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Abstract. In this paper, we consider the tautological ring containing the extended
Brill-Noether algebraic classes on the normalization of the compactified Jacobian of a
complex nodal projective curve (with one node). This smallest Q-subalgebra of algebraic
classes under algebraic equivalence, stable under extensions of the maps induced by mul-
tiplication maps, Pontrayagin product and Fourier transform, is shown to be generated
by pullback of the Brill-Noether classes of the Jacobian of the normalized curve and some
natural classes.

1. Introduction

Suppose X is a connected smooth projective curve of genus g and defined over the

complex numbers. Let D = x1 + x2 be an effective divisor on the curve X, such that the

point x1 is different from the point x2. We recall the notion of generalised parabolic line

bundles, due to U. Bhosle [Bh]. A generalised parabolic bundle of rank one on (X,D)

consists of the data ([Bh, p.187]):

1) E is a line bundle on X

2) F 1(E)D ⊂ Ex1 ⊕ Ex2 is a rank one subspace of the direct sum of the fibres of E at

x1 and x2.

Th moduli space P of generalised parabolic line bundles on X is a smooth projective

variety of dimension g + 1 and is in fact a P1-bundle over the Jacobian variety Jac(X),

see [Bh, Proposition 2.2].

U. Bhosle and A.J. Parameswaran [Bh-Pa] have defined natural subvarieties W̃i ⊂ P ,

for i = 1, 2, ..., g. These are defined as the Brill-Noether loci, similar to the naturally

defined subvarieties Wi ⊂ Jac(X), and they have proved a Poincaré formula in terms of

the classes W̃i in the group of algebraic cycles modulo numerical equivalence.

In this paper, we would like to understand the Poincaré relations in the rational ring of

algebraic classes of P modulo algebraic equivalence. More precisely, consider the group

Ak(P ) of algebraic cycles of codimension k on P , modulo algebraic equivalence and denote

Ak(P )Q := Ak(P ) ⊗ Q. Then the direct sum A∗(P )Q := ⊕k≥0A
k(P )Q is a commutative

ring with the intersection product. The first question that arises is whether the classical

Poincaré formula for the classes W̃i, holds in the ring A∗(P )Q.
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In this context, for the Jacobian Jac(X) of a smooth projective curve X of genus g, a re-

sult of Ceresa [Ce] says that the Poincaré formula does not hold in the ring A∗(Jac(X))Q.

To study other relations between the classes Wi, A. Beauville [Be2] considered the tauto-

logical ring R ⊂ A∗(Jac(X))Q. The ring R is the smallest Q-subalgebra containing the

classes Wi, 1 ≤ i ≤ g, and stable under the pullback maps n∗, pushforward maps n∗ and

closed under the Pontryagin product ∗. Here n : Jac(X) → Jac(X) is multiplication by

the integer n, for any n. The Pontryagin product ∗ is defined in [Be], and we recall it in

§2. He proved that the ring R is in fact generated by the classes Wi, for 1 ≤ i ≤ g.

To obtain similar results on P , we note that the multiplication maps, Pontryagin

product and Fourier transform can be extended on the ring A∗(P )Q. We consider the

tautological ring R̃ ⊂ A∗(P )Q containing the classes W̃i, Sy, c1(OP (1)) and the smallest

Q-subalgebra stable under natural analogues of n∗,n∗ and the Pontryagin product ∗, see

§3.4, 3.5. Here Sy is a section of the P1-bundle π : P → Jac(X), defined in §3.2. We show

Theorem 1.1. The Q-algebra R̃ is generated by π−1Wi and by c1(OP (1)).

The proof is given in §4, and depends on the structure of the classes W̃i and action of

the extended Pontryagin product and Fourier transform on the ring of algebraic classes.

Acknowledgements: We thank A.J.Parameswaran for useful discussions on [Bh-Pa] in Dec 2009.

Thanks are also due to the referee for the comments.

2. Preliminaries

In this section, we recall some of the basic properties of the group of algebraic classes

on the Jacobian of a smooth projective curve of genus g.

