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Abstract. In this paper, we investigate linear systems on hyperelliptic varieties. We
prove analogues of well-known theorems on abelian varieties, like Lefschetz’s embedding
theorem and higher k-jet embedding theorems. Syzygy or Np-properties are also deduced
for appropriate powers of ample line bundles. This is a first result on linear series, on
hyperelliptic varieties.
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1. Introduction

Suppose L is an ample line bundle on a smooth projective variety X . Some ques-

tions that arise are basepoint freeness, very ampleness, and syzygy properties or Np-

properties, for p ≥ 0, associated to the line bundle L on X . These properties are fairly

well-understood on curves, surfaces and abelian varieties [8], [24], [2], [16], [12], [11],[21],

[22]. There are conjectures by Fujita and Mukai [6, Conjecture 4.2] on the behaviour of

(adjoint) linear systems |KX + L⊗r|, associated to powers of ample line bundles tensored

with the canonical line bundle KX of X .

The aim of this paper is to investigate above questions for linear systems on hyper-

elliptic varieties. A hyperelliptic surface S is a complex projective surface which is not

an abelian surface, but admitting an étale cover A → S, where A is an abelian surface.

Hyperelliptic surfaces were classified by Enriques-Severi and Bagnera-de Franchis [7], [1].
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0Keywords: Hyperelliptic varieties, Linear systems, G-linearised sheaves, Global generation, Syzygies.

1



2 S.CHINTAPALLI AND J. N. IYER

More generally, H. Lange [14] extended this notion to higher dimensions. A smooth pro-

jective variety X is called a hyperelliptic variety if it is not isomorphic to an abelian

variety but admits an étale covering A → X , where A is an abelian variety.

Linear series have not been investigated on these varieties. As a first step in this

direction, we look at powers of ample line bundles on hyperelliptic varieties.

We show in §5, the following analogue of Lefschetz embedding:

Theorem 1.1. Suppose X is a hyperelliptic variety of dimension n. Let L be an ample

line bundle on X. Then we have:

1) Lk, for k ≥ 3, is always very ample.

2) L2 is very ample, if L has no base divisor.

Furthermore, we extend generalizations of above concepts, namely k-jet ampleness, to

hyperelliptic varieties, as follows.

Theorem 1.2. Suppose L is an ample line bundle on a hyperelliptic variety X. Then the

following hold, for k ≥ 0:

1) Lk+2 is k-jet ample

2) Lk+1 is k-jet ample, if L has no base divisor.

These are well-known theorems on abelian varieties due to Lefschetz, Kempf, Ohbuchi

and Bauer-Szemberg[16], [12], [20], [4]. Regarding Np-property, we show the analogue of

Pareschi’s theorem [21](Lazarsfeld’s conjecture) on abelian varieties, extended to hyper-

elliptic varieties.

Theorem 1.3. Suppose L is an ample line bundle on a hyperelliptic variety X. Then

Lp+k satisfies Np-property, for k ≥ 3.

The key point in the proof is to note that a hyperelliptic variety X is realized as a finite

group quotient A/G of an abelian variety A, for some finite group G acting freely on A

[14, Theorem 1.1, p.492]. Hence a line bundle on a hyperelliptic variety is regarded as

a G-linearized line bundle on A. We introduce the notion of G-global generation of G-

linearized sheaves in §3 and obtain a correspondence of usual global generation on X with

G-global generation on A. We then look at the notion of M-regularity of G-linearized

sheaves and suitably extend the techniques used by Pareschi and Popa [22],[23]. The

proofs are reduced to showing G-global generation of appropriate G-linearized coherent

sheaves, obtained by applying the Fourier-Mukai functor.

We note that in [3], related results are obtained for Enriques surfaces. We employ

a different method to tackle group quotients, and which holds in any dimension. The

’averaging’ of sections employed in §4.1 is relevant and new, and is used to descend data

suitably from an abelian variety.
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The Syzygy property is proved for powers of ample line bundles in §6. It is implied by

vanishing of the first cohomology of the bundle ML (the kernel of the evaluation map),

twisted with appropriate powers of an ample line bundle L. See 6.4, for a proof.

Acknowledgement: We thank the referee for pointing an error in the decomposition, in Lemma 3.4.

2. G-linearized sheaves and Fourier-Mukai functor

Suppose X is a hyperelliptic variety of dimension n defined over the complex numbers.

By definition, it is not an abelian variety but it admits an étale cover A → X such that

A is an abelian variety. By [14, Theorem 1.1, p.492], there is a finite group G acting

biholomorphically on A, without fixed points. In other words, we can write X as a group

quotient X = A/G, with an étale quotient morphism

π : A → X = A/G.

