ABSOLUTE CHOW-KUNNETH DECOMPOSITION FOR RATIONAL
HOMOGENEOUS BUNDLES AND FOR LOG HOMOGENEOUS
VARIETIES

JAYA NN IYER

ABSTRACT. In this paper, we prove that rational homogeneous bundles and log homo-
geneous varieties (studied by M. Brion) have an absolute Chow—Kiinneth decomposition.
This strengthens the earlier paper by us on small dimensional varieties with a NEF tan-
gent bundle, and using Hwang-Mok’s results, we get the results for new cases in higher
dimension as well, for instance upto dimension four.

1. INTRODUCTION

Suppose X is a nonsingular projective variety of dimension n defined over the complex
numbers. Let CH*(X) ® Q be the Chow group of codimension i algebraic cycles modulo
rational equivalence, with rational coefficients. Jacob Murre [Mu2|, [Mu3| has made the
following conjecture which leads to a filtration on the rational Chow groups:

Conjecture: The motive h(X) := (X, Ax) of X has a Chow-Kiinneth decomposition:
2n
Ax =) meCH' (X xX)®Q
i=0
such that m; are orthogonal projectors (see §2.2).

In this paper, absolute Chow—Kiinneth decomposition (resply. projectors) is the same
as Chow-Kiinneth decomposition (resply.projectors). We write "absolute’ to emphasize
the difference with 'relative’ Chow—Kiinneth projectors which will appear in the paper.

Some examples where this conjecture is verified are: curves, surfaces, a product of a
curve and surface [Mu], [Mu3], abelian varieties and abelian schemes [Sh],[De-Mu], unir-
uled threefolds [dA-MI], elliptic modular varieties [Go-Mu], [GHMu2]), universal families
over Picard modular surfaces [MWYK] and finite group quotients (maybe singular) of
abelian varieties [Ak-Jo|, some varieties with a nef tangent bundles [ly], open moduli
spaces of smooth curves [Iy-Ml], universal families over some Shimura surfaces [Mi].

In [Iy], we had looked at varieties which have a nef tangent bundle. Using the structure
theorems of Campana and Peternell [Ca-Pe| and Demailly-Peternell-Schneider [DPS], we
know that such a variety X admits a finite étale surjective cover X’ — X such that
X' — A is a bundle of smooth Fano varieties over an abelian variety. Furthermore, any
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fibre which is a smooth Fano variety necessarily has a nef tangent bundle. It is an open
question [Ca-Pe, p.170] whether such a Fano variety is a rational homogeneous variety.
They answered this question positively in dimension at most 3. We showed in [Iy] that
whenever the étale cover is a relative cellular variety over A or if it admits a relative
Chow-Kiinneth decomposition, then X’ and X have a Chow—Kiinneth decomposition. In
particular, it holds for varieties with a nef tangent bundle of dimension at most 3.

In this paper, we weaken the hypothesis on the cover X’ — A as above and obtain a
Chow—Kiinneth decomposition whenever X’ — A is a rational homogeneous bundle, over
an abelian variety A. This strengthens the results in [ly] and if the open question [Ca-Pe,
p.170] is answered positively in higher dimensions then we obtain a Chow—Kiinneth de-
composition for all varieties which have a nef tangent bundle. This question is answered
positively in some higher dimensional cases also, see [Hw, section 4] and references therein.
Hence we obtain a Chow-Kiinneth decomposition for new cases as well in higher dimen-
sions, for instance, all varieties upto dimension four.

We state the result and proofs, in a more general situation.

Theorem 1.1. Suppose S is a smooth projective variety over the complex numbers. Let G
be a connected reductive algebraic group and let Z be a rational G homogeneous space over
the variety S. Assume that S has a Chow-Kinneth decomposition. Then the following
hold:

a) the motive of Z has an absolute Chow—Kiinneth decomposition.

b) the motive of the bundle Z — S is expressed as a sum of tensor products of summands
of the motive of S with the twisted Tate motive.