Suppose X is a smooth projective curve of genus g. It can be embedded into the

Jacobian variety Jac(X), fixing a base point on X. Using the group law on Jac(X), we

define certain natural subvarieties Wi := X + X + . . . + X(i times). These subvarieties

are well-defined up to translation. The classical Poincare’s formula gives

Wi =
1

(g − i)!
θg−i

and we see that Wg−1 is the theta divisor θ on Jac(X).

A. Beauville [Be2] studied the tautological subring R ⊂ A∗(Jac(X))Q which is the

smallest Q-subalgebra containing the classes Wi, 1 ≤ i ≤ g and stable under the pullback

maps n∗, pushforward maps n∗, closed under the intersection product and the Pontryagin

product ∗. The group A∗(Jac(X))Q is a Q-vector space, and graded by the codimension

of the cycle classes. The addition (or multiplication) map m : Jac(X) × Jac(X) →
Jac(X), (x, y) → x + y, induces the pushforward map m∗ on the group of cycles on

Jac(X)× Jac(X). This helps us to define the Pontryagin product as below.



3

The group A∗(Jac(X)Q has two natural multiplication laws which are associative and

commutative: namely the intersection product and the Pontryagin product defined by:

x ∗ y := m∗(p
∗x · q∗y).

Here p∗, q∗ : A∗(Jac(X))Q → A∗(Jac(X))Q × A∗(Jac(X))Q are the maps induced by

the first and the second projections Jac(X)×Jac(X)→ Jac(X), respectively. Note that

∗ is homogeneous of degree −g.

We will identify Jac(X) with it’s dual using the principal polarization on it. We define

W g−i ∈ Ag−i(Jac(X)) as the class of Wi in A∗(Jac(X)).

Lemma 2.1. There is a second graduation on Ap(Jac(X)) = ⊕sA
p(Jac(X))(s) such that

n∗x = n2p−sx , n∗x = n2g−2p+sx

for x ∈ Ap(Jac(X))(s) and for all n ∈ Z. Also, Ap(Jac(X))(s) 6= 0 only if s < p ≤ g + s.

Both products are homogeneous with respect to the second graduation.

Proof. See [Be, Proposition 1 and Proposition 4]. �

We recall some of the properties of the Fourier transform for algebraic cycles on the

Jacobian Jac(X).

Let

(1) ` := p∗θ + q∗θ −m∗θ ∈ A1(Jac(X)× Jac(X))

which is the class of Poincare line bundle L on Jac(X) × Jac(X). Fourier transform

F : A∗(Jac(X))→ A∗(Jac(X)) defined by Fx = q∗(p
∗x· e`) satisfies following properties:

2.1. F ◦ F = (−1)g(−1)∗

2.2. F(x ∗ y) = Fx· Fy and F(x· y) = (−1)gFx ∗ Fy

2.3. FAp(X)(s) = Ag−p+s(X)(s) (see [Be, Proposition 1]).

The main theorem in [Be2] is:

Theorem 2.2. R is the Q-subalgebra of A∗(Jac(X))Q generated by the algebraic classes

W 1,W 2, . . . ,W g−1.

3. Algebraic cycles on the moduli space of generalised parabolic line

bundles on a curve

Suppose X is a connected nodal curve, with a single node at x ∈ X. The Jacobian

Jac(X) of X is a non-compact variety, namely an extension of the Jacobian of the normal-

ized curve by C∗. Oda and Seshadri [Od-Se] defined a compactification Jac(X) of Jac(X)

by adding rank one torsion free sheaves on X. However, this is a singular variety and

hence it is difficult to understand algebraic classes of naturally defined subvarieties. So
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it is convenient to look at good compactifications of Jac(X) and try to define extensions

suitably. For this purpose, we recall U.Bhosle’s work [Bh] on rank one Parabolic sheaves

and subsequent relations.

3.1. Generalised Parabolic line bundles on a curve. Suppose X is a connected

smooth projective curve of genus g. U. Bhosle [Bh] defined the notion of a generalised

parabolic bundle on a smooth curve. This is relevant to the study of torsion free rank one

sheaves on nodal curves, as we will see below.

Fix an effective divisor D on X, such that the points are distinct. For the sake of

simplicity, in this paper, we will assume that D = x1 + x2, x1 6= x2.

