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1. Introduction

Quantum dynamical semigroups (QDS), i.e. C0-semigroups of completely positive (CP)
contractive maps on C∗ or von Neumann algebras (assumed to be normal in the von
Neumann algebra case), are important objects both from physical and mathematical view-
point. It is thus quite natural to look for a nice classification scheme for them. As in
every branch of mathematics, one would like to find one or more computable (prefer-
ably numerical) invariants for QDS with respect to some suitable equivalence relation,
which is by now accepted as the so-called cocycle congugacy introduced and studied
in a series of papers by Arveson [1–3], Powers [11], Bhat [5, 6] and others. There has
already been a considerable amount of literature on this problem as well as the related
(and in some sense equivalent) problem of classifying product system of Hilbert mod-
ules, thanks to the intensive works by a number of mathematicians (see, e.g. [1, 4, 14]
and references therein). However, while much is known about QDS on B(H) (where H
is a separable Hilbert space), and a nice numerical invariant (‘Arveson index’, see, e.g.
[2]) is available in this case, QDS on other types of von Neumann algebra are not so
well understood, in the sense that there is not yet any satisfactory numerical (or easily
computable) invariant for QDS (or, equivalently, product systems of Hilbert modules) on
general von Neumann algebras. In order to construct such invariants, it is reasonable to
first restrict attention to just a single CP map instead of semigroup of CP maps. This is
what we attempt to do in the present article for the hyperfinite type II1 factor. While we
are not yet able to come up with a satisfactory numerical invariant for an arbitrary nor-
mal CP map on the hyperfinite II1 factor, we do get a nice invariant for an interesting
class of CP maps, namely the ‘pure’ ones. This invariant, though not numerical, is given
by a quadruplet (m, ν, b1, b2) where m is a nonnegative integer (so it can be thought of
as an analogue of ‘Arveson index’ in this case), ν is a measure (with suitable property)
on the two-torus T

2, and b1, b2: T
2 → Mm(C) are unitary valued ν-measurable maps.

Thus, the invariant is in some sense not a very abstract object, and easily computable. It
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can be described at least by a sequence of complex numbers, if we describe the measure
ν as well as the bounded functions z �→ bi(k, l) := (k, l)-th entry of bi(z), i = 1, 2, in
terms of the Fourier coefficients. Apart from the pure CP maps, we also study in some
detail another class which we call ‘extendible’. We give necessary and sufficient condi-
tions for extendibility, and propose some invariants for such CP maps, including numerical
invariants.

2. Preliminaries

2.1 Intertwiner module

Let h be a Hilbert space, A ⊆ B(h) be a unital von Neumann algebra. Given a normal
unital CP map T : A → A, by Stinespring’s and KSGNS theorems (see [10]) we can obtain
a Hilbert von Neumann A−A bimodule (to be called KSGNS bimodule) ET ⊆ B(h,KT )

for some Hilbert space KT , a normal representationπT : A → L(ET ) ⊆ B(K) and ξT ∈ ET
such that T (a) = 〈ξT , πT (a)ξT 〉, ∀a ∈ A. Here 〈ξ, η〉 := ξ∗η is the A-valued inner
product on ET and πT (A)ξTA is total in ET which implies that πT (A)ξT h is total in KT .

Setting ρT : A′ → B(KT ) by

ρT (a
′)πT (a)ξh = πT (a)ξT a

′h,

we get a normal representation ρT of A′ such that πT (A) and ρT (A′) commute and the
Hilbert (right) module ET coincides with the intertwiner module I (ρT ,A′) (see [9, 13])
of (ρT ,A′), which is given by

I (ρT ,A′ ) = {R ∈ B(h,KT ): Ra
′ = ρT (a

′)R, ∀a′ ∈ A′}.
Lemma 2.1. Let T and ET be discussed as above. Then

L(ET ) = (ρT (A′))′.

Proof. Let B ∈ L(ET ). For a ∈ A, a′ ∈ A′, h ∈ h, we have

BρT (a
′)πT (a)ξT h = BπT (a) ξT a

′h = ρT (a
′)(BπT (a)ξT )h.

Since π(A)ξT h is total in KT , B ∈ (ρT (A′))′.
For the converse, let B ∈ (ρT (A′))′. For a′ ∈ A′ and ξ ∈ ET we have

Bξa′ = BρT (a
′)ξ = ρT (a

′)Bξ.

