same way as above. They show
that their definition of these spectra coincides with the above definition for affine schemes. They also
prove the localization and the Zariski descent properties of the topological Hochschild and cyclic ho-
mology of schemes. We refer to [1] for more details. In this paper, the topological Hochschild and
cyclic homology of schemes will be considered in the sense of [1, Definitions 3.3, 3.7]. For any sym-
metric spectrum E and for n � 1, let E/pn denote the smash product of E with a mod pn Moore
spectrum Σ∞/pn .

Let K (X) denote the Thomason’s non-connective spectrum of the perfect complexes on X . For a
ring A, there is a cyclotomic trace map [2] of non-connective spectra

K/pn(A)
tr−→ T C/pn(A; p).

Since K -theory satisfies Zariski descent by [19] and so does the topological cyclic homology by [1],
taking the induced map on the Zariski hypercohomology spectra gives for any Noetherian scheme X ,
the cyclotomic trace map of spectra

K/pn(X)
tr−→ T C/pn(X; p). (2.1)
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Let Ln(X) denote the homotopy fiber of the trace map in (2.1). If Sch/k denotes the category of
varieties over k, then one gets a presheaf of homotopy fibrations of spectra on Sch/k

Ln → K/pn tr−→ T C/pn(−; p). (2.2)

3. cdh-Descent for Ln

We remind the reader that our ground field k in this paper is an infinite perfect field of character-
istic p > 0 which admits the resolution of singularities. We recall from [4] that a presheaf of spectra E
on the category Sch/k satisfies the Mayer–Vietoris property for a Cartesian square of schemes

Y ′ X ′

Y X

(3.1)

if applying E to this square results in a homotopy Cartesian square of spectra. We say that E satisfies
the Mayer–Vietoris property for a class of squares provided it satisfies this property for each square
in that class. One says that the presheaf of spectra E is invariant under infinitesimal extension if for any
affine scheme X and a closed subscheme Y of X defined by a sheaf of nilpotent ideals I , the spectrum
E (X, Y ) is contractible, where the latter is the homotopy fiber of the map E (X) → E (Y ). One says
that E satisfies the excision property if for any morphism of affine schemes f : Y → X and a sheaf of
ideals I on X such that I ∼= f∗ f ∗(I), the spectrum E (X, Y , I) is contractible, where E (X, Y , I) is
defined as the homotopy fiber of the map E (X, I) → E (Y , I). An elementary Nisnevich square is a
Cartesian square of schemes as above such that Y → X is an open embedding, X ′ → X is étale and
(X ′ − Y ′) → (X − Y ) is an isomorphism. Then one says that E satisfies Nisnevich descent if it satisfies
the Mayer–Vietoris property for all elementary Nisnevich squares.

We next recall from [4] (see also [21]) that a cd-structure on a small category C is a class P
of commutative squares in C that is closed under isomorphisms. Any such cd-structure defines a
topology on C . As k admits the resolution of singularities, the combined cd-structure on the cate-
gory Sch/k consists of all elementary Nisnevich squares and all abstract blow-ups, where an abstract
blow-up is a Cartesian square as in (3.1) such that Y → X is a closed embedding, X ′ → X is proper
and the induced map (X ′ − Y ′)red → (X − Y )red is an isomorphism. The topology generated by the
combined cd-structure is called the cdh-topology. Let Sm/k denote the category of smooth varieties
over k. Since the resolution of singularities holds over k, the restriction of the cd-structure to the cat-
egory Sm/k where abstract blow-ups are replaced by the smooth blow-ups is complete, bounded and
regular (cf. [21, Section 4]). The topology generated by this cd-structure on Sm/k is called the scdh-
topology. This is just the restriction of the cdh-topology on the subcategory Sm/k. In this paper, we
shall consider the local injective model structure on the category of presheaves of spectra on Sch/k
as described in [4].