A generalised parabolic line bundle on (X,D) is the data:

1) E is a line bundle on X.

2) F 1(E)D ⊂ Ex1 ⊕Ex2 is a rank one vector subspace. Here Exi
denotes the fibre of E

at the point xi.

A generalised parabolic line bundle as above will be denoted by the pair (E,F 1(E)D).

We have the following result:

Proposition 3.1. The moduli space of generalised parabolic line bundles on (X,D), where

D = x1 + x2, x1 6= x2, is a smooth projective variety. It is in fact a P1-bundle over the

Jacobian of the normalized curve.

Proof. See [Bh, Proposition 2.2]. �

3.2. Relationship with torsion free sheaves on a nodal curve. Suppose X is an

irreducible nodal curve of arithmetic genus g + 1. Denote the nodal point by x ∈ X.

Consider the desingularisation p : X ′ → X of the curve X. Let p−1(x) = {y, z}, where

y, z ∈ X ′ are smooth points. Consider the effective divisor D := y + z on the smooth

projective curve X ′ of genus g.

Firstly, we note that the Jacobian variety Jac(X) of X is a smooth group variety. In

fact, it can be expressed as a central extension:

1→ C∗ → Jac(X)
p∗→ Jac(X ′)→ 0.

Here p∗ is the morphism defined by the pullback of line bundles via p : X ′ → X. In

particular, the group variety Jac(X) is not a compact variety. Oda and Seshadri [Od-Se]

defined a natural compactification Jac(X) of Jac(X). The variety Jac(X) is constructed

as the moduli space of torsion free rank one sheaves on the curve X. However, the variety

Jac(X) is not a smooth variety. It was noticed in [Bh], that there is a morphism

h : P → Jac(X).
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It is defined as follows. Given a generalised parabolic data (E,F 1(E)D)) on X ′, consider

the exact sequence of sheaves on X:

0→ F → p∗(E)
q→ p∗(

Ey ⊕ Ez

F 1(E)D

)→ 0.

The term at the right end of the exact sequence is a skyscraper sheaf supported at the

nodal point x. Then the sheaf F is defined as the kernel of the natural restriction map,

and it is a torsion free rank one sheaf on X. Furthermore, F is locally free as long as the

map q is not the projection to either Ey or Ez. In other words, F is locally free if and

only if F 1(E)D 6= Ez or Ey, see [Bh, Proposition 1.8], [Bh-Pa, Lemma 2.2].

Proposition 3.2. There is a natural inclusion of the Jacobian J(X) ⊂ P and the mor-

phism h restricts to an isomorphism on J(X).

Proof. See [Bh-Pa, 889]. The inclusion Jac(X)
i
↪→ P is given as: given L0 ∈ Jac(X),

consider the exact sequence,

0→ L0 → p∗p
∗L0 → Q→ 0.

Here Q is a rank one skyscraper sheaf supported at the node x. Consider the kernel F 1 :=

ker{(p∗p∗L0)x = (p∗L0)y ⊕ (p∗L0)z → Q}. Then i(L0) := (p∗L0, F
1). By construction h

is an isomorphism over Jac(X).

�

Let Sy ⊂ P (resp. Sz ⊂ P ) denote the section which corresponds to the points

parametrizing (p∗L, p∗(L)y) ∈ P (resp. (p∗L, p∗(L)z)).

We now look for subvarieties of P , which are an analogue of the subvarieties Wi of the

Jacobian of a smooth projective curve. These are defined in [Bh-Pa] as follows.

Denote X0 the smooth locus of the nodal curve X, with one node at x ∈ X. Fix a

basepoint p ∈ X0.

Define the morphism fd, for 1 ≤ d ≤ g:

Symd(X0) → P
(x1, x2, ..., xd) 7→ OX(x1 + x2 + ...+ xd − d.p).

Denote W̃d the closure of the image of the morphism fd, with the reduced scheme

structure.

We will use the following decomposition from [Bh-Pa], for the projection π : P →
Jac(X ′). Recall that X ′ → X is the normalization of X such that y, z ∈ X ′ lie over

x ∈ X.

