Critical current density and magnetization studies on Bi(Pb)SrCaCuO

P K MISHRA, SHAILENDRA KUMAR, G RAVIKUMAR, P CHADDAH, B A DASANNACHARYA, RAM PRASAD* and N C SONI*

Nuclear Physics Division, *Metallurgy Division, Bhabha Atomic Research Centre, Bombay 400 085, India.

Abstract. High T_c phase ($T_c \sim 110 \, \text{K}$) has been obtained in Bi-Sr-Ca-Cu-O system by partially substituting Bi by Pb. Magnetic hysteresis has been measured as a function of temperature. Critical current densities have been measured at 77 K both by transport and a.c. magnetization method in bulk samples for various concentrations of Pb. The results show that substitution of 15 at% Pb for Bi is most preferable for higher critical current density.

Keywords. Critical current; superconductivity; magnetization measurements.

1. Introduction

Following the discovery of superconductivity in Bi-Sr-Ca-Cu-O system (Michel et al 1987; Maeda et al 1988), it is well established that the compound exhibits superconductivity in two phases, viz. a high T_c 2223 phase ($T_c \sim 110 \, \mathrm{K}$) and a low T_c 2212 phase ($T_c \sim 80 \, \mathrm{K}$). The two phases are normally found to coexist, so that the zero resistance is attained only below 85 K.

Efforts have been made to stabilize the high T_c (110 K) phase by different methods. Limited success has been obtained (Shi et al 1988) in pure compounds to achieve $\rho=0$ at 110 K. The procedure involves long sintering times and is complicated. An alternative approach (Statt et al 1988) is to dope Pb for bismuth which aids the growth of 110 K phase. The latter procedure is more common for its simplicity, but is believed to result in multi-phase samples. In this paper we present our studies on critical current densities and low field magnetization hysteresis in $\text{Bi}_{2-x} \text{Pb}_x \text{Sr}_2 \text{Ca}_2 \text{Cu}_3 \text{O}_y$ samples for $0.2 \le x \le 0.4$.

2. Experimental details and results

Samples were prepared by reaction (Tomy et al 1989) of Bi₂O₃, PbO and Sr₂Ca₂Cu₃O₇ with two different types of heat treatments. In the first type (referred to as group I), the mixture was calcined in air at 820°C for 2h, then pelletized and sintered at 855°C for 96h in air and then slow-cooled. For the other group (referred to as group II), the mixture was first pressed and flashed to 900°C for 5 min for surface-melting followed by sintering at 855°C for 96h in air and then slow-cooled.

Transport measurements of J_c were made (Malik et al 1988) at 77 K from the V-I curve. The results are shown in table 1. We note that J_c value is lower than that

obtained in YBaCuO system. A peak in J_c is obtained for x=0.3 for both groups of samples without any significant change in T_c .

The hysteresis curves are measured using an AC (317 Hz) susceptibility instrument (Radhakrishnamurthy et al 1978) coupled with a flow-type liquid nitrogen cryostat. The sample and a copper constantan thermocouple are encapsulated in a nylon sample holder which is filled with Apiezone N grease. The sample holder rests in a glass tube and its position is adjustable with respect to the secondary coils of the susceptibility instrument. Temperature is varied in the range of $T = 77 \, \text{K}$ to 120 K with $\Delta T = \pm 0.5 \, \text{K}$ by controlling the rate of flow of the nitrogen gas through liquid nitrogen. Samples in the pellet geometry are used in this study. The maximum cycling field, H_{max} , can be varied between 1 Gauss and 10 Gauss. T_c was measured as the temperature of diamagnetic onset with a cycling field $H_{\text{max}} = 8 \, \text{Gauss}$. J_c can also be estimated from the remnant magnetization M_r at 77 K in the field of 8 Gauss. The remnant magnetization is indicated schematically in figure 1 and gives a measure of the transport J_c (Shailendra Kumar et al 1990). The data obtained from the low field hysteresis are shown in table 2.

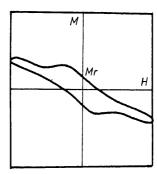


Figure 1. Schematic of hysteresis curve for $H_{\text{max}} = 8$ Gauss at 77 K.

Table 1.	Transport	J_c and	$i T_c o$	f various	samples.
----------	-----------	-----------	-----------	-----------	----------

x	Gr. I. J_c (amp/cm ²)	$T_c(\mathbf{K})$	Gr. II. J_c (amp/cm ²)	$T_c(\mathbf{K})$
0.2	0.70	110	Very small	108
0.3	12.30	110	6.86	110
0.4	1.40	108	3.62	110

Table 2. Remnant magnetization M, for different concentrations of Pb.

x	Gr. I. 2M, (arbitrary unit)	Gr. II. 2M, (arbitrary unit)
0.2	0.0	1.0
0.3	11.5	4-5
0.4	8.5	2.0

 M_r , also peaks at x = 0.3 and this correlates qualitatively with the transport measurement.

3. Conclusion

The transport J_c measured from the V-I curve shows a clear peak at x=0.3 irrespective of the preparation route followed, while T_c (as measured from the diamagnetic onset) is unchanged (to within 2 K) as x is varied from 0.2 to 0.4. The stronger intergrain coupling at x=0.3 is also reflected in the fact that M_r peaks at x=0.3.

The addition of lead helps stabilize the 2223 phase and its concentration is not crucial for high T_c . Our results show that the best intergrain coupling is achieved for x = 0.3.

References

Maeda H, Tanaka Y, Fukutomi M and Asano T 1988 Jpn J. Appl. Phys. Lett. 27 L209

Malik M K, Nair V D, Biswas A R, Raghavan R V, Chaddah P, Mishra P K, Ravi Kumar G and Dasannacharya B A 1988 Appl. Phys. Lett. 52 1525

Michel C, Hervieu M, Borel M M, Grandin A, Deslandes F, Provost J and Raveau B 1987 Z. Phys. B68 421 Radhakrishnamurthy C, Likhite S D and Sahasrabudhe P W 1978 Proc. Indian Acad. Sci.-Chem. Sci. A78 245

Shailendra Kumar, Ravikumar G, Mishra P K, Chaddah P, Dasannacharya B A, Ram Prasad and Soni N C 1990 Presented at the Int. Conf. on Superconductivity (to be published)

Shi D, Blank M, Patel M, Hinks D G, Mitchell A W, Vandervoot K and Claus H 1988 Physica C156 822

Statt B W, Wang Z, Lee M J G, Yakhmi J V, De Camargo P C, Major J F and Rutter J W 1988 Physica C156 251

Tomy C V, Ram Prasad, Soni N C, Kalyan A and Malik S K 1989 Paper presented at M2S-HTSC, Stanford