For the local injective model structure on the category of presheaves of spectra on Sch/k with a
given Grothendieck topology C , a fibrant replacement of a presheaf of spectra E is a trivial cofibration
E → E ′ where E ′ is fibrant. We shall write such a fibrant replacement as HC (−, E ). We shall say
that E satisfies the cdh-descent if it satisfies the Mayer–Vietoris property for all elementary Nisnevich
squares and all abstract blow-ups. By [4, Theorem 3.4], this is equivalent to the assertion that the
map E → Hcdh(−, E ) is a global weak equivalence in the sense that E (X) → Hcdh(X, E ) is a weak
equivalence for all X ∈ Sch/k. Let a denote the natural morphism from the cdh-site to the Zariski site
on the category Sch/k. For any Zariski sheaf F , let acdh F denote the cdh-sheafification of F .

Theorem 3.1. Let E be a presheaf of spectra on Sch/k such that E satisfies excision, is invariant under in-
finitesimal extension, satisfies Nisnevich descent and satisfies the Mayer–Vietoris property for every blow-up
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along a regular closed embedding. Then E satisfies the cdh-descent. In particular, there is a strongly convergent
spectral sequence

E p,q
2 = H p(

Xcdh,acdhπq(E )
) ⇒ πq−p E (X),

where the differentials of the spectral sequence are dr : E p,q
r → E p+r,q+r−1

r .

Proof. The proof of this theorem is very similar to the proof of the analogous theorem in [4, Theo-
rem 3.12] when k has characteristic zero. We only give the brief sketch. As shown above, it suffices to
show that the map

E (X) → Hcdh(X, E ) (3.2)

is a weak equivalence for all varieties X over k. Since the scdh-topology on Sm/k is generated by
elementary Nisnevich squares and smooth blow-ups and since the closed embeddings of smooth va-
rieties are regular embeddings, we see that E satisfies the scdh-descent in Sm/k.

Now assume X is singular. As explained in [4], the argument goes as in the proof of Theorem 6.4
in [9]. The excision, invariance under infinitesimal extension and Nisnevich descent together imply
that E satisfies the Mayer–Vietoris property for closed covers and for finite abstract blow-ups. Now if
X is a hypersurface in a smooth scheme, we can follow the proof of Theorem 6.1 in [9] to conclude
that (3.2) holds for X since the resolution of singularities holds over k, which is also perfect and
infinite. If X is a complete intersection inside a smooth k-scheme, then we can use the hypersurface
case, the Mayer–Vietoris for the closed covers and an induction on the embedding dimension of X to
conclude (3.2) for X . The general case follows from this as shown in [9, Theorem 6.4]. The spectral
sequence now follows from [9, Theorem 2.8] since the cdh-cohomological dimension of X is bounded
by its Krull dimension by [17, Theorem 12.5]. �
Corollary 3.2. The presheaf of spectra Ln (cf. (2.2)) satisfies the cdh-descent.

Proof. We need to show that Ln satisfies all the conditions of Theorem 3.1. We have the homotopy
fibration of presheaves of spectra

Ln → K/pn → T C/pn(−; p).

The fact that Ln satisfies excision was proved by Geisser–Hesselholt [6, Theorem 1]. The invariance
of Ln under infinitesimal extension was proved by McCarthy [16, Main Theorem]. Next we show that
Ln satisfies Nisnevich descent. K/pn satisfies Nisnevich descent by [19, Theorem 10.8]. T C/pn(−; p)

satisfies Nisnevich descent by [5, Corollary 3.3.4] and by the agreement of the definition of the topo-
logical cyclic homology as given in [5] with that of [1] since the topological cyclic homology of [1]
satisfies the Zariski descent (see the discussion in Remark 3.3.5 of [5]). We now consider the following
commutative diagram of spectra for a given variety X .