Lemma 3.3. There is a decomposition of cycles in the Chow group CHg−d(P ):

W̃g−d = π−1(Wg−d).Sy + π−1Wg−d−1.

Proof. See [Bh-Pa, Lemma 3.5,p.892]. �
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We now have good analogues of the naturally defined subvarieties {Wi}. Our next aim

is to extend the basic operations n∗,n
∗, the Pontryagin product and Fourier transform

on the group of cycles on P . This is done in the next few subsections.

3.3. Extension of the natural operators n∗, n∗ on A∗(P ). Given an integer n ∈ Z,

consider the multiplication map

n : Jac(X)→ Jac(X), x 7→ n.x.

This map induces a group homomorphism n∗ : Ak(Jac(X))Q → Ak(Jac(X))Q. Since the

variety Jac(X) is not a compact variety, the pushforward map n∗ is not defined. In this

subsection, we would like to define natural extensions of the maps n∗ and the pushforward

map n∗ on the group A∗(P )Q.

Proposition 3.4. Given an integer n ∈ Z, the multiplication map n extends on P and

defines the pushforward n∗ and pullback map n∗ on Ak(P )Q.

Proof. We need to check that the map n : Jac(X) → Jac(X) extends to n : P → P .

This can be checked fibre wise. The natural multiplication map on the fibres C∗ of

Jac(X) → Jac(X ′) is the usual map a 7→ an on C∗. This map obviously extends to P1

fixing the complementary points 0 and ∞. �

Consider the eigenspace decomposition of the groups of algebraic cycles:

Ak(P )Q =
⊕

s

Ak(P )(s),

where

Ak(P )(s) := {α ∈ Ak(P )Q : n∗α = n2g−2k+s.α, n∗α = n2k−s.α, for all n ∈ Z}.

Consider the projection π : P → Jac(X ′).

Lemma 3.5. The group of algebraic cycles Ak(P )Q can be expressed as:

(2) Ak(P )Q = Ak(Jac(X ′))Q ⊕H.Ak−1(Jac(X ′))Q.

Here H := c1(OP (1)).

Proof. This is a consequence of the projective bundle formula [Fu] applied to the P1-bundle

π : P → Jac(X ′). �

Lemma 3.6. The pushforward map n∗ and the pullback map n∗ are compatible with the

decomposition in (2). In particular, the eigenspace Ak(P )(s) can be written as:

Ak(P )(s) = Ak(Jac(X ′))(s) ⊕H.Ak−1(Jac(X ′))(s).

Proof. Clear. �
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3.4. Pontryagin product on the ring A∗(P )Q. We first consider the multiplication

(or the addition) map

m : Jac(X)× Jac(X)→ Jac(X), (a, b) 7→ a+ b.

We first note that the map m does not extend on the compactification P (otherwise P

will be a group variety, which is not the case). Hence, we consider the rational map:

m : P × P → P.

After suitable blow-ups, we can resolve the rational map m to get a commutative

diagram:

P̃(3)

↓f
m̃

↘(4)

P × P m→ P(5)

Lemma 3.7. There is a Pontryagin product ∗ on the ring of algebraic cycles A∗(P )Q:

∗ : Ak(P )Q × Al(P )Q → Ak+l−g(P )Q.

In particular the ring A∗(P )Q has two products, the intersection product and the Pontrya-

gin product.

Proof. Consider the above resolution of the rational map m. Note that the map f is a

sequence of blow-ups. In fact it needs only one blow up: one needs to blow up only Sy×Sz

and Sz×Sy in P ×P . Here Sy ⊂ P (resp. Sz ⊂ P ) denotes the section which corresponds

to the points parametrizing (p∗L, p∗(L)y) ∈ P (resp. (p∗L, p∗(L)z)).

Hence, by the blow-up formula [Fu], we have

Ak(P̃ )Q = Ak(P × P )Q ⊕ Ak(S).

Here S ⊂ P̃ is a proper closed subvariety, and determined by the centre of blow-ups.