To investigate coherent sheaves on X , we note that their pullback on A under the mor-

phism π, is equipped with an action of the group G. Hence to investigate line bundles and

more generally coherent sheaves on X , it would suffice to investigate coherent sheaves on

A with a G-action. To make this more precise, we recall the following facts.

2.1. G-linearized sheaves. [19]

Suppose A is an abelian variety and is equipped with an action by a finite group G. In

this subsection, we recall G-linearized sheaves on an abelian variety A.

Definition 2.1. [19, Definition 1.6, p.30]. A coherent sheaf F on A is called G-linearized

(or a G-sheaf) if we have an isomorphism φg : g∗F
∼
−→ F , for all g ∈ G, and such that

the following diagram of coherent sheaves on A

(gh)∗F
h∗φg

//

φgh
$$I

I

I

I

I

I

I

I

I

I

h∗F

φh

��

F

is commutative, for any pair g, h ∈ G, i.e. φgh = φh ◦ h
∗φg.

Assume that the action of the group G on A is free. We note that G-linearized sheaves

are relevant to our situation, since it corresponds to coherent sheaves on the quotient

variety A/G. In fact, we have:

Proposition 2.2. Consider a pair (A,G) as above, and assume that the action of G on

A is free. Then the functor F 7→ π∗F is an equivalence of category of coherent OX-

modules on X and the category of coherent G-sheaves on A. The inverse functor is given

by G 7→ (π∗(G))
G (the subsheaf of G-invariant sections of π∗(G)). Locally free sheaves

correspond to locally free sheaves of the same rank.
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Proof. See [18, Proposition 2, p.70]. �

We will use this proposition when we define G-global generation of G-coherent sheaf on

A, in §3, and its equivalence with the usual global generation of the corresponding sheaf

on the quotient variety X .

2.2. Fourier-Mukai functor. Suppose A is an abelian variety of dimension g over C and

Â be its dual abelian variety [5, Section 2.4, p.34]. Denote P the normalized Poincaré

line bundle on A× Â. Let G be a finite group acting on A and π : A → X = A/G be the

quotient morphism.

We recall some facts from [17]. Denote Coh(A) (respectively Coh(Â)) the category of

coherent sheaves on A (resp. on Â). Let

Ŝ : Coh(A) → Coh(Â)

be the functor defined as follows:

ŜF := p2∗(p
∗
1F ⊗ P).

Similarly we can define the functor

S : Coh(Â) → Coh(A)

given as

SG := p1∗(p
∗
2G ⊗ P).

Denote D(A) (respectively D(Â)) the derived category of Coh(A) (respectively Coh(Â)).

Using [17, Proposition 2.1, p.155], we have a derived functor

RŜ : D(A) → D(Â)

given by

RŜF = Rp2∗(p
∗
1F ⊗ P).

Similarly we obtain the derived functor

RS : D(Â) → D(A).

The derived functors are called the Fourier-Mukai functor.

In the below discussion, the Fourier functor RŜ will be applied on the G-linearised

sheaves.

2.3. Mukai-regularity. Recall the notion of of I.T (index theorem) and M-regularity

from [17] and [22]. In particular we state them for coherent G-sheaves.

With notations as in previous subsection, denote RjŜ(F), the cohomologies of the

derived complex RŜF . A coherent G-sheaf F on A satisfies W.I.T (the weak index

theorem) with index i if RjŜ(F) = 0, for all j 6= i.

A stronger notion is as below.
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Definition 2.3. A coherent G-sheaf F on A is said to satisfy I.T (index theorem) with

index i if Hj(F ⊗ α) = 0, for all α ∈ Â and for all j 6= i.

In this situation the sheaf RiŜ(F) is locally free. If F satisfies W.I.T or I.T. with index

i, then the sheaf RiŜ(F) is denoted by F̂ and is called the Fourier transform of F .

In particular, a sheaf F is said to satisfy index theorem (I.T) with index 0 if

H i(F ⊗ α) = 0, ∀α ∈ Pic0(A), ∀ i > 0.

Now we recall the notion of M-regularity, and sheaves of I.T of index 0, will be trivially

M-regular.

Given a coherent sheaf F on A, we denote the support of the sheaf RiŜ(F) by

Si(F) := Supp(RiŜ(F)).

Definition 2.4. A coherent G-sheaf F on A is called M-regular if

codim Si(F) > i

for each i = 1, ..., g.

Remark 2.5. 1) Coherent G-sheaves on A which satisfy I.T with index 0, are examples

of M-regular G-sheaves.

2) We also note that an ample line bundle H satisfies I.T with index 0 [22, Example

2.2, p.289]. This will be relevant in our later sections.