Ln(X) K/pn(X) T C/pn(X; p)

HNis(X, Ln) HNis(X, K/pn) HNis(X, T C/pn(−; p))

(3.3)

Since the top row in the above diagram is a homotopy fibration and the bottom row is a fibrant
replacement of the top row, the bottom row is also a homotopy fibration (cf. [18, 1.35], see also [4,
Section 5]). Now, since the middle and the right vertical maps are weak equivalences, we see that
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the left vertical map is also a weak equivalence. This verifies the Nisnevich descent for Ln . Finally,
Ln satisfies the Mayer–Vietoris property for the blow-up along regular closed embeddings by [1, The-
orem 1.4]. We conclude from Theorem 3.1 that Ln satisfies cdh-descent. �
Corollary 3.3. Let K H denote the presheaf of homotopy invariant K -theory on Sch/k (cf. [25]). Then K H sat-
isfies cdh-descent on Sch/k.

Proof. The presheaf of spectra K H satisfies excision by [25, Corollary 2.2], it satisfies invariance un-
der infinitesimal extension by [25, Theorem 2.3]. The Nisnevich descent for K H follows from the
analogous property of K -theory [19, Theorem 10.8] and the spectral sequence [25, Theorem 1.3]

E1
p,q = N p Kq(X) ⇒ K H p+q(X).

It satisfies the Meyer–Vietoris property for blow-up under regular closed embeddings by [9, Theo-
rem 3.6]. The corollary now follows from Theorem 3.1. �
4. Vanishing and homotopy invariance for Ln

Following [4], we let C̃ j E denote the homotopy cofiber of the natural map E → E (− × A j) for any
presheaf of spectra E on Sch/k. Note that E (− × A j) is a canonical direct sum of E and C̃ j E and
hence the functor C̃ j preserves the homotopy fibration sequences. In particular, we get a presheaf of
fibration sequences

C̃ j L
n → C̃ j K/pn → C̃ j T C/pn(−; p). (4.1)

Furthermore, since Ln and Ln(− × A j) satisfy cdh-descent by Corollary 3.2, we see that C̃ j Ln also
satisfies cdh-descent. For a presheaf of spectra E on Sch/k, let Ei (or πi(E)) denote the presheaf
of ith stable homotopy groups of E .

Lemma 4.1. For a d-dimensional variety X over k, one has Ln
i (X) = 0 = πi C̃ j Ln(X) for all j � 0 and i <

−d − 2.

Proof. Using Theorem 3.1 and Corollary 3.2 and [17, Theorem 12.5], it suffices to show that acdhπi(Ln)

and acdhπi(C̃ j Ln) are zero for i < −2. The presheaf of fibration sequences (2.2) gives the long exact
sequence of presheaves of homotopy groups on Sch/k

· · · → Ln
i → K/pn

i → T C/pn
i(−; p) → Ln

i−1 → ·· · .
Since the sheafification is an exact functor, we get the corresponding long exact sequence of cdh-
sheaves

· · · → acdh Ln
i → acdh K/pn

i → acdh T C/pn
i(−; p) → acdh Ln

i−1 → ·· · . (4.2)

We similarly get a long exact sequence of cdh-sheaves

· · · → acdhπi
(
C̃ j L

n) → acdhπi
(
C̃ j K/pn) → acdhπi

(
C̃ j T C/pn(−; p)

)

→ acdhπi−1
(
C̃ j L

n) → ·· · . (4.3)

Since the smooth schemes have no non-zero negative K -theory, we have acdh K/pn
i = 0 for i < 0 and

hence there are isomorphisms



2124 A. Krishna / Journal of Algebra 322 (2009) 2118–2130
acdh T C/pn
i(−; p)

∼=−→ acdh Ln
i−1 and

acdhπi
(
C̃ j T C/pn(−; p)

) ∼=−→ acdhπi−1
(
C̃ j L

n) for i < 0. (4.4)

Thus it suffices to show that the left terms of both the isomorphisms vanish for i < −1. For this, it
suffices to show that T Ci(A; p,Z/pn) = 0 for i < −1 for any commutative Noetherian k-algebra A.
One knows from a result of Hesselholt (cf. [10], see also [5, Section 3]) that T Ci(A; p) = 0 for i < −1
and the same conclusion then holds with finite coefficients by the exact sequence