This implies that Bξ is in the intertwiner module ET .
Let us now introduce various equivalence relations on the set CP(A) of normal unital CP

maps. From now on, unless there is a specific need to mention, we shall omit the adjectives
‘normal CP unital’.

The following equivalence relation is motivated by the definition of cocycle conjugacy
for CP maps.

DEFINITION 2.2

We say that two elements T , S of CP(A) are equivalent, denoted as T ≈ S, if there exist
unitaries u, v in A, such that for all a ∈ A,

S(a) = v∗T (u∗au)v.



Invariants for normal completely positive maps 413

We also introduce another (stronger) equivalence relation ∼.

DEFINITION 2.3

T ∼ S if there exists unitary u ∈ A such that S(a) = T (u∗au) for all a ∈ A.

If S ≈ T as above, we have

S(a) = v∗T (u∗au)v = v∗〈ξT , πT (u∗au)ξT 〉v
= v∗ξ∗

T πT (u)
∗πT (a)πT (u)ξT v = 〈ξS, πT (a)ξS〉,

where ξS = πT (u)ξT v. So the corresponding KSGNS bimodules can be chosen to be the
same, say E , and ξS = WξT for some unitary W ∈ L(E).

It is not unreasonable to identify two CP maps if the KSGNS bimodules are isomorphic,
i.e. can be chosen to be the same. This leads to the third equivalence relation.

DEFINITION 2.4

We say that T and S in CP(A) are KSGNS-equivalent, to be denoted by T
′∼ S, if the

bimodules ET and ES are isomorphic.

It is clear from our discussion that T ∼ S ⇒ T ≈ S ⇒ T
′∼ S. However, the converse

implications can be shown to be false in general.

2.2 Second order irrational rotation algebra and its representations

Fix an irrational number θ , and consider the irrational rotation algebra Aθ , (see [8]),
which is the universal C∗-algebra generated by two unitaries U and V satisfying the
Weyl commutation relation UV = λVU, where λ = e2πiθ . Let τ be the unique faithful
normalized trace on Aθ and (Hτ ≡ L2(Aθ , τ ), πτ , 1), be the associated GNS triple. From
now, we fix the von Neumann algebra A as the (unique up to isomorphism) hyperfinite
type II1 factor, identified with the weak closure of Aθ in B(Hτ ). It is well-known that Aθ is
isomorphic with the crossed product C(T)� Z, with respect to the action described in [8].
Define the unitary operatorsUl, Vl, Ur and Vr in B(Hτ ) byUla = Ua, Vla = V a,Ura =
aU and Vra = aV for a ∈ Aθ ⊆ Hτ . It is clear that the C∗-algebras C∗(Ul, Vl) and
C∗(Ur, Vr) are weakly dense ∗-sub-algebras of A and A′ respectively. The vector 1 is
cyclic and separating both for A and A′.

Consider the ∗-sub-algebras Al,fin and Ar,fin of A and A′ respectively, where Al,fin is
the unital ∗-algebra generated by all polynomials in the unitaries Ul and Vl , and Ar,fin is
the similar algebra obtained by replacing Ul, Vl by Ur, Vr respectively. Clearly, Al,fin is
norm-dense in Aθ . Moreover, let Afin denote the ∗-algebra of Al,fin ⊗alg Ar,fin generated
by polynomials in all the four unitariesUl, Vl, Ur and Vr and B be theC∗ algebra obtained
by completing Afin in the norm-topology of B(Hτ ⊗ Hτ ).

Lemma 2.5. The C∗-algebra B is isomorphic (as C∗ algebra) with the crossed product
C∗-algebra C(T2) � Z

2 with respect to the action α given by α(k1, k2)(f )(z1, z2) =
f (λ−k1z1, λ

−k2z2).