Denote the cohomological support locus [10]:

V i(F) := {η ∈ Pic0(A) : hi(F ⊗ η) 6= 0} ⊂ Pic0(A).

There is an inclusion Si(F) ⊂ V i(F).

Hence a G-sheaf is M-regular if

(1) codim(V i(F)) > i

for any i = 1, ..., g.

The notion ofM-regularity has significant geometric consequences via global generation

of suitable sheaves. This will be illustrated in the next section.

3. G-global generation and global generation on hyperelliptic varieties

Suppose G be a finite group and F is a coherent G-sheaf on an abelian variety A.

Consider the central extension of G by C∗, the multiplicative group of nonzero complex

numbers. In other words, there is an exact sequence:

1 → C
∗ → G̃ → G → 0.

Here G̃ consists of pairs(g, g̃), where g runs over G and g̃ is an automorphism of F covering

g.
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We assume that there is a splitting and let G̃ ⊂ G̃ denote the image of G under the

splitting map. This is because, by definition, a G-linearised sheaf comes with a splitting

as above. This will enable us to look at invariant sections of G-linearised coherent sheaves

on A.

We note that G̃ acts on H0(A,F). Denote the subspace of G̃-invariants:

H0(A,F)G̃ = {s ∈ H0(A,F) : g̃s = s ∀g̃ ∈ G̃}.

Since our aim is to obtain global generation of coherent sheaves on the quotient variety

X = A/G, we introduce the following corresponding notions for coherent G-sheaves on

A as follows. In the next subsection, we will prove its equivalence with usual global

generation on X .

3.1. G-global generation, G-very ampleness and G-k jet ampleness. We keep

notations as above.

Definition 3.1. A coherent G-sheaf F on A is called G-globally generated if the evaluation

map

ev : H0(A,F)
G̃
⊗OA → F

is surjective. Here the map ev is evaluation of G̃-invariant sections at any point of A.

Now we formulate very ampleness for coherent G-sheaves as follows. For any a ∈ A, let

G.a := {ga : for anyg ∈ G}. Then this is the orbit of the point a ∈ A under the action of

G. Let IG.a denote the ideal sheaf of the orbit G.a in A. Then this is a coherent G-sheaf

on A.

Definition 3.2. A G-line bundle L on A is called G-very ample if the coherent G- sheaf

L⊗ IG.a is G-globally generated, for all a ∈ A.

This notion can be extended to k-jet ampleness for G-line bundles as well. We do it as

follows.

Definition 3.3. A G-line bundle L on A is G-k-jet ample if the coherent G sheaf

L⊗ Ik1G.a1
⊗ ...⊗ IklG.al

is G-globally generated, for distinct points a1, a2, ..., al ∈ A such that k1+k2+ ...+kl = k.

In other words, the evaluation map given by G̃-invariant sections

H0(A,L⊗ Ik1G.a1
⊗ ...⊗ IklG.al

)G̃ → H0(A,L⊗ Ik1G.a1
⊗ ...⊗ IklG.al

⊗OA/ma)

is surjective, for each a ∈ A.

Note that G-0-jet ample is same as G-global generation and G-1-jet ampleness is same

as G-very ampleness.



7

3.2. Equivalence of G-global generation and global generation on X = A/G. In

this subsection, we note the relevance of G-global generation on the quotient variety X .

We keep notations as in the previous subsection.

Then we have the following equivalence:

Lemma 3.4. Suppose F is a coherent G-sheaf on A. Then F is G-globally generated if

and only if the corresponding sheaf (π∗(F))G is globally generated on the quotient variety

X = A/G.

Proof. We recall the one-one correspondence of coherent sheaves, as given in Proposition

2.2. Given a coherent sheaf G on the quotient variety X = A/G, consider its pullback

π∗G on A, via the quotient morphism π : A → X = A/G. Then π∗G is a coherent G-sheaf

on A. It would suffice to prove that G is globally generated on X if and only if π∗G is

G-globally generated on A, using Proposition 2.2.

Firstly, we note the following decomposition [18, Remark 1, p.72]:

π∗OA =
⊕

χ∈Ĝ

Lχ,

if G is commutative. In any case, OX is a direct summand of π∗OA. Here Lχ is a line

bundle on X associated to the character χ on G. Using projection formula, we have:

(2) π∗(π
∗G) ⊃ G,

i.e., the sheaf G is a direct summand of π∗(π
∗G). This gives us an inclusion of the space

of global sections:

π∗H0(X,G) ⊂ H0(A, π∗G).

In particular, the subspace of G̃-invariant sections of H0(A, π∗G) is given by the space

π∗H0(X,G).