One of the main observation in the proof is to note that a rational homogeneous bundle
as above is étale locally a relative cellular variety, using the fact that the formal defor-
mations of a rational homogeneous variety are trivial (see Lemma 3.2). Hence we can
construct relative Chow—Kiinneth projectors (in the sense of [De-Mu]) over étale mor-
phisms of S. These projectors lie in the subspace generated by the relative algebraic cells.
The corresponding relative cohomology classes patch up since they lie in the subspace
generated by the relative analytic cells. Hence the relative orthogonal projectors can be
patched up as algebraic cycles to obtain relative projectors, in the rational Chow groups
of the associated regular stack. In this case, we show that the relative Chow—Kiinneth
projectors over the regular stack descend to relative Chow—Kiinneth projectors for Z — S
(see Corollary 3.7). The criterion of Gordon-Hanamura-Murre [GHMu2], for obtaining ab-
solute Chow—Kiinneth projectors from relative Chow—Kiinneth projectors can be directly
applied, see Proposition 3.8.

A similar proof also holds for a class of log homogeneous varieties studied by M. Brion
[Br]. A log homogeneous variety consists of a pair (X, D), where X is a smooth projective
variety and D is a normal crossing divisor on X, with the following property. The variety
X is said to be log homogeneous with respect to D if the associated logarithmic tangent
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bundle 7x(—D) is generated by its global sections. It follows that X is almost homo-
geneous under the connected automorphism group G := Aut’(X, D), with boundary D.
With notations as above, we show

Theorem 1.2. Suppose X is log homogeneous with respect to a normal crossing divisor
D. Then X has a Chow—-Kiinneth decomposition. Moreover, the motive of X is expressed
as a sum of tensor products of the summands of the motive of its Albanese reduction, with
the twisted Tate motive.

See Theorem 4.4.

The proof uses the classification of log homogeneous varieties by Brion [Br]. The fibres
of the Albanese morphism are smooth spherical varieties. In this case we check that étale
local triviality of the Albanese fibration holds. The proof of Theorem 1.2 relies on the
algebraicity of the cohomology of the spherical varieties, similar to Theorem 1.1, and
applying the criterion of [GHMu2].

Acknowledgements: We thank B. Totaro for pointing out some errors in the previous version and for
helpful suggestions. Thanks are also due to J-M.Hwang for informing us about the status of Campana-

Peternell conjecture in higher dimensions.

2. PRELIMINARIES

We work over the field of complex numbers in this paper. We begin by recalling the
standard constructions of the category of motives. Since this is fairly discussed in the
literature, we give a brief account and refer to [Mu2], [Sc] for details.

2.1. Category of motives. The category of nonsingular projective varieties over C will
be denoted by V. For an object X of V, let CH*(X)g = CH(X) ® Q denote the rational
Chow group of codimension ¢ algebraic cycles modulo rational equivalence. Suppose
X,Y € Ob(V) and X = UX; be a decomposition into connected components X; and
d; = dim X;. Then Cort"(X,Y) = &,CH%*"(X; x Y)g is the group of correspondences
of degree r from X to Y.

We will use the standard framework of the category of Chow motives M, ; in this
paper and refer to [Mu2] for details. We denote the category of motives M., where
~ is any equivalence, for instance ~ is homological or numerical equivalence. When S
is a smooth variety, we also consider the category of relative Chow motives CHM(S)
which was introduced in [De-Mu] and [GHMu]. When S = Spec C then the category
CHM(S) = M,q.

2.2. Chow—Kiinneth decomposition for a variety. Suppose X is a nonsingular pro-
jective variety over C of dimension n. Let Ax C X x X be the diagonal. Consider the
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Kiinneth decomposition of A in the Betti Cohomology:

AX — @2n0ﬂ_hom

1=0"1¢

where 7lom € H* (X)) @ H'(X).

Definition 2.1. The motive of X is said to have Kinneth decomposition if each of the

hom
i

classes m are algebraic and are projectors, i.e., '™ is the image of an algebraic cycle
m; under the cycle class map from the rational Chow groups to the Betti Cohomology and
satisfying myom; = m; and Ax = @& m; in the rational Chow ring of X x X. The algebraic

projectors m; are called as the algebraic Kinneth projectors.

Definition 2.2. The motive of X is furthermore said to have a Chow-Kiinneth decom-
position if the algebraic Kiinneth projectors are orthogonal projectors, i.e., m; o 7 = 0; ;m;
and Ax = ®"ym; in the rational Chow ring of X x X.

3. RATIONAL HOMOGENEOUS BUNDLES OVER A VARIETY

In this section, we firstly recall the motive of a rational homogeneous variety and later
construct relative Chow—Kiinneth projectors for a bundle of homogeneous varieties. The
criterion of [GHMu2] can then be applied to obtain absolute Chow—Kiinneth projectors
on the total space of the bundle. For this purpose, we need to show that the bundle is
étale locally trivial and check patching conditions over the etale coverings. We begin by
recalling the motive of a rational homogeneous variety.