T Ci(A; p) → T Ci
(

A; p,Z/pn) → T Ci−1(A; p). �
Lemma 4.2. Let X be a k-variety of dimension d. Then there are natural isomorphisms

Hd(XC ,aCπ−1
(
T C/pn(−; p)

)) ∼=−→ Hd+1
C

(
X, T C/pn(−; p)

)
, (4.5)

Hd(XC ,aCπ−1
(
C̃ j T C/pn(−; p)

)) ∼=−→ Hd+1
C

(
X, C̃ j T C/pn(−; p)

)
and

Hi
C
(

X, T C/pn(−; p)
) = 0 = Hi

C
(

X, C̃ j T C/pn(−; p)
)

(4.6)

for i � d + 2, where C is any of Zariski, Nisnevich and cdh sites. The above results also hold for the presheaf of
spectra T C(−; p).

Proof. Since the Zariski, Nisnevich, or the cdh-cohomological dimension of X is bounded by d, one
has a strongly convergent spectral sequence

Es,t
2 = Hs(XC ,aCπt

(
T C/pn(−; p)

)) ⇒ Hs−t
C

(
X, T C/pn(−; p)

)
(4.7)

and the similar spectral sequence holds for the homotopy groups of the C̃ j functors.
Since T Ci(A; p) = 0 for any ring A and for any i < −1 as mentioned above, we conclude that for

s < d, one has −d − 1 + s < −1 and hence

Hs(XC ,aCπ−d−1+s
(
T C/pn(−; p)

)) = 0 = Hs(XC ,aCπ−d−1+s
(
C̃ j T C/pn(−; p)

))

and also Ed−2,−2
2 = 0. Hence the above spectral sequence degenerates enough to give the desired

isomorphisms in (4.5). The spectral sequence (4.7) and the vanishing of T C�−2(A; p) also prove (4.6)
at once. The same proof works for T C(−; p) as well. �
Lemma 4.3. Let X be as in Lemma 4.2. Then the natural maps

Hd(Xcdh,acdhπ−2
(
Ln)) → Hd+2

cdh

(
X, Ln)

,

Hd(Xcdh,acdhπ−2
(
C̃ j L

n)) → Hd+2
cdh

(
X, C̃ j Ln)

are isomorphisms.

Proof. Since the smooth schemes have no negative K -theory, we have acdh K/pn
i = 0 for i < 0. We

have also seen above that acdh T C/pn
i(−; p) = 0 for i < −1, and the same vanishing holds for the

homotopy groups of the C̃ j -functors. We conclude from the exact sequences (4.2) and (4.3) that
acdh Ln

i = 0 = acdhπi(C̃ j Ln) for i < −2. The spectral sequence (4.7) now implies the lemma. �
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5. Vanishing and homotopy invariance for K/pn

In this section, we prove the vanishing results for some negative homotopy groups of K/pn and
C̃ j K/pn using the results of the previous section. Recall from Section 2 that T C• = {T Cn} is an inverse
system of presheaves of spectra on Sch/k. For a k-variety X , let W O X denote the sheaf of Witt vectors
on X (cf. [13]). The sheaf W O is a sheaf of rings on the category Sch/k.

Lemma 5.1. Let X = Spec(A) be a scheme of dimension d, where A is a commutative Noetherian k-algebra.
Then one has

Hd
cont

(
XC ,aC T C•−1(−; p)

) = 0 = Hd
cont

(
XC ,aCπ−1

(
C̃ j T C•−1(−; p)

))

whenever C is any of the Zariski, Nisnevich and the cdh sites, where the terms are the continuous cohomology
in the sense of Jannsen [14].

