Bull. Mater. Sci., Vol. 7, No. 1, March 1985, pp. 35-41. © Printed in India.

i

Simulation of polymer systems

S L NARASIMHAN, P S GOYAL and B A DASANNACHARYA
Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India

Abstract. The present paper describes an algorithm which can generate, even on a small
computer, arbitrarily long polymer chains, making sure that the configurations generated do
not suffer from boundary effects. This has been achieved by employing the concept of a
window, which is an analogue of virtual memory scheme. The algorithm has been tested for the
case of dilute polymer solution.

Keywords. Polymer chains; self avoiding random walks; Monte-Carlo methods.

1. Introduction

The configurational properties of polymer chains in polymer solutions or in polymer
melts can be studied experimentally using light scattering or neutron scattering
techniques. While the light scattering technique is employed for studying dilute
polymer solutions, small angle neutron scattering (SANS) technique is employed for
studying dilute as well as concentrated polymer solutions, and also polymer melts
(Higgins and Stein 1978). The configurational properties of linear polymer chains have
also been studied by computer-simulating self avoiding random walks (saw) on various
lattices (Mckenzie 1976) using either the exact enumeration method or the Monte Carlo
method.

Configurational properties of short saws consisting of about 24 steps or less have
been studied by enumerating all possible configurations of the saw of a given length.
But it is not possible to list all the configurations of a long saw which consists of, say,
hundreds of steps. Therefore one has to be content with generating as large a set of
configurations as one can, using Monte Carlo simulation technique.

One of the attempts at generating long saws using Monte Carlo technique is due to
Wall (1954). His method consists in generating saws on a finite lattice whose size is
determined by the available main memory of the computer used. One usually starts
generating a walk from the centre of the lattice. Steps are generated by choosing, at
random, one of all the nearest neighbours of the currently occupied site and
remembering that backward step is not allowed. Should the site chosen be already
occupied, the attempt is discarded and a fresh attempt to generate the chain is made
from the centre of the lattice. The effect of this phenomenon, called “attrition”, becomes
more and more severe as one tries to generate longer and longer walks. It has been
reported that out of 140000 attempts made at generating a 121-step walk, only one was
successful (Wall 1954), But the successful attempts lead to configurations which are

_equally probable. To reduce the effect of attrition, Wall has proposed an enrichment
scheme (Wall et al 1963) with the help of which walks consisting of about 800 steps have
been generated.

Rosenbluth and Rosenbluth (1955) independently proposed a method which reduces
35

36 S L Narasimhan, P S Goyal and B A Dasannacharya

the effect of attrition to a large extent but at the cost of biasing the walks. In this method
steps are generated by choosing, at random, one of the unoccupied nearest
neighbours—not one of all the nearest neighbours as in Wall’s method—of the
currently occupied site. This way, generation of the walk proceeds untila site which has
no unoccupied nearest neighbours is encountered. In such a situation, generation of the
walk is terminated, and a fresh attempt is made. As this method generates walk with
some bias the configurations generated are weighted so as to make them equally
probable.

In either of these methods, attrition is not zero. Moreover, for a given size of the
lattice, walks which consist of more than a certain number of steps will suffer from the
effects of the boundary (Wall et al 1976). To give an example, suppose we have a 16-bit
microcomputer which provides a program space of about 20K words to the user,
and we want to generate saws on a cubic lattice. Assume that, in this program environ-
ment, we are constrained to generate saws within a cubic array, LAT, of dimensions
15 x 15 x 15. Clearly, even in principle, we cannot generate as long a saw as we want to.
Also, walks which consist of more than, say 30 or 40 steps, will have finite probability of
hitting the boundary of LaT, and therefore will have to be coiled back into the interior of
LAT.