Proof. By definition, the crossed productC∗-algebra C(T2)�Z
2 with respect to the action

α is the universal C∗ algebra generated by four unitaries W1,W2,W3,W4 satisfying

W1W2 = W2W1, W3W4 = W4W3, W1W3 = λW3W1,W2W4 = λW4W2.
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It can be verified by a straightforward calculation that the linear map η: C(T2)� Z
2 →

Afin defined by

η(W1) = Ul ⊗ 1, η(W2) = 1 ⊗ Vr, η(W3) = V −1
l ⊗ Vr,

η(W4) = U−1
l ⊗ Ur,

gives the required isomorphism. �

From the general theory of C∗ crossed product, it is easy to show that B ∼= C(T2)� Z
2

is simple, and thus any nonzero representation is aC∗ isomorphism. Thus, theC∗ algebras
B, C(T2)� Z

2 and C∗(Ul, Vl, Ur, Vr)(⊆ B(Hτ )) are all canonically isomorphic, and we
shall identify them whenever there is no chance of confusion, and shall call thisC∗ algebra
the ‘second order irrational rotation algebra’, and denote it by A(2)

θ . It is actually the 4-
dimensional noncommutative torus in the sense of Rieffel and Schwarz [12], corresponding
to the skew-symmetric 4 × 4 matrix A = ((aij )), with a12 = a34 = θ, a21 = a43 = −θ ,
and all other entries are zero. Moreover, from the proof of the above Lemma, it is clear
that the map η gives an algebraic isomorphism between Afin and the ∗-algebra generated
by Wi , i = 1, . . . , 4.

The weak closure of the C∗-algebra A(2)
θ in the weak topology inherited from B(Hτ ⊗

Hτ ) is A⊗A′ ∼= W ∗(Ul, Vr)�Z
2 ∼= L∞(T2)�Z

2,which is again a concrete realization
of the (unique up to isomorphism) II1 hyperfinite factor, with the faithful normal trace τ (2)

given by the vector state 〈1 ⊗ 1, · 1 ⊗ 1〉. We introduce here some notation for future
use. We denote by ξ0 the vector 1 ⊗ 1, and by c(r) (where c ∈ A ⊗ A′) the operator of
right multiplication by c on Hτ ⊗ Hτ , i.e. c(r)b := bc, for b ∈ A ⊗ A′, viewed as an L2-
element. The commutant of A⊗A′, i.e. A′ ⊗A, coincides with the set {c(r): c ∈ A⊗A′}.
We shall use the notation τ (2)(X) for 〈ξ0, Xξ0〉 whenever it makes sense, even when the
operator X is unbounded but contains ξ0 in its domain.

Now we make an important observation regarding extension of representations.

PROPOSITION 2.6

Any representation π of the ∗-algebra Al,fin (Afin) extends to the C∗-algebra Aθ (A(2)
θ ).

Proof. Let us give a sketch of the proof for Al,fin only. The proof for Afin is similar. Let
π : Al,fin → B(H′) be a representation. Thus, we have two unitaries π(Ul) and π(Vl)
acting on B(H′), satisfying the commutation relation π(Ul)π(Vl) = λπ(Vl)π(Ul). Since
the commutative C∗-algebra C(T) is the universal C∗-algebra generated by a unitary, we
can get a representation π0, say, of C(T) which maps f ∈ C(T) to f (π(Ul)). Clearly,
(π0, π(Vl)) is a covariant representation for the action (m·f )(z) := f (λmz), and thus, there
exists a representation π̃ : C(T)�Z (≡ Aθ ) into B(H′) satisfying π̃(Ul) = π(Ul), π̃(Vl) =
π(Vl).

2.3 Irreducible representations of A(2)
θ

Following [7], we say that a separable representationπ of the irrational rotation algebra Aθ

has the uniform multiplicitym if the restriction of π to C(T2) has uniform multiplicitym ∈
{1, 2, . . . ,∞}. The factor representations (in particular, the irreducible representations)
are in the above class. In [7], the author gave a nice invariant of uniform multiplicity
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representation on the irrational rotation algebra Aθ . These representations are classified
by their multiplicities m, a quasi-invariant Borel measure ν (where quasi-invariance is
with respect to rotation by the angle 2πθ ) and a unitary one-cocycle b. It is not difficult
to verify that the arguments of [7] can easily be extended to the second order irrational
rotation algebra A(2)

θ . We summarize this fact as a theorem below, the proof of which is
omitted since it is very similar to the proofs of analogous results in [7].

Theorem 2.7.