Proof. The continuous cohomology are related to the ordinary cohomology via the exact sequence

0 → lim←−
1 Hs−1(XC ,aC T Cn

t (−; p)
) → Hs

cont

(
XC ,aC T C•

t (−; p)
)

→ lim←− Hs(XC ,aC T Cn
t (−; p)

) → 0. (5.1)

Thus it suffices to prove that the inverse system {Hd(XC ,aC T Cn−1(−; p))} is zero and {Hd−1(XC ,

aC T Cn−1(−; p))} satisfies the Mittag–Leffler condition, and same for the cohomology of the sheaves
aC π−1(C̃ j T Cn(−; p)).

The exact sequences of sheaves on Sch/k

0 → O → Wn O → Wn−1 O → 0, (5.2)

Wn O 1−F−−→ Wn O → T Cn−1(−; p) → 0 (5.3)

give us an exact sequence of sheaves

aC T C1−1(−; p) → aC T Cn−1(−; p) → aC T Cn−1
−1 (−; p) → 0. (5.4)

We claim that Hd(XC ,aC T Cn−1(−; p)) = 0 for all n � 1. It suffices to show using (5.3) and the right

exactness of Hd that Hd(XC ,aC Wn O X ) = 0 for all n � 1. For n = 1, this is proved in [4, Theorem 6.1].
We remark here that Theorem 6.1 of [4] is proved when the base field is of characteristic zero. How-
ever exactly the same argument works even if k is of positive characteristic as long as the resolution
of singularities holds over k, which we have assumed throughout. Only extra ingredients needed are
the results of [20] and the formal function theorem which are characteristic free. We refer to [20] for
details of the proof. For n � 2, the claim follows from the exact sequence (5.2), the right exactness
of Hd and an induction on n.

Now the exact sequence (5.4) gives the cohomology exact sequence

Hd−1(XC ,aC T Cn
−1(−; p)

) → Hd−1(XC ,aC T Cn−1
−1 (−; p)

) → F → 0,

where the last term F is a quotient of Hd(XC ,aC T C1−1(−; p)) and hence is zero by the above claim.

We conclude that the inverse system {Hd(XC ,aC T Cn−1(−; p))} is zero and {Hd−1(XC ,aC T Cn−1(−; p))}
satisfies the Mittag–Leffler condition.

To prove the above conclusion for the cohomology of the sheaves aC π−1(C̃ j T Cn(−; p)), we use
exactly the same steps as above to reduce to showing that Hd(XC ,aC π−1(C̃ j T Cn(−; p))) = 0 for all
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n � 1. For n = 1, we use (5.3) to see that aC π−1(C̃ j T C1(−; p)) is of the form aC T C1−1(−; p) ⊗Fp V ,
for some Fp-vector space V , and hence

Hd(XC ,aCπ−1
(
C̃ j T C1(−; p)

)) = Hd(XC ,aC T C1−1(−; p)
) ⊗Fp V = 0.

The general case now follows from induction as above. �
Lemma 5.2. Let X be as in Lemma 5.1. Then one has

Hd(Xcdh,acdhπ−1
(
T C/pn(−; p)

)) = 0 = Hd(Xcdh,acdhπ−1
(
C̃ j T C/pn(−; p)

))
.

Proof. As the fibrant replacement preserves the homotopy fibration, we have an exact sequence

Hd+1
cdh

(
X, T C(−; p)

) → Hd+1
cdh

(
X, T C/pn(−; p)

) → Hd+2
cdh

(
X, T C(−; p)

)
.

Combining this with Lemma 4.2, we are reduced to proving that

Hd+1
cdh

(
X, T C(−; p)

) = 0 = Hd+1
cdh

(
X, C̃ j T C(−; p)

)
. (5.5)

Recall from Section 2 that T C(−; p) = holim T Cn(−; p). Now the Milnor exact sequence

0 → lim←−
1T Cn

i+1(−; p) → T Ci(−; p) → lim←−T Cn
i (−; p) → 0

and the corresponding exact sequence for the inverse system Hcdh(−; T Cn(−; p)) imply that the map
T C(−; p) → holim Hcdh(−; T Cn(−; p)) is a weak equivalence in the cdh topology and hence the map

Hcdh
(−; T C(−; p)

