TAUTOLOGICAL RING OF THE MODULI SPACE OF GENERALISED
PARABOLIC LINE BUNDLES ON A CURVE
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ABSTRACT. In this paper, we consider the tautological Ting containing the extended
Brill-Noether algebraic classes on the normalization of the compactified Jacobian of a
complex nodal projective curve (with one node). This smallest Q-subalgebra of algebraic
classes under algebraic equivalence, stable under extensions of the maps induced by mul-
tiplication maps, Pontrayagin product and Fourier transform, is shown to be generated
by pullback of the Brill-Noether classes of the Jacobian of the normalized curve and some
natural classes.

1. INTRODUCTION

Suppose X is a connected smooth projective curve of genus g and defined over the
complex numbers. Let D = x1 + x5 be an effective divisor on the curve X, such that the
point z is different from the point x5. We recall the notion of generalised parabolic line
bundles, due to U. Bhosle [Bh]. A generalised parabolic bundle of rank one on (X, D)
consists of the data ([Bh, p.187]):

1) E is a line bundle on X

2) F}(E)p C E,, ® E,, is a rank one subspace of the direct sum of the fibres of E at
z1 and zs.

Th moduli space P of generalised parabolic line bundles on X is a smooth projective
variety of dimension g + 1 and is in fact a P!-bundle over the Jacobian variety Jac(X),
see [Bh, Proposition 2.2].

U. Bhosle and A.J. Parameswaran [Bh-Pa] have defined natural subvarieties W, C P,
for v = 1,2,...,9. These are defined as the Brill-Noether loci, similar to the naturally
defined subvarieties W; C Jac(X), and they have proved a Poincaré formula in terms of
the classes W in the group of algebraic cycles modulo numerical equivalence.

In this paper, we would like to understand the Poincaré relations in the rational ring of
algebraic classes of P modulo algebraic equivalence. More precisely, consider the group
AF(P) of algebraic cycles of codimension k on P, modulo algebraic equivalence and denote
A*(P)g := A*(P) ® Q. Then the direct sum A*(P)g := ®i>0A"(P)g is a commutative
ring with the intersection product. The first question that arises is whether the classical
Poincaré formula for the classes W;, holds in the ring A*(P)q.
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In this context, for the Jacobian Jac(X) of a smooth projective curve X of genus g, a re-
sult of Ceresa [Ce] says that the Poincaré formula does not hold in the ring A*(Jac(X))g.
To study other relations between the classes W;, A. Beauville [Be2] considered the tauto-
logical ring R C A*(Jac(X))gp. The ring R is the smallest Q-subalgebra containing the
classes W;, 1 < i < ¢, and stable under the pullback maps n*, pushforward maps n, and
closed under the Pontryagin product *. Here n : Jac(X) — Jac(X) is multiplication by
the integer n, for any n. The Pontryagin product x is defined in [Be], and we recall it in
§2. He proved that the ring R is in fact generated by the classes W;, for 1 <1 < g.

To obtain similar results on P, we note that the multiplication maps, Pontryagin
product and Fourier transform can be extended on the ring A*(P)g. We consider the
tautological ring R C A*(P)g containing the classes W;, Sy, c1(Op(1)) and the smallest

Q-subalgebra stable under natural analogues of n*, n, and the Pontryagin product *, see
§3.4, 3.5. Here S, is a section of the P'-bundle 7 : P — Jac(X), defined in §3.2. We show

Theorem 1.1. The Q-algebra R is generated by m*W; and by c1(Op(1)).

The proof is given in §4, and depends on the structure of the classes If/lv/l and action of
the extended Pontryagin product and Fourier transform on the ring of algebraic classes.

Acknowledgements: We thank A.J.Parameswaran for useful discussions on [Bh-Pa] in Dec 2009.

Thanks are also due to the referee for the comments.

2. PRELIMINARIES

In this section, we recall some of the basic properties of the group of algebraic classes
on the Jacobian of a smooth projective curve of genus g.

Suppose X is a smooth projective curve of genus ¢g. It can be embedded into the
Jacobian variety Jac(X), fixing a base point on X. Using the group law on Jac(X), we
define certain natural subvarieties W; := X + X + ... + X (i times). These subvarieties
are well-defined up to translation. The classical Poincare’s formula gives

1
(g —)!
and we see that W,_; is the theta divisor 6 on Jac(X).

A. Beauville [Be2| studied the tautological subring R C A*(Jac(X))g which is the
smallest Q-subalgebra containing the classes W;, 1 < i < g and stable under the pullback

gI"

W; =

maps n*, pushforward maps n,, closed under the intersection product and the Pontryagin
product *. The group A*(Jac(X))g is a Q-vector space, and graded by the codimension
of the cycle classes. The addition (or multiplication) map m : Jac(X) x Jac(X) —
Jac(X), (x,y) — = + y, induces the pushforward map m, on the group of cycles on
Jac(X) x Jac(X). This helps us to define the Pontryagin product as below.
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The group A*(Jac(X)g has two natural multiplication laws which are associative and
commutative: namely the intersection product and the Pontryagin product defined by:

z*y = mi(p'x - q"y).