(i) Any irreducible representation of A(2)
θ = C(T2) � Z

2 = C∗(W1,W2,W3,W4) is
unitarily equivalent to a representation of the formπ(m,ν,b1,b2) described below,where
m ∈ N ∪ {0}, ν is an ergodic regular Borel measure on T

2 which is also quasi-
invariant with respect to the action α of Z

2 given by α(n1,n2)z = (λn1z1, λ
n2z2),

and two ν-measurable unitary valued functions b1, b2: T
2 → Mm(C) such that

π(m,ν,b1,b2): A(2)
θ → B(L2(T2, ν)⊗ C

m) is given by

π(W1)f (z) = z1f (z),

π(W2)f (z) = z2f (z),

π(W3)f (z) = b1(z)

√
dν1,0

dν
(z)f (λz1, z2),

π(W4)f (z) = b2(z)

√
dν0,1

dν
(z)f (z1, λz2), (2.1)

where f : T
2 → Mm(C), and

dνn1,n2
dν is the Radon–Nikodym derivative of the measure

νn1,n2 given by

νn1,n2(E) = ν{αn1n2z: z ∈ E}
with respect to ν. Note that νn1,n2 is equivalent to ν as ν is quasi-invariant.

(ii) Two irreducible representations π(m,ν,b1,b2) and π
(m̃,ν̃,b̃1,b̃2)

are unitarily equivalent
if and only if

1. m = m̃ and ν = ν̃ can be chosen;
2. there exists a unitary-valued, ν-measurable map W : T

2 → Mm(C) satisfying

W(z)b1(z) = b̃1(z)W(λz1, z2), W(z)b2(z) = b̃2(z)W(z1, λz2).

3. Invariants for CP maps on type II1 factor

3.1 State associated with CP map

Given a normal CP unital map T on the type II1 factor A, consider the associated KSGNS
bimodule ET , cyclic element ξT ∈ ET , and the representations πT , ρT discussed in §2.
Now we define a representation π̃T : A ⊗alg A′ →B(KT ) by

π̃T (a ⊗ a′) = πT (a)ρT (a
′).
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This is a homomorphism sinceπT (a) and ρT (a′) commute. By Proposition 2.6, the restric-
tion of π̃ to the weakly dense subalgebra Afin extends to the C∗-algebra A(2)

θ , and we
denote this extension again by the same notation. Since πT (A)ξTHτ is dense in KT , and
1 is cyclic for A′, it is clear that ξT 1 is cyclic for (π̃T ,A ⊗alg A′,KT ). We define a state

ψT on A(2)
θ by setting

ψT (·) = 〈ξT 1, π̃T (·)ξt1〉. (3.1)

Since π̃T is defined also on A ⊗alg A′ , we shall define ψT on A ⊗alg A′ too, given by
the same expression as in (3.1). Note that we have, ψT (a⊗ a′) = 〈1, T (a)a′ 1〉. It is clear
from the construction ofψT that (KT , π̃T , ξT 1) is a choice of GNS triple forψT . Thus, for
two CP maps T , S ∈ CP(A), the corresponding state ψT and ψS have unitarily equivalent
GNS representations if and only if π̃T and π̃S are unitarily equivalent. This leads to the
following observation.

PROPOSITION 3.1

T
′∼ S if and only if ψT and ψS have unitarily equivalent GNS representations, i.e. π̃T

and π̃S are unitarily equivalent.

Proof. Suppose first that T
′∼ S, and U is an A-linear unitary from ET to ES satisfying

UπT (a)U∗ = πS(a) for all a ∈ A. Using the fact that {ev: e ∈ ET , v ∈ Hτ } and
{ev: e ∈ ES, v ∈ Hτ } are total in KT and KS respectively, it is easy to verify that the map
U : KT → KS defined by

U(ev) := U(e)v, e ∈ ET , v ∈ Hτ ,

extends to a unitary in the Hilbert space sense, and UπT (a)U∗ = πS(a), UρT (a
′)U∗ =

ρS(a
′) for all a ∈ A, a′ ∈ A′, which means that Uπ̃T (·)U∗ = π̃S(·).

Conversely, given a unitary U : KT → KS such that Uπ̃T (·)U∗ = π̃S(·), we can define
U : ET → ES by

U(e) = Ue,

where e ∈ ET is viewed as an element of B(Hτ ,KT ). This is easy to prove that U is an
A-linear unitary map, which also intertwins the left actions on the two modules, and thus
ET and ES are isomorphic as bimodules.

We now want to characterize the states on A(2)
θ which are of the form ψT for some

T ∈ CP(A). Let us denote by Sτ the set of all states ψ on A(2)
θ such that

(i) ψ(1 ⊗ a′) = 〈1, a′1〉 ≡ τ(a′) for all a′ ∈ Ar,fin; and
(ii) the restriction of the state ψ on Al,fin ⊗ 1 admits a normal extension to A.