In the present paper we report an algorithm which treats rAT as merely a
3-dimensional window through which we can look into the 3d-real space. Starting from
the centre of the window, it generates a segment of the walk, stores the coordinates of
the sites visited, and uses the same window after proper initialization, to generate
another segment of the same length. This process is repeated till a walk of desired length
has been generated. If and when it encounters a walk which enters a blocked state and
cannot proceed further, it enforces a back-tracking algorithm so that the walk gets out
of its blocked state and proceeds further. This way it can generate as long a walk as is
desired even in a restricted program environment, and every attempt made at
generating such a walk is successful. The walks generated are weighted using a
procedure due to Rosenbluth and Rosenbluth (1955).

The concept of a window is discussed in § 2. Section 3 describes the algorithm and §4
gives the results we have so far obtained. A discussion of results and the capabilities of
the algorithm are given in §35.

2. Concept of a window

Let 1aT be a finite cubic array, having dimensions L x L x L, so thatany location can be
accessed by specifying the array indices I,J, K, where I,J,K = 1,.. ., L. Imagine that
LAT is kept in 3d-real space. Let X, Yo, Z, be the space coordinates in 3d-real space of
the centre of LAT. If bis the given step length, then the site (I, J, K) of LAT willmapintoa
point with coordinates (X, ¥, Z) in 3d-real space according to the transformation:

X =[I-(L+1/2]1b+X,
Y=[J—-(L+1)/2]b+ Y, 88
Z=[K—(L+1/2]b+Z,

LAT can be moved in space in such a way that its centre coincides with the point (X, Y, Z).
Then any site (I',J’, K') of rat will map into a point with coordinates (X', Y’, Z)
according to the transformation.

Simulation of polymer systems 37

xY

Figure 1. Illustration of a two dimensional 5 x 5, moving window.

X =[I'-(L+1)2}b+X
Y=[J—-(L+1)/2]b+Y 2)
Z =[K'—(L+1/2]b+Z

We will call (1) the “window transformation” and LAT the “window”. Figure 1 illustrates
a 2d-window, for L = 5.

3. Algorithm

Suppose we want to generate a 4095-step saw and are constrained to work with a
minimal data base consisting of the following three arrays: (@) raT (15,15,15)—the
window; (b) coorp (512)—an array in which to store the space coordinates of the sites
generated and (c) NRAND (512)—array in which to store the number of unoccupied
neighbours each site has when the walk proceeds from there. Assume that our machine
configuration includes a floppy subsystem.

(i) Choose some point (X, Yo, Zo) in space to start the walk from; start with a clean
window, i.e., initialize array LAt with zeros. Assume that in the window site with
coordinates (I = 8, J = 8, K = 8), the centre of the window, maps on to (X, Yo, Zo)-
Let (I,J,K) be the window indices of the current site in LaT. Occupy the site
(X0, Yo, Zo) by entering data 1 in location (I,J,K) of Lat. Store the coordinates
(Xo, Yo, Zo)in array coorp. Let p be the number of unoccupied neighbours of (1, J, K).
Store p in array NranD. Choose one of the unoccupied neighbours of (I,J,K) at
random and occupy it. Using the window-transformation (1) calculate the space
coordinates of the point into which the chosen site maps into. Store these coordinates in
coorD and so on. Repeat this process until a walk segment consisting of 6 steps is
generated. We restrict ourselves to generating a walk segment consisting of 6 steps in
one window because a segment consisting of more than 6 steps has a non-zero

38 S L Narasimhan, P S Goyal and B A Dasannacharya
prm———mmm e !
: |
L z
SN I Sy -
il' : | 1
1
i
} j i _‘L__ ; Figure 2. Schematic representation of chain gener-
{ N i I ation process in two dimensions. Three segments of
| B } : the chain generated using windows I, IT and 11 are
: i { shown by dashed, solid and dashed lines respectively.
nl '{ }III i
! R 4 _________ J
| i
|]
e e e 4

probability of hitting the boundary of AT and therefore would have to be artificially
coiled into LaT. Thus we eliminate boundary effects.