Suppose G is globally generated. This implies that the evaluation map:

H0(X,G)⊗OX → G

is surjective. The pullback of this morphism of sheaves, via π, on A corresponds to the

map

H0(A, π∗G)G̃ ⊗OA → π∗G

and which is clearly surjective. This implies the G-global generation of π∗G. Using the

equivalence of categories in Proposition 2.2, we conclude the proof.

�

Corollary 3.5. Suppose L is an ample G-line bundle on A and M be the corresponding

line bundle on X (under the correspondence in Proposition 2.2). Then L is G-k jet ample

if and only if M is k-jet ample on X.
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Proof. We need only to note that the ideal sheaf Ik1x1
⊗ ...⊗Iklxl

of distinct points x1, ..., xl ∈

X with multiplicities ki, such that
∑

i ki = k, corresponds to the ideal sheaf Ik1G.a1
⊗...⊗IklG.al

on A, under the correspondence in Proposition 2.2. Here G.ai = π−1(xi), i.e. the inverse

image of a point xi is a G-orbit of a point ai ∈ A, for i = 1, ..., l. Hence the coherent

G-sheaf L⊗ Ik1G.a1
⊗ ...⊗ IklG.al

on A corresponds to the coherent sheaf M ⊗ Ik1x1
⊗ ...⊗ Iklxl

on X . Now we apply Lemma 3.4, to conclude the proof. �

4. G-global generation of G-linearized sheaves of weak index zero

In this section, we recall the notion of continuous global generation [22], adapted to

coherent G- sheaves. Instead of the usual multiplication maps, we take the ’averaging’ of

sections, for the action of the group G. We note that the results of this section hold, for

any action of the finite group, i.e., the action need not be free, except in Proposition 4.6.

Before proceeding to continuous global generation and its relevance to our set-up, recall

the surjectivity statement for multiplication map of sections of ample line bundles [5,

7.3.3]. This is suitably generalized to higher rank sheaves, which are M-regular, by

Pareschi and Popa [22]. We modify the multiplication maps by taking ’averaging’ of

sections, for the finite group G. In other words, we will consider multiplication maps for

the G̃-invariant sections, suitably interpreted. This will be needed when we want to look

at G-global generation of coherent G sheaves.

4.1. Surjectivity of ’Averaging’ map. We keep the notations from the previous sec-

tion.

Lemma 4.1. Let F be M-regular coherent G-sheaf and H locally free G-sheaf satisfying

I.T with index 0. Then for any Zariski open set U ⊆ Â, the map
⊕

α∈U

H0(F ⊗ α)⊗H0(H ⊗ α̌)
⊕Av
−−→ H0(F ⊗H)G̃

is surjective. Here the ’averaging map’ is given as

Av(s⊗ t) =
1

|G|

∑

g̃∈G̃

g̃(s⊗ t),

for s ∈ H0(F ⊗ α) and t ∈ H0(H ⊗ α̌).

Proof. Firstly, note that the map ⊕Av factorizes as follows,
⊕

α∈U

H0(F ⊗ α)⊗H0(H ⊗ α̌)
∑

mα

−−−→ H0(F ⊗H)
h
−→ H0(F ⊗H)G̃.

where h is the averaging map. By [22, Theorem 2.5, p.290], the map
∑

mα is surjective.

Clearly h is surjective, since h restricts to identity on H0(F ⊗H)G̃ ⊂ H0(F ⊗H). Hence

the composed map ⊕Av = h ◦
∑

mα is surjective.

�
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Corollary 4.2. Let F be M-regular coherent G-sheaf and H locally free G-sheaf satisfying

I.T with index 0. Then for any large positive integer N and for any subset S ⊂ Â with

|S| = N , the averaging map
⊕

α∈S

H0(F ⊗ α)⊗H0(H ⊗ α̌)
⊕Av
−−→ H0(F ⊗H)G̃

is surjective

Proof. By above Lemma 4.1, the surjectivity of the averaging map
⊕

α∈U

H0(F ⊗ α)⊗H0(H ⊗ α̌)
⊕Av
−−→ H0(F ⊗H)G̃

implies that the family of linear suspaces {Im(Avα)}α∈U spans the finite dimensional

vector space H0(F ⊗H)G̃. So for any large positive integer N , the images under Av of a

finitely many N linear subspaces H0(F ⊗ α)⊗H0(H ⊗ α̌) span H0(F ⊗H)G̃.

�

4.2. G-Continuous Global Generation. In this subsection, we recall the notion of con-

tinuous global generation and its relevance to global generation [22]. We suitably modify

this notion for coherent G-sheaves and show that it is related to G-global generation.