PROPOSITION 3.2

The map T �→ ψT is a bijection from CP(A) to Sτ .

Proof. It is clear that for T ∈ CP(A), ψT is an element of Sτ . Let us first show that it is
one-to-one. Let T and T ′ be two CP maps such that ψT = ψT ′ . For any a ∈ Al,fin and
a′, b′ ∈ Ar,fin, we have

ψT (a ⊗ a′b′) = 〈1, T (a)(a′)∗b′1〉 = 〈1, T ′(a)(a′)∗b′1〉.
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This gives

〈a′1, T (a)b′1〉 = 〈a′1, T ′(a)b′1〉.

Since {a′1: a′ ∈ Ar,fin} is total in Hτ it follows that T (a) = T ′(a), ∀a ∈ Al,fin, hence for
all a ∈ A.

Now we show that the map T �→ ψT is onto. Letψ ∈ Sτ .We define a sesquilinear form
T (a) for a in the completion of Al,fin, i.e. Aθ by the following, where a′

1, a
′
2 ∈ Ar,fin:

〈a′
1 1, T (a)a′

2 1〉 = ψ(a ⊗ (a′
1)

∗a2).

For ai, i = 1, 2 . . . n in Ar,fin and bi, i = 1, 2 . . . n in Al,fin, we have∑
i,j

〈ai, T (b∗
i bj )aj 〉 =

∑
i,j

ψ(b∗
i bj ⊗ a∗

i aj ). (3.2)

Since ((b∗
i bj )) and ((a∗

i aj )) are positive in Mn(A) and Mn(A′) respectively, and each
ai commutes with each bj , it follows by standard arguments, similar to those used for
proving the positivity of Schur product of two positive (numerical) matrices, that the right-
hand side of (3.2) is positive. By the condition ψ |1⊗Ar,fin = τ , T (1) = 1. This, combined
with the positivity of the right-hand side of (3.2), suffices to show that T (a) extends to a
bounded map from Aθ to B(Hτ ), to be denoted by the same symbol again. It is also easy
to see that T is CP and T (Aθ ) ⊆ (Aθ )

′′ = A. Finally, as the resriction of the state ψ on
A ⊗ 1 is normal it follows that the map T extends as a normal CP unital map on A. �

3.2 Invariant for a pure CP map

DEFINITION 3.3

An element T ∈ CP(A) is said to be a pure CP map (see [?16]) if there does not exist any
CP (not necessarily unital) normal map S on A, other than scalar multiples of T , such that
T − S is CP.

PROPOSITION 3.4

A CP map T : A → A is pure if and only if the stateψT is a pure state on the second order
irrational rotation C∗-algebra A(2)

θ .

Proof. First we note that the stateψT is a pure state if and only if the GNS representation π̃T
is irreducible. Since π̃T is constructed out of two commuting representationsπT andρT , the
irreducibility of π̃T is translated into the fact that πT (A)′

⋂
(ρT (A′))′ = πT (A)′

⋂ L(ET )
is trivial.

Now, it suffices to prove that T is pure if and only if πT (A)′
⋂ L(ET ) is trivial. This

fact can be deduced from Corollary 3.7 of [16] by some straightforward arguments, or by
a direct argument along the lines of the proof of a similar fact for states as in [15]. �

Thus, given any pure CP map T on A, the state ψT is a pure state on the second order
irrational rotation C∗-algebra A(2)

θ , i.e. its GNS representation π̃T is irreducible. Theo-
rem 2.7 provides a quadruplet (m, ν, b1, b2), which is an invariant for the CP map T under

the KSGNS equivalence
′∼. Moreover, it is a complete invariant for

′∼ by Proposition 3.1.
It is also easy to see that if T is pure and S is KSGNS equivalent to T , then S must be pure.
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For a measure µ on T
2, let us denote by µ1 and µ2 the marginals given by

µ1(�) := µ(�× T), µ2(�) := µ(T ×�),

where � is a Borel subset of T. The restrictions of the representations π̃ to the C∗-
algebra Aθ = C∗(Ul, Vl) and C∗(Ur, Vr) extend to normal representations of A and A′
(respectively) by our assumption, so it is clear that the marginals ν1 and ν2 of the quasi
invariant Borel measure ν on T

2 obtained above are absolutely continuous with respect
to Lebesgue measure on T. In fact, as ψT coincides with the canonical trace τ on A′, ν2
should be equivalent to the Lebesgue measure on the one-dimensional torus.