3.1. The motive of a rational homogeneous space. Suppose F' is a rational homoge-
neous variety. Then F' is identified as a quotient G/ P, for some reductive linear algebraic
group GG and P is a parabolic subgroup of GG. Notice that F'is a cellular variety, i.e., it
has a cellular decomposition

0)=F,CcF,Cc..CF,=F
such that each F; C F'is a closed subvariety and F; — F;_; is an affine space.

Then we have

Lemma 3.1. [Ko, Theorem, p.363] The Chow motive h(F) = (F,Ar) of F' decomposes
as a direct sum of twisted Tate motives
hF) = @Lc@dim w

Here w runs over the set of cells of F.

In particular, this says that the Chow—Kiinneth decomposition holds for F. Next we
consider bundles of homogeneous spaces Z — S over a smooth variety S. We want to
describe the Chow motive of Z in terms of the Chow motive of S, up to some Tate twists.
For this , we need to show étale local triviality of Z — S, and we discuss it in the next
subsection.
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3.2. The étale local triviality of a rational homogeneous bundle. Suppose Z — S
is a smooth projective morphism and the base variety S is smooth and projective.

By étale local triviality, we mean that there exist étale morphisms p, : U, — S such
that the pullback bundle

ZUa Z:ZXSUQHUOC

is a Zariski trivial fibration and the images of p, cover S, i.e., Uypa(U,) = S. Here «
runs over some indexing set I. Consider a rational homogeneous bundle f: Z — S| i.e.,
7 is a smooth projective morphism and any fibre 7!y is a rational homogeneous variety
G/P. Here G is a reductive linear algebraic group and P C G is a parabolic subgroup.
Assume that S is a smooth complex projective variety.

In the following discussion, we note that an étale cover {U,} as above exists for a
rational homogeneous bundle Z — S.

Lemma 3.2. There are étale open sets p,, : Uy — S (satisfying Uapa(Uy) = S), such that
the pullback bundle Zy, — U, is a Zariski trivial fibration.

Proof. We need to note that the formal deformations of a rational homogeneous vari-
ety are trivial. This is just a consequence of the well-known Bott’s vanishing theorem:
HY(G/P,T) = 0. The assertion on étale local triviality follows from [Se, Proposition
2.6.10].

O

Our aim is to obtain relative Chow—Kiinneth projectors for the bundle Z/S. For this
purpose, we first construct relative projectors over the étale coverings of Z — S and check
the patching conditions. This requires us to use the language of stacks which enables us to
descend the projectors down to Z — S. Hence in the following subsection, we recall some
facts on regular stacks and the relationship of the rational Chow groups/cohomology of
stacks with that of its coarse moduli space. These facts will be essentially applied to the
simplest situation—the rational homogeneous bundle Z — S. Also, the patching will be
used for étale open sets of Z which are of the type Zy, = Z xg U,, for étale morphisms
U, — S. In this context, it is possible to avoid stacks, since the regular stack associated to
the étale coverings is again Z. But we use the stacks, essentially to say that the algebraic
cells which live in the fibres of Z — S patch together over the étale coverings. This will
be needed in the proof of Lemma 3.5.

We remark that more general patching statements might also hold for other varieties,
using stacks. However we do not know concrete examples as yet, where it can be checked.

3.3. Chow groups of an étale site. Mumford, Gillet ([Mm],[Gi]) have defined Chow
groups for Deligne—-Mumford stacks and more generally for any algebraic stack X'. Fur-
thermore, intersection products are defined whenever X is a regular stack . Let X be a
regular stack. The coarse moduli space of X is denoted by X and p : X — X be the
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projection. So from [Gi, Theorem 6.8], the pullback p* and pushforward maps p, establish
a ring isomorphism of rational Chow groups

(1) CH"(X)q = CH"(X)q.
This can be applied to the product pxp: X x X — X x X, to get a ring isomorphism
(2) CH*(X x X)g = CH"(X x X)g.

Assume that X is a smooth projective variety. Then these isomorphisms also hold in the
rational singular cohomology of X and X x X (for example, see [Be]):

(3) H*(X,Q) = H*(X, Q).
and
(4) H*(X x X,Q) = H" (X x X,Q).