) → holim Hcdh
(−; T Cn(−; p)

)

is a weak equivalence. Thus we get a convergent spectral sequence

Es,t
2 = Hs

cont

(
Xcdh,acdh T C•

t (−; p)
) ⇒ Hs−t

cdh

(
X; T C(−; p)

)

by [5, Proposition 3.1.2]. Using this spectral sequence, the exact sequence (5.1), the vanishing of the
sheaves aC T Cn

i (−, p) = 0 for i < −1 and [17, Theorem 12.5], we get the following exact sequence:

lim←−
1 Hd(Xcdh,acdh T Cn

0(−; p)
) → Hd+1

cdh

(
X; T C(−; p)

)

→ Hd
cont

(
Xcdh,acdh T Cn

−1(−; p)
) → 0. (5.6)

One gets the similar exact sequence representing Hd+1
cdh (X; C̃ j T C(−; p)). The right term of (5.6) van-

ishes by Lemma 5.1. To compute the left term of this exact sequence, we can first assume that X is
reduced [17, Lemma 12.1]. In this case, we note from [5, Theorem 4.2.2] that

acdhπ0
(
C̃ j T Cn

0(−; p)
) = acdh T Cn

0(−; p) = Z/pn ⊕ acdh
(

R1ε∗
(

O×/pn)), (5.7)

where ε is the natural morphism from the étale to the Zariski site. Since the first term is finite and
since the map R1ε∗(O×/pn) → R1ε∗(O×/pn−1) is surjective [5, page 19], we see from [17, Theo-
rem 12.5] that the inverse system {Hd(Xcdh,acdh T Cn

0(−; p))} satisfies the Mittag–Leffler condition and

hence the left term of (5.6) is zero. In particular, Hd+1
cdh (X; T C(−; p)) and Hd+1

cdh (X; C̃ j T C(−; p)) are
zero, proving (5.5). �
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Proposition 5.3. Let X be a k-variety of dimension d. Then the natural maps

Hd(XNis,aNisπ−1
(
T C/pn(−; p)

)) → Hd(Xcdh,acdhπ−1
(
T C/pn(−; p)

))
,

Hd(XNis,aNisπ−1
(
C̃ j T C/pn(−; p)

)) → Hd(Xcdh,acdhπ−1
(
C̃ j T C/pn(−; p)

))

are surjective.

Proof. Let aN denote the natural morphism from the cdh to the Nisnevich site. Then we have the
Leray spectral sequence

H p(
XNis, RqaN∗

(
acdhπ−1

(
T C/pn(−; p)

))) ⇒ H p+q(Xcdh,acdhπ−1
(
T C/pn(−; p)

))
.

Using this spectral sequence, it suffices to show that

H p(
XNis, RqaN∗

(
acdhπ−1

(
T C/pn(−; p)

))) = 0 whenever q > 0 and p � d − q.

So fix q > 0 and let F q denote the sheaf RqaN∗ (acdhπ−1(T C/pn(−; p))). Then it suffices to show
by [19] (see proof of Lemma E.6, page 429) that (F q)x is zero for any Nisnevich point x whose closure
has codimension � q. Since the stalks of F q is the cdh cohomology of the local rings, it suffices to
show that Hq(Xcdh,acdhπ−1(T C/pn(−; p))) = 0 for X as in Lemma 5.2 and for q � dim(X). But this
follows directly from Lemma 5.2. The other conclusion of the proposition also follows the same way
using Lemma 5.2 again. �
Theorem 5.4. Let X be a k-variety of dimension d. Then Ki(X,Z/pn) = 0 = πi C̃ j K/pn(X) for j � 0 and
i < −d − 1.