We summarise the above discussion in the form of a theorem below.

Theorem 3.5. A complete invariant for the set of pure CP maps on A under the KSGNS

equivalence
′∼ is given by the quadruplet (m, ν, b1, b2) as described in Theorem 2.7, with

the additional condition that ν1 is absolutely continuous with respect to the Lebesgue
measure and ν2 is equivalent to the Lebesgue measure.

Remark 3.6. It should be emphasized to avoid any confusion that the invariant discussed
above is well-defined only after fixing the isomorphism between the weak closure of Aθ

and the hyperfinite II1 factor. This is quite natural from the viewpoint of bimodule theory
over factors, but this is different from the case of classification theory of automorphisms
of a II1 factor.

3.3 Extendible CP maps

It should be noted that the state ψT associated to a CP map T may not extend to the von
Neumann algebra A ⊗ A′, since given a pair of normal representations π, ρ of A and A′
respectively (acting on the same Hilbert space) such that π(a) and ρ(a′) commute for all
a, a′, it is not in general possible to get a normal representation φ of A ⊗ A′ such that the
restrictions of φ to A and A′ are respectively π and ρ. In the appendix, we have given a
counterexample which justifies this remark. Now, we are going to investigate when ψT
extends to the type II1 factor A ⊗ A′ as a normal state. Let us call the map T extendible
if ψT extends to a normal state on A ⊗ A′, or equivalently, π̃T extends to a normal
representation of A ⊗ A′. To give a necessary and sufficient criterion for extendibility, we
need the following general result.

PROPOSITION 3.7

Let C ⊆ B(H0) be a C∗ algebra, and C̃ be its weak closure. Let a discrete group 
 admit
a strongly continuous unitary representation on H0 given by, say, 
 � γ �→ uγ . Assume
furthermore that uγ Cu∗

γ = C, so that βγ defined by βγ (·) = uγ · u∗
γ defines a 
-action on

C as well as on C̃. Consider the C∗ crossed product C � 
 and the von Neumann crossed
product C̃ �
. Let φ: C �
 → C be a state. Then, φ extends to a normal state on C̃ �
 if
and only if for every γ ∈ 
, the bounded linear functional φγ defined by φγ (c) = φ(cδγ )

is weakly continuous (where cδγ denotes the C-valued function given by cδγ (γ ′) = 0 if
γ ′ �= γ , and is c if γ ′ = γ ).

Proof. Let us prove only the nontrivial part, i.e, the ‘if’ part. Consider the GNS triple
(K, π, ξ) for the state φ, and denote by π0 and Uγ the restriction of π to C and π(δγ )
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respectively. It is enough to prove that π0 is normal. Consider a directed family 0 ≤ cα ↑ c,
where cα, c ∈ C. We have to show that

〈w,π0(cα)w〉 ↑ 〈w,π0(c)w〉 ∀w ∈ K. (3.3)

Since the family π0(cα) is uniformly bounded (in operator norm) by ‖π0(c)‖ (as 0 ≤
π0(cα) ≤ π0(c)), it is enough to verify (3.3) for w belonging to the dense set D spanned
by vectors of the form π0(c)Uγ ξ , with c ∈ C and γ ∈ 
. Note that the set D is dense
because ξ is cyclic for π(C � 
).

Now, it can be verified by a simple calculation that

〈π0(c1)Uγ1ξ, π0(cα)π0(c2)Uγ2ξ〉
= φ

γ−1
1 γ2

(β
γ−1

1
(c∗1cαc2))

→ φ
γ−1

1 γ2
(β
γ−1

1
(c∗1cc2))

= 〈π0(c1)Uγ1ξ, π0(c)π0(c2)Uγ2ξ〉,
by the assumption of weak continuity of φγ for every γ . This completes the proof. �

For k ≡ (k1, k2) ∈ Z
2, let ψkT be the bounded linear functional on the commutative

C∗-algebra C∗(Ul, Vr) ≡ C(T2) defined by

ψkT (U
m
l V

n
r ) = ψT ((U

m
l ⊗ V nr )(V

−1
l ⊗ Vr)

k1(U−1
l ⊗ Ur)

k2), ∀m, n ∈ Z.