Via these isomorphisms, we can pullback the Kiinneth decomposition of the diagonal
class in H**(X x X, Q) to a decomposition of the diagonal class of X in H*"(X x X, Q),
and whose components we refer to as the Kiinneth components of X.

Given a smooth variety X, consider an atlas Ll ¢;U, of X such that p, : U, — X is an
étale morphism, for each o € I, and the images of p, cover X. Then one can associate
a @Q-variety [Mm)] to this atlas. Furthermore, by [Gi, Proposition 9.2], there is a regular
stack X associated to this data such that X is its coarse moduli space, i.e., there is a
projection

p: X — X.

In this case, we note that the regular stack X is the same as the variety X. Hence the
isomorphisms in (1), (2), (3) and (4) trivially hold for the projection p. More precisely,
we have
CH*(X)p=CH"(X)
and
H*(X,Q) =CH*(X,Q).

3.4. The motive of a rational homogeneous bundle. Suppose Z — S is a rational
homogeneous bundle over a smooth projective variety S. Let S be the étale site on S,
together with the natural morphism of the sites f : S¢ — S. Here S is considered with
the Zariski site. Consider the pullback bundle

7% =7 xg 8¢ — S
over S,

Since we are dealing with a rational homogeneous bundle, we can describe these covers
explicitly as follows; by Lemma 3.2, the pullback bundles Zy, — U,, for a € I, are
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Zariski trivial. In other words, Zy, = F' x U,, where F'is a typical fiber of Z — S. Hence
Zy,, — U, is a relative cellular variety for each o € I.

The description of the rational Chow groups of relative cellular spaces 7 : X — T is
given by B. Koeck [Ko] (see also [Ne-Za, Theorem 5.9]), which is stated for the higher
Chow groups:

Suppose X — T'is a relative cellular space.

Then there is a sequence of closed embeddings
(5) V=Z.,czZyc..cZ,=X

such that 7y, : Z, — T is a flat projective T-scheme. Furthermore, for any k£ = 0,1, ..., n,
the open complement Z;, — Z;_; is T-isomorphic to an affine space A7* of relative dimen-
sion my. Denote i, : Z;, — X.

Theorem 3.3. For any a,b € Z, the map

D Hoom, (T.0—my) — Hy(X, D)
k=0

(g, .oy ) Z(ik)*ﬂZak
k=0
is an isomorphism. Here H,(T,b) = CHy(T,a — 2b) are the higher Chow groups of T'.
Proof. See [Ko, Theorem, p.371]. O

The above theorem can equivalently be restated to express the rational Chow groups
of X as

T

(6) CH'(X)g = P(&,Qw)))./ CH (T)q,

k=0
Here w] are the r — k codimensional relative cells and  runs over the indexing set of r — k

codimensional relative cells in the T-scheme X.

We now apply this theorem to our situation: we have a homogeneous bundle Z — §
and an étale atlas S := U, U, — S, such that Zy, — U, is trivial.

Lemma 3.4. Given a Zariski trivial homogeneous bundle p,, : Zy, — U,, the rational
Chow groups are described as follows:

r

CH'(Zu,)o = @ (@,Qw;]).p.CH (Ua)go.

k=0

Proof. Since the homogeneous bundle p, : Zy, — U, is a Zariski trivial bundle, it is
a relative cellular variety. Hence the above Theorem 3.3 can be applied and it gives a
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natural isomorphism

r

CH'(Zu,)o = P (@,Qw}]). f2:CH* (Ua)o-

k=0
Equivalently, since Zy, = F x U,, we have the equality (see [FMSS, Theorem 2]):
(7) CH'(Zy,)o=CH'(F xUy)g= Y  CH(F)g.CH (U,)q.
Psa,p+q=r
Here F' is a typical fibre of Z — S which is cellular variety. This gives the assertion. [J

For our applications, it suffices to consider the piece £ = 0, which consists of only the
relative algebraic cells of codimension r, namely,

RCH"(Zy,)q = ©,Qlwg ).

In other words, we only look at the subgroup consisting of the direct summand
CH"(F) Cc CH"(F x U,),

in (7).

A similar equality as in (7), holds in the rational singular cohomology of Zy, — U,.
So we can also define the piece

RH*(Zy,)q = &,Qlw]
in the rational singular cohomology of Z;;, and the piece
RH*(Z)q = &,Qlw]

as a subspace of the rational Betti cohomology H?"(Z,Q), generated by the relative
analytic cells w]. Here, we use the fact that Z — S is locally trivial in the analytic
topology and there is a analytic cellular decomposition similar to (5).