Here p*, ¢* : A*(Jac(X))g — A*(Jac(X))g x A*(Jac(X))g are the maps induced by
the first and the second projections Jac(X) x Jac(X) — Jac(X), respectively. Note that
x is homogeneous of degree —g.

We will identify Jac(X) with it’s dual using the principal polarization on it. We define
W9~ € A97"(Jac(X)) as the class of W; in A*(Jac(X)).

Lemma 2.1. There is a second graduation on AP(Jac(X)) = ®AP(Jac(X))(s) such that

2p—s 29—210-‘1-5'r

n'r=n""’r, nx=n

for x € AP(Jac(X)) () and for all n € Z. Also, AP(Jac(X))s) # 0 only if s <p < g+ s.
Both products are homogeneous with respect to the second graduation.
Proof. See [Be, Proposition 1 and Proposition 4]. O
We recall some of the properties of the Fourier transform for algebraic cycles on the
Jacobian Jac(X).
Let
(1) Ci=p 0+ q0—m*0 e A'(Jac(X) x Jac(X))
which is the class of Poincare line bundle £ on Jac(X) x Jac(X). Fourier transform
F: A*(Jac(X)) — A*(Jac(X)) defined by Fz = q.(p*z- €*) satisfies following properties:
2.1. FoF = (—-1)9(-1)*
2.2. F(xxy)=Fa Fyand F(z-y) = (-1)9Fzx Fy

2.3. FAP(X) () = A97PH(X) (4 (see [Be, Proposition 1]).

The main theorem in [Be2] is:

Theorem 2.2. R is the Q-subalgebra of A*(Jac(X))q generated by the algebraic classes
WL w2, . . Wt

3. ALGEBRAIC CYCLES ON THE MODULI SPACE OF GENERALISED PARABOLIC LINE
BUNDLES ON A CURVE

Suppose X is a connected nodal curve, with a single node at x € X. The Jacobian
Jac(X) of X is a non-compact variety, namely an extension of the Jacobian of the normal-
ized curve by C*. Oda and Seshadri [Od-Se] defined a compactification Jac(X) of Jac(X)

by adding rank one torsion free sheaves on X. However, this is a singular variety and
hence it is difficult to understand algebraic classes of naturally defined subvarieties. So



4 J. N. IYER

it is convenient to look at good compactifications of Jac(X) and try to define extensions
suitably. For this purpose, we recall U.Bhosle’s work [Bh] on rank one Parabolic sheaves
and subsequent relations.

3.1. Generalised Parabolic line bundles on a curve. Suppose X is a connected
smooth projective curve of genus g. U. Bhosle [Bh| defined the notion of a generalised
parabolic bundle on a smooth curve. This is relevant to the study of torsion free rank one
sheaves on nodal curves, as we will see below.

Fix an effective divisor D on X, such that the points are distinct. For the sake of
simplicity, in this paper, we will assume that D = x1 + x9, x1 # 5.

A generalised parabolic line bundle on (X, D) is the data:

1) E is a line bundle on X.

2) FI(E)p C E,, ® E,, is a rank one vector subspace. Here E,, denotes the fibre of E
at the point x;.

A generalised parabolic line bundle as above will be denoted by the pair (E, F1(E)p).

We have the following result:

Proposition 3.1. The moduli space of generalised parabolic line bundles on (X, D), where
D = xy + x5, 11 # xo, 1 a smooth projective variety. It is in fact a P1-bundle over the
Jacobian of the normalized curve.

Proof. See [Bh, Proposition 2.2]. O

3.2. Relationship with torsion free sheaves on a nodal curve. Suppose X is an
irreducible nodal curve of arithmetic genus g + 1. Denote the nodal point by z € X.
Consider the desingularisation p : X’ — X of the curve X. Let p~'(z) = {y, 2z}, where
y,z € X' are smooth points. Consider the effective divisor D := y + z on the smooth
projective curve X' of genus g.

Firstly, we note that the Jacobian variety Jac(X) of X is a smooth group variety. In
fact, it can be expressed as a central extension:

1—C" — Jac(X) LN Jac(X') — 0.

Here p* is the morphism defined by the pullback of line bundles via p : X’ — X. In
particular, the group variety Jac(X) is not a compact variety. Oda and Seshadri [Od-Se]
defined a natural compactification Jac(X) of Jac(X). The variety Jac(X) is constructed

as the moduli space of torsion free rank one sheaves on the curve X. However, the variety

Jac(X) is not a smooth variety. It was noticed in [Bh], that there is a morphism

h:P — Jac(X).
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It is defined as follows. Given a generalised parabolic data (F, F'(E)p)) on X', consider
the exact sequence of sheaves on X:
g LD E;
0— F — p(E) = p*(m) — 0.