Definition 4.3. A coherent G-sheaf Fon A is called G-continuously globally generated if

for any nonempty open set U ⊆ Â the sum of average maps
⊕

α∈U

H0(F ⊗ α)⊗ α̌
⊕Av
−−→ F

is surjective. For s ∈ H0(A,F ⊗ α) and a local section t of α̌, we define locally on A:

Av(s⊗ t) =
1

|G|

∑

g̃∈G̃

g̃.(s⊗ t).

Note that locally s⊗ t is a section of F .

As earlier, we note that the sum could be taken over finite subsets of Pic0(A), of large

cardinality.

Lemma 4.4. Suppose F is a coherent G-sheaf and assume it is G-continuously globally

generated. Then for any large positive integer N and for any subset S ⊂ Â with |S| = N ,

the sum of average maps ⊕

α∈S

H0(F ⊗ α)⊗ α̌
⊕Av
−−→ F

is surjective.

Proof. This proof is similar to the argument given in Corollary 4.2. �

We now prove the following proposition relating tensor product of continuously G global

generated sheaves and G-global generation.
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Proposition 4.5. Suppose F is a coherent G-sheaf and H is a G-line bundle on A. If

both F and H are G-continuously globally generated then F ⊗H is G-globally generated.

Proof. By Lemma 4.4, for any large positive integer N and for any subset S ⊂ Â with

|S| = N , the averaging map
⊕

α∈S

H0(F ⊗ α)⊗ α̌
⊕Av
−→ F

is surjective. Consider the following commutative diagram,

⊕

α∈S

H0(F ⊗ α)⊗H0(H ⊗ α̌)⊗OA

⊕
Av

−−−→ H0(F ⊗H)G̃ ⊗OA

↓ ↓
⊕

α∈S

H0(F ⊗ α)⊗H ⊗ α̌ =
⊕

α∈S

H0(F ⊗ α)⊗ α̌⊗H
Av⊗id
−−−→ F ⊗H.

Then we have the surjectivity of the lower right map Av ⊗ id.

We have to show surjectivity of the following evaluation map

ev : H0(F ⊗H)G̃ ⊗OA → F ⊗H.

We first show that

supp(coker(ev)) ⊆ ∩S⊂Â{∪α∈SB(H ⊗ α̌)} =: Z.

Here the intersection varies over finite subsets S of Â of large cardinality N and B(H⊗ α̌)

is the base locus of H ⊗ α̌. Let x be an element in supp(coker(ev)) such that x is not in

Z. This implies, for some S and an α ∈ S,

H0(H ⊗ α̌)⊗OA → H ⊗ α̌

is surjective at x. Therefore, in the above commutative diagram, the evaluation map

ev : H0(F ⊗H)G̃ ⊗OA → F ⊗H.

is surjective at x. This gives a contradiction to x lying in supp(coker(ev)). Hence

supp(coker(ev)) ⊆ ∩S⊂Â{∪α∈SB(H ⊗ α̌)}. Since H is G- continuously globally gener-

ated, by the arguments in [22, Remark 2.11, Proposition 2.12, p.292], ∩S ∪α∈S B(H ⊗ α̌)

is empty, where ∩ runs over S ⊂ Â of large cardinality. This implies supp(coker(ev)) is

empty.

Hence the evaluation map,

ev : H0(F ⊗H)G̃ ⊗OA → F ⊗H

is surjective.

�
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The following proposition gives an analogue of [22, Proposition 2.13]. It shows that the

M-regularity of a coherent G-sheaf implies G-continuous global generation. We assume

that the group G acts freely on A.

Proposition 4.6. If F is a M-regular coherent G-sheaf on A, then for any large positive

integer N and for any subset S of Â with cardinality N , the sum of average maps,
⊕

α∈S

H0(F ⊗ α)⊗ α̌
⊕Av
→ F

is surjective. In other words, F is G-continuously globally generated.

Proof. Let H be an ample G-line bundle such that F⊗H is G-globally generated. Indeed,

such a line bundle can be chosen, due to the correspondence in Proposition 2.2. We

consider the sheaf FX corresponding to F , on X = A/G, and find an ample line bundle

HX on X such that FX ⊗HX is globally generated on X . Let H be the ample line bundle

on A corresonding to HX . By Lemma 3.4, the coherent G-sheaf F ⊗ H is G- globally

generated.

