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Abstract. Let G be one of the classical compact, simple, centre-less, connected Lie
groups of rank n with a maximal torus T , the Lie algebra G and let {Ei , Fi , Hi , i =
1, . . . , n} be the standard set of generators corresponding to a basis of the root system.
Consider the adjoint-orbit space M = {Adg(H1), g ∈ G}, identified with the homoge-
neous space G/L where L = {g ∈ G : Adg(H1) = H1}. We prove that the coordinate

functions fi(g) := λi(Adg(H1)), i = 1, . . . , n, where {λ1, . . . , λn} is basis of G′ are
‘quadratically independent’ in the sense that they do not satisfy any nontrivial homoge-
neous quadratic relations among them. Using this, it is proved that there is no genuine
compact quantum group which can act faithfully on C(M) such that the action leaves
invariant the linear span of the above coordinate functions. As a corollary, it is also
shown that any compact quantum group having a faithful action on the noncommutative
manifold obtained by Rieffel deformation of M satisfying a similar ‘linearity’ condition
must be a Rieffel-Wang type deformation of some compact group.
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1. Introduction

It is indeed a very important and interesting problem in the theory of quantum groups

and noncommutative geometry to study ‘quantum symmetries’ of various classical and

quantum structures. Initiated by S. Wang who defined and studied quantum permutation

groups of finite sets and quantum automorphism groups of finite dimensional algebras,

such questions were taken up by a number of mathematicians (see [1, 2, 4, 5, 8, 16] and

also references therein). Although there are many genuine (i.e. not of the form C(G) for

some group G) compact quantum groups which can faithfully act on the space of func-

tions on finite sets, and these also give such actions on C(X) for disconnected spaces

with at least 4 components, no example of faithful action of a genuine compact quan-

tum group on C(X) for a connected compact space X was known until recently, when

Huang [10] gave a systematic way to construct examples of such action of the quantum

permutation groups. The work of Huang thus disproved a conjecture made by the author

of the present paper about non-existence of faithful actions of genuine compact quantum

groups on classical connected spaces. Using an algebraic example given by Etingof and

Walton in [7] we can give an example of faithful action by a finite dimensional compact

quantum group on the wedge sum of two copies of ([−1, 1], 0).
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However, it is interesting to observe that none of the above examples are smooth man-

ifolds. On the other hand, it follows from the work of Banica et al [3] that most of the

known compact quantum groups, including the quantum permutation groups of Wang,

can never act faithfully and isometrically on a connected compact Riemannian manifold.

All these motivate us to modify the original conjecture to the following:

Conjecture. It is not possible to have smooth faithful actions of genuine compact quantum

groups on C(M) when M is a compact connected smooth manifold.

In this article, we provide some supporting evidence to this conjecture, by proving

non-existence of nice (in some suitable sense to be described later) action of any gen-

uine compact quantum group on a large class of classical connected manifolds which are

homogeneous spaces of simple compact connected Lie groups. Using this, we also prove

that any compact quantum group acting faithfully and ‘linearly’ in a certain sense on

Rieffel-type deformation of C(M) must be a Rieffel–Wang type deformation of C(K) for

some classical group K acting on M .

We must mention that in a recent joint article with Das et al [6], we have been able to

prove this conjecture for isometric actions. Nevertheless, the constructions and arguments

of the present paper are quite interesting in their own right, for example, the quadratic

independence of the algebra of natural coordinate functions on a large class of homoge-

neous spaces of a simple compact connected Lie group is proved by a direct computation

using the Serre relations only.

Let us conclude this section with a brief remark on the physical relevance of the above

fact. It has two implications: firstly, it implies that for a classical system with phase-

space modeled on a compact connected manifold, the generalized notion of symmetries in

terms of quantum groups coincides with the conventional notion, i.e. symmetries coming

from group actions. This gives some kind of consistency of the philosophy of think-

ing quantum group actions as symmetries. Secondly, it also allows us to describe all the

(quantum) symmetries of a physical model obtained by suitable deformation (at least for

the Rieffel-type deformations) of a classical model with connected compact phase space,

showing that such quantum symmetries are indeed deformations of the classical (group)

symmetries of the original classical model.