Denote the two projections on P × P by p1 and p2. We now define the Pontryagin

product ∗ as follows:

∗ : Ak(P )Q × Al(P )Q → Ak+l−g(P )Q

∗(α, β) = m̃∗(f
∗(p∗1α.p

∗
2β)) ∈ Ak+l−g(P )Q

This gives the Pontryagin product on the ring A∗(P )Q. �

Lemma 3.8. The Pontryagin product ∗ on A∗(P )Q is compatible with the decomposition

(2).

Proof. We just need to note that the section c1(OP (1)) and any fibre of the P1-bundle P

is preserved under multiplication m̃. Hence m̃∗ reduces to m′∗ on the decomposition (2).

Here m′∗ is induced by the multiplication m′ on Jac(X ′).

�
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3.5. Fourier transform on the ring A∗(P )Q. We would like to now define Fourier

transform on P . Recall that on the usual Jacobian Jac(C) of a smooth projective curve

C, the Fourier transform is defined via the first Chern class c1(P) of the Poincaré line

bundle P , on the product Jac(C) × Jac(C). The class c1(P) is p∗θ + q∗θ −m∗θ, where

θ ⊂ Jac(C) is the theta divisor, see (1).

On the variety P with projection π : P → Jac(X ′), we consider the extended theta

divisor class (see [Bh-Pa, Lemma 3.5, p.892]):

(6) W̃g := Sy + π−1Wg−1.

Here g + 1 is the arithmetic genus of X and g is the genus of the normalization X ′.

We define the extended Poincaré class as follows:

(7) ˜̀ := p∗W̃g + q∗W̃g − f∗m̃∗W̃g.

Here m̃ and f are defined in (3).

Lemma 3.9. The extended Poincaré class is˜̀ = (π × π)∗`.

Proof. We first note, using Lemma 3.3,˜̀ = p∗(Sy) + p∗π−1Wg−1 + q∗(Sy) + q∗π−1Wg−1 − f∗m̃∗Sy − f∗m̃∗(π−1Wg−1)
= p∗Sy + q∗Sy − f∗m̃∗Sy + (π × π)∗`
= p∗Sy + q∗Sy − p∗Sy − q∗Sy + (π × π)∗`
= (π × π)∗`.

�

Definition 3.10. The Fourier transform F̃ on A∗(P )Q is defined as:

F̃ : A∗(P )Q → A∗(P )Q,

for x ∈ A∗(P )Q, let F̃x = q∗(p
∗x· e˜̀

). Here p, q : P × P → P are the first and second

projections respectively.

Lemma 3.11. The Fourier transform F̃ satisfies following properties:

1) F̃ ◦ F̃ = (−1)g(−1)∗

2) F̃(x ∗ y) = F̃x· F̃y and F̃(x· y) = (−1)gF̃x ∗ F̃y.

Proof. From Lemma 3.9, we note that e
˜̀

= (π×π)∗e` and F̃ is defined by this correspon-

dence cycle. Hence, using the decomposition (2), compatibility of Pontryagin product

Lemma 3.8, and Properties (2.1), (2.2), the assertion follows.

�

Lemma 3.12. We have

F̃(Ap(P )Q)(s) = Ag−p+s(P )Q)(s)



9

Proof. Use the decomposition in Lemma 3.6 and apply Proposition 2.3.

�

4. The tautological ring R̃ of P

As in [Be2], consider the tautological subring R̃ ⊂ A(P )Q which is the smallest Q-

subalgebra containing the classes W̃i, 1 ≤ i ≤ g, Sy and c1(OP (1)), and stable under the

pullback maps n∗, pushforward maps n∗, closed under the intersection product and the

Pontryagin product ∗.

Theorem 4.1. The Q-algebra R̃ is generated by the classes π−1Wi, 1 ≤ i ≤ g − 1, Sy

and c1(OP (1)).

Proof. We just need to note that R̃ is generated by the Q-subalgebra R and the classes

Sy, c1(OP (1)). Indeed, the maps n∗, n∗ induced by multiplication by n, preserve R
and the classes Sy, c1(OP (1)), by Proposition 3.4. Similarly, it is now straightforward

to check that the Pontryagin product and Fourier transform preserve the Q-subalgebra

< R, Sy, c1(OP (1)) >. By Theorem 2.2, the assertion follows. �
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