Proof. Using the vanishing of T Ci(A; p,Z/pn) = 0 for i < −1 for any A as in Lemma 5.1, the Zariski
and Nisnevich descent for T C/pn(−; p) as seen in the proof of Corollary 3.2 and the spectral se-
quence (4.7), we conclude that

T Ci
(

X; p,Z/pn) = 0 = πi C̃ j T C/pn(−; p)(X) for i < −d − 1. (5.8)

The homotopy fibration sequence (2.2) gives the long exact sequence of homotopy groups

· · · Ln
i (X) → Ki

(
X,Z/pn) → T Ci

(
X; p,Z/pn) → Ln

i−1(X) → ·· ·

and one has a similar long exact sequence of the homotopy groups of the functors C̃ j . Lemma 4.1
and (5.8) together now imply that

Ki
(

X,Z/pn) = 0 = πi C̃ j K/pn(X) for i < −d − 2,

and there are exact sequences

T C−d−1
(

X; p,Z/pn) → Ln
−d−2(X) → K−d−2

(
X,Z/pn) → 0,

π−d−1C̃ j T C/pn(−; p)(X) → π−d−2C̃ j L
n(X) → π−d−2C̃ j K/pn(X) → 0.

Thus we need to show that the first map in both the exact sequences are surjective.
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We consider the following commutative diagram.

Hd(XNis,aNisπ−1(T C/pn(−; p))) Hd+1
Nis (X, T C/pn(−; p)) T C−d−1(X; p,Z/pn)

Hd(Xcdh,acdhπ−1(T C/pn(−; p))) Hd+1
cdh (X, T C/pn(−; p))

Hd(Xcdh,acdhπ−2(Ln)) Hd+2
cdh (X, Ln) Ln

−d−2(X)

The left horizontal arrows of all the rows are isomorphisms by Lemmas 4.2 and 4.3. The right hori-
zontal arrow of the top row is an isomorphism by the Nisnevich descent of T C (cf. [5,1]). The right
horizontal arrow in the bottom row is an isomorphism by Corollary 3.2. The lower vertical arrow on
the left column is an isomorphism by (4.4). The upper vertical arrow on the left column is surjective
by Proposition 5.3. A diagram chase shows that the long vertical arrow in the extreme right is sur-
jective. The surjectivity of the map π−d−1C̃ j T C/pn(−; p)(X) → π−d−2C̃ j Ln(X) follows exactly in the
same way using Lemmas 4.2, 4.3, Proposition 5.3 and Corollary 3.2. �
6. Vanishing and homotopy invariance for rational K -theory

For any presheaf of spectra E on Sch/k, let EQ denote the direct colimit over the multiplication
maps E n−→ E by positive integers (cf. [19]). Then EQ is a presheaf of spectra on Sch/k such that
πi(EQ) ∼= πi(E ) ⊗Z Q for i ∈ Z. Our goal now is to prove the vanishing of the rational K -theory and
KQ-regularity in degrees below minus the dimension of a k-variety, where k is an infinite perfect
field of positive characteristic as before. Let KQ and H CQ denote the presheaves of rational K -theory

and rational cyclic homology spectra on Sch/k. Let H̃ N Q , H̃ P Q and H̃ CQ denote the presheaves of
spectra on Sch/k given by U 
→ H N(U ⊗ Q), U 
→ H P (U ⊗ Q) and U 
→ HC(U ⊗ Q), where U is
considered as a scheme over Z, and H N , H P and HC respectively are the presheaves of negative
cyclic homology, periodic cyclic homology and cyclic homology spectra on the category of schemes
over Z. There is a generalized Chern character map (cf. [15, Section 8.4])

KQ
ch−→ H̃ N Q.

Let Kinf
Q

denote the homotopy fiber of the above map of spectra.

Lemma 6.1. The presheaf of spectra KQ on Sch/k satisfies cdh-descent.