2. Preliminaries on quantum groups and their actions

2.1 Basics of compact quantum groups

A compact quantum group (CQG for short) is a unital C∗ algebra S with a coassocia-

tive coproduct (see [12, 18]) � from S to S ⊗ S (injective tensor product) such that

each of the linear spans of �(S)(S ⊗ 1) and that of �(S)(1 ⊗ S) is norm-dense in

S ⊗ S . From this condition, one can obtain a canonical dense unital ∗-subalgebra S0

of S on which linear maps κ and ǫ (called the antipode and the counit respectively)

make the above subalgebra a Hopf ∗-algebra. In fact, we shall always choose this dense

Hopf ∗-algebra to be the algebra generated by the ‘matrix coefficients’ of the (finite

dimensional) irreducible unitary representations (to be defined shortly) of the CQG. The

antipode is an anti-homomorphism and also satisfies κ(a∗) = (κ−1(a))∗ for a ∈ S0.I

t is known that there is a unique state h on a CQG S (called the Haar state) which is

bi-invariant in the sense that (id ⊗ h) ◦ �(a) = (h ⊗ id) ◦ �(a) = h(a)1 for all a.

The Haar state need not be faithful in general, though it is always faithful on S0 at least.
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We say that a CQG S (with a coproduct �) (co)acts on a unital C∗ algebra C if there is

a unital C∗-homomorphism β : C → C ⊗ S such that Span{β(C)(1 ⊗ S)} is norm-dense

in C ⊗ S , and it satisfies the coassociativity condition, i.e. (β ⊗ id) ◦ β = (id ⊗ �) ◦ β.

It has been shown in [13] that there is a unital dense ∗-subalgebra C0 of C such that

β maps C0 into C0 ⊗alg S0, where S0 is the dense Hopf ∗-algebra mentioned before,

and we also have (id ⊗ ǫ) ◦ β = id on C0. In fact, this subalgebra C0 comes from the

canonical decomposition of C into subspaces on each of which the action β is equivalent

to an irreducible representation. More precisely, C0 is the algebraic direct sum of finite

dimensional vector spaces Cπ
i , say, where i runs over some index set Ji , and π runs over

some subset (say T ) of the set of (inequivalent) irreducible unitary representations of

S , and the restriction of β to Cπ
i is equivalent to the representation π . Let {a

(π,i)
j , j =

1, . . . , dπ }, where dπ is the dimension of the representation π be a basis of Cπ
i such that

β(a
(π,i)
j ) =

∑

k a
(π,i)
k ⊗ tπjk , for elements tπjk of S0. The elements {tπjk, π ∈ T ; j, k =

1, . . . , dπ } are called the ‘matrix coefficients’ of the action β.
We say that the action β is faithful if the ∗-subalgebra of S generated by elements of

the form (ω ⊗ id)(β(a)), where a ∈ C, ω being a bounded linear functional on C, is

norm-dense in S , or, equivalently, the ∗-algebra generated by the matrix coefficients is

norm-dense in S .
A unitary representation of a CQG (S,�) in a Hilbert space H is given by a complex

linear map U from the Hilbert space H to the Hilbert S-module H⊗S , which is isometric

in the sense that 〈Uξ,Uη〉S = 〈ξ, η〉 for all ξ, η ∈ H (where 〈·, ·〉S denotes the S-

valued inner product) and the S-linear span of the range of U is dense in H ∈ S . There

is an equivalent description of the unitary representation given by the S-linear unitary

Ũ ∈ L(H⊗S) defined by Ũ (ξ⊗b) = U(ξ)b, for ξ ∈ H, b ∈ S, satisfying (id⊗�)(Ũ) =

Ũ12Ũ13. Here, Ũ ij is the standard leg-numbering notation used in the theory of quantum

groups, i.e. Ũ12 = Ũ ⊗ IdS and Ũ13 := σ23 ◦ Ũ12 ◦ σ23, σ23 being the map which

flips the second and third tensor components of H ⊗ S ⊗ S . We also recall that a unitary

representation U is irreducible if there is no nontrivial closed subspace K of H which is

invariant under U , i.e. UK ⊆ K ⊗ S .