Lemma 3.5. The cycles wy in RCH*(Zy, )g patch together in the étale site to determine
a subspace RCH*(Z)g of CH*(Z)q, generated by the patched cycles and which maps
isomorphically onto the subspace RH*"(Z)g C H* (Z,Q), under the cycle class map

CH'(Z)g — H*(Z,Q).
Proof. Note that the cycles wy € RCH*(Zy,)q patch together as analytic cycles in the
étale site and determine a subspace RH*"(Z)q C H*(Z,Q),
Since the fiber F' is a cellular variety, there is a natural isomorphism
(8) RCH*(Zu,)q = RH*(Zu,)a

between the 0-th piece of the rational Chow group and the relative Betti cohomology, for
each a.

Via the isomorphism in (8), the patching conditions required over the étale site, to
define the piece RCH?(Z)g are the same as those for RH*(Z)g. More precisely, the
patching conditions are given in [Gi, §4]. The identification in (8) together with the
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fact that the patching conditions are fulfilled for the singular cohomology of the étale
site, says that the cycles w] patch together to give a class in RH*"(Z)g, and hence they
also patch together to give a class in RCH? (Z)g. These patched classes generate the
Q-subspace RCH?*"(Z)g C CH*(Z)g and which maps isomorphically onto the subspace
RH*(Z)q C H*(Z,Q) under the cycle class map. O

Corollary 3.6. There is a canonical isomorphism
RCHT(Z>Q ~ RH2T(Z)Q.

between the rational Chow groups and the rational cohomology generated by the relative
cells.

Let n :=dim(Z/5S).

Corollary 3.7. The bundle Z — S has a relative Chow—Kiinneth decomposition, in the
sense of [GHMul].

Proof. This is an application of Lemma 3.5, applied to the relative product Z xg Z — S.
We notice that the relative orthogonal Kiinneth projectors in H*"(Z xg Z,Q) lift to
relative orthogonal projectors in H*'(Zy, Xy, Zy,,Q) and which add to the relative
diagonal cycle. Now we note that the relative diagonal Az/g and its orthogonal Kiinneth
components actually lie in the piece RH*"(Z x5 Z)qg (generated by the relative algebraic
cells) and under the isomorphisms in (3), (4), lift to an orthogonal decomposition

2n
Az/g = an c RH2R(Z Xg Z)Q
i=0
over the étale site, i.e, over Zy_ Xy, Zy,, for each a € I. Now apply Corollary 3.6 to the
product space Zy, Xy, 4y, — U,, to lift the above orthogonal projectors to orthogonal
algebraic projectors in RCH"(Zy, Xu, Zu,)o, and these patch to give relative Chow—
Kiinneth projectors and a relative Chow—Kiinneth decomposition
2n
Az/s = ZHZ € CHn(Z Xg Z)Q
i=0

O

Proposition 3.8. Suppose Z — S is a rational homogeneous bundle over a smooth
variety S. Then the motive of the bundle Z — S is expressed as a sum of tensor products
of summands of the motive of S with the twisted Tate motive. More precisely, the motive
of Z can be written as

hZ) = @hi(Z)

17 ® hk(S). Here r,, is the number of j-codimensional cells on

where h'(Z) = @
a fibre F

j+k Twa
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In particular, if S has a Chow—Kiunneth decomposition then Z also admits an absolute
Chow—-Kinneth decomposition.

Proof. By Corollary 3.7, we know that the bundle Z/S has a relative Chow—Kiinneth
decomposition. Since the map Z — S is a smooth morphism and the fibres of Z7 — S
have only algebraic cohomology, we can directly apply the criterion in [GHMu2, Main
theorem 1.3], to get absolute Chow—Kiinneth projectors for Z and the decomposition
stated above (for example, see [ly, Lemma 3.2, Corollary 3.3], together with [Ak-Jo] for
étale quotients of abelian varieties). U

Remark 3.9. Suppose X is a smooth projective variety with a nef tangent bundle. Then
by [Ca-Pe],[DPS], we know that there is an étale cover X' — X of X such that X' — A
is a smooth morphism over an abelian variety A, whose fibres are smooth Fano varieties
with a nef tangent bundle. It is an open question [Ca-Pe, p.170], whether such a Fano
variety is a rational homogeneous variety. A positive answer to this question, together
with Proposition 3.8, will give absolute Chow—Kinneth projectors for all varieties with a
nef tangent bundle. See also [Hw, section 4] for a discussion on new cases (for instance,
for all varieties upto dimension four) where this question is answered positively.