This implies that the evaluation map

H0(F ⊗H)G̃ ⊗OA
ev
−→ F ⊗H

is surjective. Since H is an ample G-line bundle, by Remark 2.5, H satisfies I.T with

index 0. Therefore, by Corollary 4.2,
⊕

α∈S

H0(F ⊗ α)⊗H0(H ⊗ α̌)⊗OA
⊕Av
−−→ H0(F ⊗H)G̃ ⊗OA

is surjective. Now consider the following commutative diagram,
⊕

α∈S

H0(F ⊗ α)⊗H0(H ⊗ α̌)⊗OA

⊕
Av

−−−→ H0(F ⊗H)G̃ ⊗OA

↓ ↓
⊕

α∈S

H0(F ⊗ α)⊗H ⊗ α̌
Av⊗id
−−−→ F ⊗H

where the sum varies over a finite subset S, of large cardinality. In the above commutative

diagram, since ⊕Av and the evaluation ev are surjective, it follows that the averaging map
⊕

α∈S

H0(F ⊗ α)⊗H ⊗ α̌
Av⊗id
−−−→ F ⊗H

is also surjective. Since H is a line bundle, we obtain the assertion on G-continuous global

generation of the sheaf F . �

As a consequence of the above proposition, we obtain the main result of this section:

Corollary 4.7. Suppose F is a coherent G-sheaf and H is a G-line bundle on A. If both

F and H are M-regular sheaves on A, then the coherent G-sheaf F ⊗ H is G-globally

generated.
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Proof. By Proposition 4.6, F are H are G-continously globally generated. By Proposition

4.5 F ⊗H is G-globally generated. �

5. Embedding theorems on hyperelliptic varieties

In this section we prove analogues of very amplessnes results due to Ohbuchi and

Lefschetz [22, Corollary 3.9], in the case of ample G-line bundle. By Corollary 3.5, we

obtain similar embedding statements for the quotient variety X = A/G.

Lemma 5.1. Let L1 and L2 be G-line bundles on A such that L1 and L2 ⊗ IGx are

M-regular, for all a ∈ A. Then L1 ⊗ L2 is G-very ample on A.

Proof. By Corollary 4.7, L1 ⊗ L2 ⊗ IG.a is G-globally generated, for all a ∈ A. Hence

L1 ⊗ L2 is G-very ample. �

Now we check M-regularity of G-line bundles which have no G-invariant base divisor.

This will enable us to conclude very ampleness of powers of G-line bundles.

Proposition 5.2. Suppose L be an ample G-line bundle and having no base divisor on

an abelian variety A. Then L⊗ IG.a is M-regular on A.

Proof. Firstly for any a ∈ A, consider the following exact sequence:

0 → L⊗ IG.a → L → L|G.a → 0.

Take the long exact cohomology sequence:

0 → H0(L⊗ IG.a) → H0(L) → ⊕g∈GH
0(L⊗ C(ga)) →

H1(L⊗ IG.a) → H1(L) → ⊕g∈GH
1(L⊗ C(ga)) → · · ·.

Also note that since L is ample H i(A,L) = 0, for all i > 0. Therefore the above long

exact sequence reduces to

0 → H0(L⊗ IG.a) → H0(L) → (⊕g∈GH
0(L⊗ C(ga)) → H1(L⊗ IG.a) → 0.

Now consider the cohomological support locus,

Supp V i(L⊗ IG.a) := {α ∈ Â : H i(L⊗ IG.a ⊗ α) 6= 0}.

Note that

L⊗ IG.a ⊗ α = ⊕g∈G(L⊗ Iga ⊗ α) ∼= t∗y(L⊗ IG.a−y),

for some y ∈ A. The above exact sequences imply that, when i > 1, we have SuppV i(L⊗

IGx)) = ∅. This implies

codim SuppV i(L⊗ IGx) > i

for all i > 1. When i = 1, Supp(V 1(L ⊗ IGx)) is isomorphic to a base divisor of L. By

hypothesis, L has no base divisor. Hence this implies codimension of Supp(V 1(L⊗ IGx))

is at least 2. Hence, using (1), L⊗ IGx is M-regular.

�



13

Now we consider powers of ample G-line bundles and apply the previous results to

obtain embedding statements.

Theorem 5.3. Suppose N is an ample line bundle on the quotient variety X = A/G.

Then the following hold:

a) N2 is very ample, if N has no base divisor.

b) N3 is always very ample.

Proof. Using Proposition 2.2, let L be the ample G-line bundle on A corresponding to the

ample line bundle N on X .

To prove a), we assume that N has no base divisor. This implies that L has no G-

invariant base divisor, in particular L has no base divisor. By Proposition 5.2, L⊗ IGx is

M-regular, for all x ∈ X . Furthermore since L is ample, L is M-regular by Remark 2.5.

Hence by Corollary 4.7, L⊗L⊗ IGx is G-globally generated. Hence L⊗2 is G-very ample.