Let us denote byµkT the complex measure on T
2 corresponding toψkT , i.e.ψkT (U

m
l V

n
r ) =∫

zm1 z
n
2dµkT (z). From Proposition 3.7, we conclude the following.

Theorem 3.8. The CP map T is extendible if and only if for each k ∈ Z
2 the measure µkT

is absolutly continuous with respect to Lebesgue measure on T
2.

We end this subsection by mentioning a few examples of extendible maps. The veri-
fication of extendibility, using Theorem 3.8, is quite straightforward, and we omit these
calculations.

Example 3.9. T (a) = R∗aR, with R ∈ A, and is given by R = ∑
i,j∈Z

ci,jU
i
l V

j
l such

that (ci,j ) ∈ l2(Z2). Then T is extendible.

Example 3.10. Suppose that for each k ∈ Z, there exists some positive integer Nk such
that T (f (Ul))V kl ∈ Span[Uml V

n
l : m ∈ Z, − Nk ≤ n ≤ Nk], ∀f ∈ C(T). Then T is

extendible.

3.4 Invariants for extendible CP maps

Suppose that T is an extendible CP map, and let us denote the normal extension ofψT again
by the same symbol. So,ψT is a normal state on A⊗A′, which is also a type II1 hyperfinite
factor, with the canonical trace τ (2)(·) = 〈ξ0, ·ξ0〉 (where ξ0 = 1 ⊗ 1 ∈ Hτ ⊗ Hτ ). Recall
also the notation c(r) for c ∈ A ⊗ A′, introduced earlier by us.

Since τ (2) is faithful normal on A ⊗ A′, any normal state is absolutely continuous with
respect to τ (2). Thus, we can obtain a ‘Radon–Nikodym derivative’, which is a positive
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(possibly unbounded) operator DT affiliated to the commutant of A ⊗ A′, i.e. A′ ⊗ A,

such that ξ0 ∈ Dom(D
1
2
T ), and

ψT (b) = τ (2)(DT b) ≡ 〈D
1
2
T ξ0, bD

1
2
T ξ0〉, ∀b ∈ A ⊗ A′.

Note that DT is actually an element in L1(A′ ⊗ A, τ (2)).
We now explain howDT can be used to get numerical invariants for the equivalence ∼.

Suppose that S ∼ T , and let u ∈ A be such that S(a) = T (u∗au) for all a ∈ A. By an
easy calculation we see that

ψS(b) = ψT (ũ
∗bũ), b ∈ A ⊗ A′,

where ũ := u⊗ 1. Using the facts that D
1
2
T commutes with ũ, and that ũξ0 = ũ = ũ(r)ξ0,

(where ũ(r) ∈ A′ ⊗ A denotes right multiplication by ũ), we get the following:

ψS(b) = ψT (ũ
∗bũ)

= 〈ũD
1
2
T ξ0, bũD

1
2
T ξ0〉

= 〈D
1
2
T ũ

(r)ξ0, bD
1
2
T ũ

(r)ξ0〉

= 〈(ũ(r))∗D
1
2
T ũ

(r)ξ0, b(ũ
(r))∗D

1
2
T ũ

(r)ξ0〉.
From this, we conclude (using the uniqueness of the Radon–Nikodym derivative) that

DS = (ũ(r))∗DT ũ(r).

So, in particular, τ (2)(e−tDS ) = τ (2)(e−tDT ) for all t ≥ 0. These numbers can be used as
invariants for ∼. Another possibility is to use τ (2)(PT ), where PT denotes the projection
(in A′ ⊗ A) onto the range of DT .

Remark 3.11. Since DT is affiliated to A′ ⊗ A, which can be identified with the von
Neumann crossed product L∞(T2)� Z

2, we can describe DT by a formal series (which
can be made sense of in a suitable L1-topology) of the form

∑
k∈Z2 D

(k)
T δk , where D(k)T

is a measurable complex-valued function on T
2. Let us give a formula for the functions