The term at the right end of the exact sequence is a skyscraper sheaf supported at the
nodal point x. Then the sheaf F' is defined as the kernel of the natural restriction map,
and it is a torsion free rank one sheaf on X. Furthermore, F is locally free as long as the
map ¢ is not the projection to either E, or E,. In other words, F is locally free if and

only if F*(E)p # E, or E,, see [Bh, Proposition 1.8], [Bh-Pa, Lemma 2.2].

Proposition 3.2. There is a natural inclusion of the Jacobian J(X) C P and the mor-
phism h restricts to an isomorphism on J(X).

Proof. See [Bh-Pa, 889]. The inclusion Jac(X) < Pis given as: given Ly € Jac(X),
consider the exact sequence,

0— Ly — p.p*Lo — Q — 0.
Here @ is a rank one skyscraper sheaf supported at the node z. Consider the kernel F'! :=
ker{(p.p*Lo)s = (p*Lo), ® (p*Lo). — Q}. Then i(Lg) := (p* Lo, F'). By construction h
is an isomorphism over Jac(X).

O

Let S, C P (resp. S, C P) denote the section which corresponds to the points
parametrizing (p*L,p*(L),) € P (resp. (p*L,p*(L).)).

We now look for subvarieties of P, which are an analogue of the subvarieties W; of the
Jacobian of a smooth projective curve. These are defined in [Bh-Pa| as follows.

Denote X, the smooth locus of the nodal curve X, with one node at x € X. Fix a
basepoint p € Xj.

Define the morphism fy, for 1 < d < g:

Sym?(X,) — P
(x1, 22, .., xq) — Ox(x1 4+ 22+ ... + 24— d.p).
Denote I/IA//d the closure of the image of the morphism f;, with the reduced scheme

structure.

We will use the following decomposition from [Bh-Pal, for the projection 7 : P —
Jac(X'). Recall that X’ — X is the normalization of X such that y,z € X' lie over
e X.

Lemma 3.3. There is a decomposition of cycles in the Chow group CH,_q4(P):
Wg_d = 7T_1<Wg_d).sy + 7T_1Wg_d_1.

Proof. See [Bh-Pa, Lemma 3.5,p.892]. d
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We now have good analogues of the naturally defined subvarieties {W;}. Our next aim
is to extend the basic operations n,,n*, the Pontryagin product and Fourier transform
on the group of cycles on P. This is done in the next few subsections.

3.3. Extension of the natural operators n*, n, on A*(P). Given an integer n € Z,
consider the multiplication map
n: Jac(X) — Jac(X), v — n.x.

This map induces a group homomorphism n* : A*(Jac(X))g — A*(Jac(X))g. Since the
variety Jac(X) is not a compact variety, the pushforward map n, is not defined. In this
subsection, we would like to define natural extensions of the maps n* and the pushforward
map n, on the group A*(P)g.

Proposition 3.4. Giwen an integer n € Z, the multiplication map n extends on P and
defines the pushforward n, and pullback map n* on A*(P)q.

Proof. We need to check that the map n : Jac(X) — Jac(X) extends ton : P — P.
This can be checked fibre wise. The natural multiplication map on the fibres C* of
Jac(X) — Jac(X') is the usual map a — a" on C*. This map obviously extends to P!
fixing the complementary points 0 and oo. O

Consider the eigenspace decomposition of the groups of algebraic cycles:
A¥(P)g = €D A*(P) (),
where
AF(P)(s) == {a € A"(P)g : nua = n* ., n"a = n***.q, for all n € Z}.
Consider the projection 7 : P — Jac(X').

Lemma 3.5. The group of algebraic cycles A*(P)g can be expressed as:

(2) A¥(P)g = A*(Jac(X"))o @ H.A*(Jac(X'))o.

Here H := ¢,(Op(1)).

Proof. This is a consequence of the projective bundle formula [Fu] applied to the P!-bundle
m: P — Jac(X'). O

Lemma 3.6. The pushforward map n, and the pullback map n* are compatible with the
decomposition in (2). In particular, the eigenspace A*(P) ) can be written as:

Ak(P)(S) = Ak(JCLC(X/))(S) D H.Ak_l(Jac(X'))(s).

Proof. Clear. U
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3.4. Pontryagin product on the ring A*(P)g. We first consider the multiplication
(or the addition) map

m : Jac(X) x Jac(X) — Jac(X), (a,b) — a+b.