Proof. Since our schemes are defined over k which is of positive characteristic, we see that the
presheaf of spectra H̃ N Q is contractible. Hence using the homotopy fibration sequence

Kinf
Q → KQ

ch−→ H̃ N Q,

it suffices to show that the presheaf of spectra Kinf
Q

satisfies cdh-descent on Sch/k. To this end, it

suffices to show that Kinf
Q

satisfies all the conditions of Theorem 3.1. It satisfies excision by [3, Theo-

rem 01] and it is invariant under infinitesimal extension by [8, Main Theorem]. Kinf
Q

satisfies Nisnevich
descent by [19, Theorem 10.8] and it satisfies the Mayer–Vietoris property for blow-up under regular
closed embeddings by [20, Theorem 2.1]. This completes the proof of the lemma. �
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Corollary 6.2. Let X be a k-variety of dimension d. Then one has Ki(X) ⊗Z Q = 0 = πi(C̃ j KQ)(X) for j � 0
and i < −d.

Proof. This follows directly from Lemma 6.1, the spectral sequence of Theorem 3.1 and from [17,
Theorem 12.5] since acdhπi(KQ) = 0 for i < 0. �

Recall from [25] that K H is the sheaf of spectra of homotopy invariant K -theory on Sch/k. For
any X ∈ Sch/k and i ∈ Z, K Hi(X) denotes the ith homotopy group of the spectrum K H(X). We also
recall (cf. Section 2) that for any spectrum E and any positive integer n, E/n is the smash product
of E with a mod n Moore Spectrum Σ∞/n. In particular, there is a fibration sequence [18, A.5]

E n−→ E → E/n.

The corresponding long exact homotopy sequence yields for i ∈ Z, the universal coefficient exact
sequence

0 → (πi E)/n → πi(E/n) → Tor1
Z(πi−1 E,Z/n) → 0. (6.1)

Corollary 6.3. Let X be a k-variety of dimension d and let n be a positive integer prime to p. Then Ki(X,Z/n) =
0 = C̃ j Ki(X,Z/n) for j � 0 and i < −d.

Proof. We first prove the corollary for the homotopy invariant K -theory. We have seen in Corol-
lary 3.3 that K H satisfies the cdh-descent. Hence we can compute K Hi(X) and C̃ j K Hi(X) using the
spectral sequence of Theorem 3.1. Since the cdh-cohomological dimension of X is bounded by d [17,
Theorem 12.5], it suffices to show that the sheaves acdh(πi(K H)) and acdh(πi(C̃ j K H)) vanish for
i < 0. Since the stalks of a sheaf in the cdh-topology are same as its stalks on the smooth schemes,
it is now enough to show that a smooth scheme has no negative homotopy invariant K -theory. But
this follows immediately from [25, Proposition 6.10] and the similar fact about the negative algebraic
K -theory. This proves the statement of the corollary for the K H-theory. The statement about the
K H-theory with finite coefficients now follows immediately from the exact sequence (6.1). To con-
clude the proof of the corollary, we just have to use the fact that for n prime to p, the natural map
Ki(X,Z/n) → K Hi(X,Z/n) is an isomorphism by [25, Proposition 1.6], and the same conclusion holds
also for C̃ j Ki(X). �
Proof of Theorem 1.3. The first part of Theorem 1.3 follows directly from Theorem 5.4 and Corol-
lary 6.3. For any abelian group A, let n A denote the subgroup of n-torsion elements of A. It follows
from Corollary 6.2 that Ki(X) and C̃ j Ki(X) are torsion groups for i < −d. Thus we only need to
show that these groups have no torsion whenever i < −d − 2 and have only p-primary torsion for
i = −d − 2.

Theorem 5.4 and Corollary 6.3 together imply that Ki(X,Z/n) = 0 = C̃ j Ki(X,Z/n) for all n � 1
whenever i < −d − 1. Now we use the exact sequence (6.1) for the algebraic K -theory to see that
Ki(X) and C̃ j Ki(X) are divisible groups for i < −d−1. Since the last term of (6.1) is same as n Ki−1(X),
we also see that these groups are torsion-free for i < −d − 2. Finally, the claim that K−d−2(X) and
C̃ j K−d−2(X) have only p-primary torsion, follows again from Corollary 6.3 and (6.1). This also shows
that Ki(X) = 0 and X is Ki -regular for i < −d − 2. �
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