D
(k)
T for a class of CP maps. Consider T (a) = R∗aR withR = ∑

(m1,m2)
cm1,m2U

m1
l V

m2
l ,

where the summation is over a finite set, i.e. cm ≡ c(m1,m2) is zero for all but a finitely

many m’s. Then T is extendible and D(k)T ’s are given by

D
(k)
T (z) =

∑
n,m∈Z2

cnc̄m1+n1,m2+n2+k1−k2λ
N(k,n,m)z

m1
1 z

m2
2 ,

with N(k, n,m) = 2k2m2 + k1n1 + k2n2 + k1k2 − k2
2. This can be verified by a simple

calculation.
In particular, for R = U , D(k)T (z) = λk

2
2−k1k2z

k2−k1
2 , and for R = U + V , D(k)T (z) =

λk
2
2−k1k2z

k2−k1
2 {λk1 + λk2 + λ2k2+k1z−1

1 z2 + λk2z−1
1 z−1

2 }.

Let us conclude with a nice computable formula for τ (2)(PT ) when DT is L2.
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PROPOSITION 3.12.

If DT belongs to L2(A′ ⊗ A, τ (2)), then we have

τ (2)(PT ) = 1 − inf
b∈Afin

sup
c∈Afin: τ (2)(c∗c)=1

|τ (2)(c∗)− ψT (c
∗b)|2.

Proof. Note that DT ∈ L2 implies that ξ0 ∈ Dom(DT ), and thus, τ (2)(b) = 〈ξ0, bDT ξ0〉
for all b ∈ A ⊗ A′. Moreover, as DT is affiliated to (A ⊗ A′)′, e−tD leaves Afinξ0 ⊆
Hτ ⊗ Hτ invariant. Hence Afinξ0 is a core for DT , and hence {DT bξ0: b ∈ Afin} is dense
in Ran D. Thus, we have

τ (2)(PT ) = ‖PT ξ0‖2

= 1 − dist(ξ0,Ran DT )
2

= 1 − inf
b∈Afin

‖ξ0 −DT bξ0‖2

= 1 − inf
b∈Afin

sup
c∈Afin: τ (2)(c∗c)=1

|〈c, ξ0 −DT bξ0〉|2

= 1 − inf
b∈Afin

sup
c∈Afin: τ (2)(c∗c)=1

|τ (2)(c∗)− τ (2)(c∗DT b)|2

= 1 − inf
b∈Afin

sup
c∈Afin: τ (2)(c∗c)=1

|τ (2)(c∗)− ψT (c
∗b)|2.

�

However, in this paper, we do not study these numerical invariants in more detail, and
do not investigate whether one or more of such invariants characterise the equivalence ∼.
We leave these topics for future research.

Appendix

Here we give an example of a commuting pair of normal representations π and ρ of a von
Neumann algebra A ⊆ B(H0) and its commutant respectively, such that the representation
� of A ⊗alg A′ defined by �(a ⊗ a′) = π(a)ρ(a′) does not have a normal extension to
the von Neumann algebra A ⊗ A′. To this end, let us take H0 = L2(T) (with Lebesgue
measure), and A = A′ = L∞(T). Let H = L2(R2, µ), where

µ(E) := l(E ∩D),
D := ∪n∈Z{(t, t + n): t ∈ R}, and l denotes the Lebesgue measure on R. Define π and ρ
from L∞(T) to B(H) by setting:

(π(φ)f )(s, t) = φ(λs)f (s, t), (ρ(φ)f )(s, t) = φ(λt )f (s, t),

for f ∈ L2(R2, µ). We claim that�:L∞(T)⊗algL
∞(T) → B(H) given by�(φ⊗ψ) :=

π(φ)ρ(ψ), does not admit a normal extension to L∞(T2). To see this, note that the set

 := {(x, (λnx) mod 1): n ∈ Z} has zero Lebesgue measure as a subset of T

2. Now,
assuming, if possible, that � admits a normal extension on L∞(T2), choose a function
F ∈ C(T2) and define F0 in L∞(T2) by setting F0(z) = 0 for z ∈ 
, and F0(z) = F(z)

for all z in the complement of 
. Thus, F = F0 a.e. (Lebesgue), hence �(F) = �(F0).
However,
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‖�(F0)f ‖2 =
∫

R2
|F0(λ

s, λt )f (s, t)|2dµ(s, t)

=
∑
n∈Z

∫
R

|F0(λ
s, λnλs)f (s, s + n)|2ds

= 0,

for every f ∈ L2(µ). Thus, �(F) = 0 for all F ∈ C(T2), contradicting the assumption
that � extends normally.
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