(if) Define the next window, which is first wiped clean, such that its centre maps into the
last point of the previous segment generated, as shown in figure 2 for the case of two
dimensional walk. Initialize the window with respect to the previous segment(s)

_ generated. This is done by mapping the coordinates stored in coorp back into the

window-indices and checking if they are within the bounds of rat. If they are, then
those locations of LAT are initialized with data 1. Otherwise, they are ignored.

One more segment is generated in this window.
(iii) Process (ii) is repeated till the arrays coorD and NRAND are full. Once they are full,
they are dumped into a floppy file, and are initialized for fresh use.
(iv) Process (iii) is repeated till a walk of desired length has been generated.
(v) If in the process of generating this walk, we encounter a situation where the walk
cannot proceed further because it has reached a site which has no unoccupied
neighbours, then we back-track on the walk, keeping track of which window we are in,
to a point from where the walk could proceed along a different path. This is done by
scanning the array NranD from the current location towards the top till we encounter a
location which contains p > 2. We determine the window in which this site was
generated. Proceed the walk from that site making sure that we avoid those locations of
this window which mapped onto points which got the walk blocked. It may be noted
that window initialization and some time back-tracking also may require that we
retreive the coordinates and values from the floppy files back into the arrays coorp and
NRAND. Our algorithm can take care of these data movements back and forth between
the buffers coorp and NRAND and their corresponding files on floppy diskette.

Once a walk is generated, it is weighted according to the scheme of Rosenbluth and
Rosenbluth (1955) in the following way:

Let the walk consist of N steps. Let p(i) be the number of options available for
generating the ith link. 2 <i<N; 0<p(<35 for a cubic walk). These values are
retreived from the array Nranp. Then the weight associated with the walk is given by:

N (l
w=T] Bgl. 3)
=2
The algorithm also calculates R?, the square of end-to-end distance of the walk. To get

an average value (R?) of R?, we generate a sample consisting of large number, say n of
such walks.

Simulation of polymer systems 39
4. Results

The above algorithm has been used to calculate* the mean square end-to-end distance
{R?*) as a function of the number, N, of monomers in the chain for a cubic lattice®*.
This calculation essentially gives information about the dependence of {R*>onNina
dilute polymer solution. Calculations have been done for N = 8, 16, 32, 48, 64, 80, 128.
The window used in these calculations had a size of 31 x 31 x 31. For a given position of
the window, only a small segment (16 monomers) of the walk was generated to ensure
that the boundaries of the window are not encountered in the process of generating the
walks. The mean value ¢ R? > was evaluated using a large number, n, of walks by either
giving equal weightage to all the walks or by weighting them as per the procedure
outlined in earlier section.

To get an accurate value of { R?), itis desirable to have as large a sample as possible.
Restriction to sample size comes from the computation time. The optimum value of n
was arrived at by calculating ¢ R? » as a function of n. Figure 3 shows { R*) asfunction
nfor a 128 monomers chain for the case when all the chains were given equal weightage.
It may be noted that though the value of { R*)> fluctuates for small values of n, it
stabilizes to within 2% for n = 750. For smaller walks (N < 128), the accuracy on
{R?> is expected to be better than 2 9 forn = 750. In view of this, when all the walks
had same weightage we used sets of 750 walks to compute the mean value of R2.

In the case of weighted chains, we have used larger samples as it was seen that some
walks acquired very low weightage in the process of weighting. The sample sizes used in
various calculations are given in table 1. Also given in the same table are the calculated
values of ¢ R?) for different values of N both for weighted and unweighted situations.
The dependence of {R*) on N is shown in figure 4 where { R?) is plotted against N

®

.

Chain length N=128

Mean square end-end distance <R2>(/&2}

| Lattice : Cubic
No weighting
! I |
O 1000 2000

Somple size n
Figure 3. Variation of mean square end-end distance, (R?), as a function of the sample

size n.

* Calculations performed on the super-mini computer, PRIME 450.
** Dependence of {R?> on N is known (Domb 1963) to be independent of the lattice used.

40 S L Narasimhan, P S Goyal and B A Dasannacharya

Table 1. Calculated values of mean square end-to-end distance { R* > for a polymer
chain for different values of N.