We first note that the map m does not extend on the compactification P (otherwise P
will be a group variety, which is not the case). Hence, we consider the rational map:

m:PxP— P

After suitable blow-ups, we can resolve the rational map m to get a commutative

diagram:

(3) P

(4) AN
(5) Pxp & P

Lemma 3.7. There is a Pontryagin product x on the ring of algebraic cycles A*(P)g:
* o Ak(P>Q X AZ<P)Q — Ak+l_g(P)Q.

In particular the ring A*(P)g has two products, the intersection product and the Pontrya-
gin product.

Proof. Consider the above resolution of the rational map m. Note that the map f is a
sequence of blow-ups. In fact it needs only one blow up: one needs to blow up only .S, xS,
and S, x S, in P x P. Here S, C P (resp. S, C P) denotes the section which corresponds
to the points parametrizing (p*L, p*(L),) € P (resp. (p*L,p*(L),)).

Hence, by the blow-up formula [Fu], we have
AF(P)g = A*¥(P x P)g @ A*(S).

Here S C P is a proper closed subvariety, and determined by the centre of blow-ups.
Denote the two projections on P x P by p; and p;. We now define the Pontryagin
product * as follows:

0 AM(P)g x Al(P)g — AM'79(P)q
*(a, B) = m.(f*(plapsB)) € AMTI(P)g
This gives the Pontryagin product on the ring A*(P)g. O

Lemma 3.8. The Pontryagin product x on A*(P)g is compatible with the decomposition

(2).

Proof. We just need to note that the section ¢;(Op(1)) and any fibre of the P'-bundle P
is preserved under multiplication m. Hence m, reduces to m/ on the decomposition (2).
Here m/, is induced by the multiplication m’ on Jac(X").

O
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3.5. Fourier transform on the ring A*(P)g. We would like to now define Fourier
transform on P. Recall that on the usual Jacobian Jac(C') of a smooth projective curve
C, the Fourier transform is defined via the first Chern class ¢;(P) of the Poincaré line
bundle P, on the product Jac(C) x Jac(C). The class ¢;(P) is p* + ¢*0 — m*60, where
0 C Jac(C) is the theta divisor, see (1).

On the variety P with projection 7 : P — Jac(X'), we consider the extended theta
divisor class (see [Bh-Pa, Lemma 3.5, p.892]):

—

(6) Wy =8, +7 'W,_1.
Here g + 1 is the arithmetic genus of X and ¢ is the genus of the normalization X'.

We define the extended Poincaré class as follows:

(7) 0= p*wg + q*ﬁ//g = f*fﬁ*wg.
Here m and f are defined in (3).

Lemma 3.9. The extended Poincaré class is

(= (7 x )L

Proof. We first note, using Lemma 3.3,

0 = p(S,) +p'n Wyt + ¢*(Sy) + ¢ W,y — fum*S, — fum* (W)
p*Sy +q*Sy — fem* Sy + (7 x m)*L

P*Sy+q*Sy —p*Sy — ¢" Sy + (m x m)*L

= (m x m)*L.

Definition 3.10. The Fourier transform F on A*(P)q is defined as:
F: A*(P)g — A*(P)q,

for x € A*(P)q, let Fr = q*(p*a:-ez). Here p,q : P x P — P are the first and second
projections respectively.

Lemma 3.11. The Fourier transform F satisfies following properties:
1) FoF = (-1)°(-1)
2) F(zxy) = Fo- Fy and F(z-y) = (—1)9Fz = Fy.
Proof. From Lemma 3.9, we note that el = (m x 7)*e’ and F is defined by this correspon-

dence cycle. Hence, using the decomposition (2), compatibility of Pontryagin product
Lemma 3.8, and Properties (2.1), (2.2), the assertion follows.

O

Lemma 3.12. We have
F(A(P)g) ) = AT (P)g)(s)



Proof. Use the decomposition in Lemma 3.6 and apply Proposition 2.3.

4. THE TAUTOLOGICAL RING R OF P

As in [Be2], consider the tautological subring R C A(P)g which is the smallest Q-
subalgebra containing the classes W;, 1 <i < g, Sy and ¢1(Op(1)), and stable under the
pullback maps n*, pushforward maps n,, closed under the intersection product and the
Pontryagin product .

Theorem 4.1. The Q-algebra R is generated by the classes T 'W;, 1 <i < g—1, 5,
and ¢,(Op(1)).

Proof. We just need to note that R is generated by the Q-subalgebra R and the classes
Sy, ¢1(Op(1)). Indeed, the maps n,, n* induced by multiplication by n, preserve R
and the classes Sy, ¢1(Op(1)), by Proposition 3.4. Similarly, it is now straightforward
to check that the Pontryagin product and Fourier transform preserve the Q-subalgebra

<R,Sy,c1(Op(1)) >. By Theorem 2.2, the assertion follows. O
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