Now by Corollary 3.5, we conclude that N2 is very ample on X .

To prove b), note that by Corollary 4.7, L⊗2 is G-globally generated. This implies that

L⊗2 has no base divisor and hence by Theorem 5.2, L⊗2⊗ IGx is M-regular, for all x ∈ X .

Hence, by Corollary 4.7, L⊗2 ⊗ IGx is G-continuously globally generated. This implies

L⊗3 is G-very ample and hence N⊗3 is very ample on X . �

To extend above results to k-jet ampleness on a hyperelliptic variety X , we note the

below lemma for ample G-line bundles on an abelian variety A.

Lemma 5.4. Suppose L is an ample G-line bundle on an abelian variety A. Then the

following are equivalent:

1) L is G-k-jet ample.

2) L⊗Ik1G.a1
⊗ ...⊗IklG.al

satisfies I.T. with index 0, for any l-distinct points a1, ..., al ∈ A

such that
∑

ki = k + 1.

3) L ⊗ Ik1G.a1
⊗ ...⊗ IklG.al

is G-globally generated, for any l-distinct points a1, ..., al ∈ A

such that
∑

ki = k.

Proof. Using the correspondence in Proposition 2.2, it suffices to prove the equivalence

for the corresponding line bundle N := π∗(L)
G on X . Recall the quotient morphism

π : A → X = A/G . Using (2), we note that

H1(A,L) ⊃ π∗H1(X,N).

Since L is ample we have the vanishing H1(A,L) = 0. This implies the vanishing

H1(X,N) = 0. The rest of the proof is similar to [23, Lemma 3.3], and we omit it. �

Now we state the analogue of above theorem, for higher jet ampleness on a hyperelliptic

variety X .
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Proposition 5.5. Suppose N is an ample line bundle on a hyperelliptic variety X. Then

the following hold:

1) Nk+1 is k-jet ample if N has no base divisor, and for k ≥ 1.

2) Nk+2 is k-jet ample, and for k ≥ 0.

Proof. The proof is similar to [23, Theorem 3.8] applied to the corresponding ample G-line

bundle L on A. Indeed, by above Lemma 5.4, it suffices to check 3), i.e., the sheaf

L⊗ Ik1G.a1
⊗ ...⊗ IklG.al

is G-globally generated, for any l-distinct points a1, ..., al ∈ A such that
∑

ki = k.

We apply induction on k, and using the correspondence in Corollary 3.5, prove it for

the ample G-line budle L on A.

Suppose k = 1. Then 1) holds, by Theorem 5.3.

Suppose the statement 1) holds for k − 1, i.e., Lk is G–(k − 1)-jet ample. By Lemma

5.4, this implies for any l-distinct points a1, ..., al ∈ A such that
∑

i ki = k, the sheaf

Lk⊗Ik1G.a1
⊗ ...⊗IklG.al

satisfies I.T with index zero. By Remark 2.5 2), Lk⊗Ik1G.a1
⊗ ...⊗IklG.al

is M-regular. Hence, by Corollary 4.7, the sheaf L⊗ Lk ⊗ Ik1G.a1
⊗ ...⊗ IklG.al

is G-globally

generated, for l-distinct a1, ..., al ∈ A, such that
∑

ki = k. Now by Lemma 5.4 3), Lk+1

is G-k-jet ample.

The proof of 2) is similar, and we omit it. �

6. Syzygy or Np-property of line bundles on a hyperelliptic variety

In this section, we look at syzygy or Np-properties defined by M. Green [8].

Suppose Z is a smooth projective variety defined over the complex numbers. An ample

line bundle L on Z is said to satisfy Np-property if the first p-steps of the minimal

graded free resolution of the algebra RL := ⊕n≥0H
0(Ln) over the polynomial ring SL :=

⊕n≥0Sym
nH0(L) are linear. In other words, a minimal resolution of RL looks like:

SL(−p− 1)⊕ip → SL(−p)⊕ip−1 → ... → SL(−2)⊕i1 → SL → RL → 0.

When p = 0, we say that L gives a projectively normal embedding. When p = 1, L

satisfies N0 and the ideal of the embedded variety is generated by quadrics.

6.1. Criterion for Np-property. Usually, in practice, one looks at surjectivity of multi-

plication maps of sections of some natural bundles associated to L. We recall them below.

Consider the exact sequence associated to a globally generated line bundle L, given by

evaluation of its sections:

0 → ML → H0(L)⊗OZ → L → 0.

Here ML is a coherent sheaf and is the kernel of the evalution map. In fact, it is a locally

free sheaf.
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Consider the exact sequence by taking the p+1-st exterior power of the above evaluation

sequence:

0 → ∧p+1ML ⊗ Lh → ∧p+1H0(L)⊗ Lh → ∧pML ⊗ Lh+1 → 0.