Unweighted Weighted
Chain length
(N) Sample size (n) {R*> Sample size (n) {R?>
\ 8 9999 10.93
i 16 750 24.14 8000 27.26
- 32 750 51.74 8000 66.97
‘ 48 750 80.68 5000 101.91
e 64 750 104.08 5000 129.73
N 80 750 13191 6000 167.83
20 9% 750 161.64
: 112 750 188.45
128 750 215.23 1000 333.10

6-0 ;/

® Un-weighted samples

—_ 111 NTO9

Al O Weighted samples

>0 — N‘H92
A 4.0
(o]
ad
AV
£

3.0+

20 { ' \ [|

1-0 20 30 4.0 50

{(n N

Figured4. Variation of mean squareend toend distance,{ R?), for a single polymerchainasa
function of number of monomers N. Filled circles correspond to unweighted average and
open circles correspond to weighted average as discussed in the text.

on a log-log scale. It may be mentioned that for real polymer systems, to get an
appropriate value of { R?) using Monte Carlo method, one has to make sure that the
walks used in computing { R?) are generated with equal probability. In view of this,
the open circles represent a more relevant situation.

5, Discussion

It is well established both experimentally and theoretically (De Gennes 1979) that the
mean square end to end distance { R?) for a linear polymer chain having N monomers
is given by an expression of the type:

(R’} = AN"

Simulation of polymer systems 41

where the exponent v depends on the environment in which polymer chain resides. For
example, the value of v is 1-2 for dilute polymer solutions (De Gennes 1979). Our
calculations, where we have generated an isolated polymer chain in an infinitely large
vessel, essentially corresponds to dilute polymer solution. It is seen that calculated
(open circles in figure 4) values of { R* lie on the dashed line { R?> = NV'92 Thatis,
our algorithm gives v = 1-192 in agreement with earlier simulation studies (Rosenbluth
and Rosenbluth 1955) as well as light and neutron scattering experiments on dilute
polymer solutions (Flory 1953; Cotton et al 1974). We also note that the solid points,
corresponding to unweighted samples, give v = 1-09 again in agreement with earlier
simulation work (Rosenbluth and Rosenbluth 1955).

In short, we find that the above algorithm for examining the chain configurations in
polymer systems using Monte Carlo method gives results similar to those obtained
using existing algorithms. Using the present algorithm, however, it is possible to
examine very long polymer chains (N > 1000) even on a small computer without
encountering boundary effects, which is not possible with the other existing algorithms.
Moreover, as this algorithm keeps track of all the occupied neighbours of each
monomer of the chain, unlike earlier algorithm, it can be easily used for examining
concentrated polymer solutions and polymer melts. In particular, using the above
algorithm we are examining the configurations of a long (N monomer) polymer chain
in a melt of small (P monomer) chains (Joanny et al 1981).

References

Cotton J P, Decker D, Benolt H, Farnoux B, Higgins J S, Jannik G, Ober R, Picot C and des Coiseaux J 1974
J. Macromol. 7 863

De Gennes P G 1979 Scaling concepts in polymer physics (Ithaca, New York: Cornell University press)

Domb C 1963 J. Chem. Phys. 38 2957

Flory P J 1953 Principles of polymer chemistry (Ithaca, New York: Cornell University press)

Higgins J S and Stein R S 1978 J. Appl. Crystallogr. 11 346

Joanny J H, Grant P, Turkevich L A and Pincus P 1981 J. Phys. 42 1045

Mckenzie D S 1976 Phys. Rep. C27 35

Rosenbluth M N and Rosenbluth A W 1955 J. Chem. Phys. 23 356

Wall F T 1954 J. Chem. Phys. 22 1036

Wall F T, Windwer S and Gans P J 1963 Methods in computational physics (New York: Academic Press) vol. 1
pp. 217

Wall F T, Mandel F and Chin J C 1976 J. Chem. Phys. 63 4592