4. CHOW—KUNNETH DECOMPOSITION FOR LOG HOMOGENEOUS VARIETIES

Log homogeneous varieties were introduced by M. Brion [Br|. Suppose X is a smooth
projective variety and D C X is a normal crossing divisor. Then X is said to be log
homogeneous with respect to D if the logarithmic tangent bundle 7x(—D) is generated
by its global sections. Then X is almost homogeneous under the connected automorphism
group G := Aut’(X, D), with boundary D. The G-orbits in X are exactly the strata
defined by D, in particular their number is finite.

A classification of log homogeneous varieties is given by Brion which says:

Theorem 4.1. Any log homogeneous variety X can be written uniquely as G x'Y , where
1) G is connected algebraic group,
2) 1 C G is a closed subgroup containing Gurr as a subgroup of finite indez,

3) choose any Levi subgroup L C Gugp, Y is a complete smooth I-variety containing an
open L-stable subset Y, such that the L-variety Y is spherical and the projection

(9) X —G/I=: A

is the Albanese morphism.
Proof. See [Br, Theorem 3.2.1]. O

Recall that a smooth spherical variety Y is a G-variety such that the Borel subgroup
B of GG has an open dense orbit in Y. It is known that Y contains a finite number of
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B-orbits. Since we are looking at varieties defined over C, it follows that a spherical
variety is a linear variety (in the sense of [To, Addendum, p.5]). In particular, we have

Lemma 4.2. Suppose Y is a smooth complete spherical variety. Then there is an iso-
morphism
CH\(Y) = H*(Y,7)

for each 1.

Proof. See [FMSS, Corollary to Theorem 2]. O

Lemma 4.3. Suppose Y is a smooth complete spherical variety. Then Y has a Chow-
Kinneth decomposition.

Proof. This follows from Lemma 4.2 and the construction of orthogonal projectors given
in [Iy-Ml, Lemma 5.2]. O

We will show that X has a Chow—Kiinneth decomposition under the following assump-
tion;

Theorem 4.4. Suppose X is a log homogeneous variety. Then the variety X has a
Chow—Kiinneth decomposition. Moreover, the motive of X s expressed as a sum of tensor
products of the summands of the motive of its Albanese reduction, with the twisted Tate
motive.

Proof. With notations as in Theorem 4.1, suppose the spherical variety Y is a Fano variety.
Then, by [Bi-Br, Proposition 4.2 i)], we have the vanishing H*(Y,Ty) = 0. In particular,
this implies that the formal deformations of Y are trivial. Hence, by [Se, Proposition
2.6.10], the Albanese fibration in (9) is étale locally trivial. In general, consider the
Albanese fibration
X=Gx'Y -G/I=A

which is easily seen to be etale locally trivial. The following explanation is due to B.
Totaro: notice that all the fibers of this morphism are isomorphic to Y. In more detail,
this morphism is etale locally trivial because the morphism G — G/I is etale locally
trivial, which is a standard fact about the quotient of an algebraic group by a smooth
closed subgroup. See the discussion of homogeneous spaces in [Bo, 6.14].

Hence we can apply the methods from the previous section. By Lemma 4.3, relative
Chow-Kiinneth projectors can be constructed for Zariski trivialisations of (9) over étale
covers U, — A. Hence the proof of Proposition 3.8 applies to this situation. Indeed,
Lemma 3.4 holds for a relative spherical variety over U,. This can be applied to the
Albanese fibration in (9) over étale morphisms where it is Zariski trivial. In this case, the
following piece of the rational Chow ring RCH*(U, x Y)q is identified with the Chow
ring CH*(Y)g. A formula similar to (6) holds for the Chow groups of U, x Y, since Y is
cellular, see [FMSS, Theorem 2]. Hence, by Lemma 4.2, CH*(U, x Y )g =~ H*(U, X Y )q.
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Similarly Lemma 3.5 and Corollary 3.6 hold for (9) over étale morphisms. The rest of the

arguments are the same as given for a rational homogeneous bundle. 0
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