Then Np-property holds if

H1(∧p+1ML ⊗ Lh) = 0, for all h ≥ 1.

The converse is true if Z is an abelian variety, since H1(Lh) = 0. See [21, p.660]. Moreover

we have:

Lemma 6.1. a) If H1(∧p+1ML ⊗ Lh) = 0, for all h ≥ 1, then L satisfies Np-property.

b) Assume that H1(∧pML ⊗ Lh) = 0 for h ≥ 1. Then H1(∧p+1ML ⊗ Lh) = 0 if and

only if the multiplication map

H0(L)⊗H0(M⊗p
L ⊗ Lh) → H0(M⊗p

L ⊗ L⊗h+1)

is surjective.

Proof. See [21, Lemma 4.1]. �

6.2. Cohomology Vanishing on a hyperelliptic variety. SupposeX is a hyperelliptic

variety of dimension n. As in earlier sections, we consider the quotient morphism π : A →

X = A/G. Here G is a finite group acting freely on A.

Suppose N is an ample line bundle on X . Assume it is globally generated. Consider

the evaluation map on the sections of N :

0 → MN → H0(N)⊗OX → N → 0.

Pullback of this exact sequence on A yields the exact sequence:

0 → π∗MN → H0(L)G̃ ⊗OA → L → 0.

Here L := π∗N is the corresponding G-line bundle on A, and H0(L)G̃ ⊂ H0(L) is the

subspace of G̃-invariant sections. Denote MG
L := π∗MN . In particluar, ∧pMG

L is a G-

linearized bundle.

We first note the below vanishing, which we will need.

Lemma 6.2. The cohomology vanishing

H1(A,∧p+1MG
L ⊗ Lh) = 0

implies the cohomology vanishing

H1(X,∧p+1MN ⊗Nh) = 0,

for each h ≥ 1.
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Proof. Since the bundles ∧p+1MG
L and Lh are G-linearized bundles, the tensor product

∧p+1MG
L ⊗ Lh is also a G-linearized bundle. In particular, the group G̃ acts on the

cohomology groups H i(A,∧p+1MG
L ⊗Lh), for i ≥ 0. The G̃-invariant subspace is precisely

H i(A,∧p+1MG
L ⊗ Lh)G̃. Now, we use projection formula as shown in Lemma 3.4, and

using (2), we deduce that the G̃-invariant subspace is equal to the cohomology group

H i(X,∧p+1MN ⊗Nh). This gives the assertion.

�

Lemma 6.3. The cohomology vanishing

H1(A,∧p+1ML ⊗ Lh) = 0

implies the cohomology vanishing

H1(A,∧p+1MG
L ⊗ Lh) = 0,

for each h ≥ 1.

Proof. Note that in the below exact sequence

0 → ML → H0(L)⊗OA → L → 0

the group G̃ acts on H0(L) and on L equivariantly. Hence the inclusion of G̃-invariant

sections H0(L)G̃ ⊂ H0(L) provides an inclusion of bundles

MG
L ⊂ ML.

Moreover, since the averaging map of sections

H0(L)
Av
→ H0(L)G̃, s 7→

1

|G|

∑

g∈G̃

g.s

is surjective, we deduce that the bundle MG
L is a split summand of ML.

Hence we have an inclusion of their exterior powers tensored with Lh:

∧p+1MG
L ⊗ Lh ⊂ ∧p+1ML ⊗ Lh.

This is also a split summand and hence gives the inclusion of cohomologies:

H1(A,∧p+1MG
L ⊗ Lh) ⊂ H1(A,∧p+1ML ⊗ Lh).

We now deduce our assertion.

�

Now, we apply above two lemmas to conclude our main consequence of this section.

Proposition 6.4. Suppose M is an ample line bundle on a hyperelliptic variety X. Then

Mp+k satisfies Np-property, for any k ≥ 3.
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Proof. SupposeM is an ample line bundle onX . By Theorem 5.3, we know thatN := Mk,

k ≥ 3, is very ample. In particular, N is globally generated. Since L = π∗N is an ample

globally generated line bundle on A, by [21, Theorem 4.3, p. 663], we have the cohomology

vanishing

H1(A,∧p+1ML ⊗ Lh) = 0

for any h ≥ 1. Now apply Lemma 6.2 and Lemma 6.3, to conclude the cohomology

vanishing

H1(X,∧p+1MN ⊗Nh) = 0.

for any h ≥ 1. This implies that Np = Mp+k, k ≥ 3, satisfies Np-property.

�
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