3. Quadratic independence and nonexistence of genuine quantum group action

Let V be a finite dimensional subspace of a (possibly infinite dimensional) commutative

algebra say A over any field F . Let V (2) denote the linear span of elements of the form

vv′, with v, v′ ∈ V . Let V ⊗sym V denote the symmetric tensor product of V with itself,

which is the subspace V ⊗V spanned by elements of the form v⊗v, v ∈ V . Equivalently,

it is the vector space obtained by taking quotient V ⊗ V by the subspace F spanned by

vectors of the form v ⊗ w − w ⊗ v. As the algebra A is commutative, the linear map

v⊗w �→ vw = wv from V ⊗V to V (2) ⊆ A annihilates the subspace F , hence induces a

linear map from the quotient, i.e. V ⊗sym V onto V (2). We call V to be quadratically inde-

pendent if this map is one-to-one, i.e. a linear isomorphism. We also call the dimension

of V (2) the quadratic dimension of V .

Lemma 3.1. The following are equivalent:

(i) V is quadratically independent.

(ii) The quadratic dimension of V equals
n(n+1)

2
, where n = dim(V ).
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(iii) For every basis {x1, . . . , xn} of V , the set {xixj , 1 ≤ i ≤ j ≤ n} is linearly

independent.

Proof. To see the equivalence of (i) and (ii), it is enough to note that there is a surjective

linear map from the finite-dimensional space V ⊗sym V to V (2), hence these two spaces

are isomorphic if and only if dimension of V (2) equals that of V ⊗sym V , which is nothing

but n(n+1)
2

. It is also clear that (iii) implies (ii). To prove the other way, observe that for

any basis {x1, . . . , xn} of V , the set E = {xixj , i ≤ j ≤ n} spans V (2), hence a subset of

E will give a basis of V (2). But E has cardinality not greater than n(n + 1)/2, which is

by (i) the dimension of V (2). Therefore, E must be a basis itself. �

We remark that if the underlying field is R, then quadratic independence of V is

clearly equivalent to the quadratic independence of the complexification VC, as (V (2))C ∼=
(VC)(2).

We end this section with the following crucial implication of quadratic independence

in the context of quantum group actions. We refer the reader to [6] (Lemma 10.1, see also

Theorem 2.2 of [4]) for a proof.

Theorem 3.2. Let A be a unital commutative C∗ algebra and x1, . . . , xn be self-adjoint

elements of A such that Span {x1, . . . , xn} is quadratically independent and A is the uni-

tal C∗ algebra generated by {x1, . . . , xn}. Let Q be a compact quantum group acting

faithfully on A, such that the action maps Span{x1, . . . , xn} into itself. Then Q must be

commutative as a C∗ algebra, i.e. Q ∼= C(K) for some compact group K .

4. Some facts about simple Lie groups and Lie algebras

We collect a few standard facts about simple Lie groups and Lie algebras. Most of these

materials are taken from [9, 11]. Let G be a compact, simple, connected Lie group with

trivial centre, and let G be its (real) Lie algebra. Consider the complexification GC of G,

and the corresponding simple Lie group GC, which has the (complex) Lie algebra GC
(see pp. 178–182 of [9]). For X ∈ G, let adX(·) = [X.·] : G → G and for

g ∈ G, let Adg denote the adjoint action of G at g, which is obtained as the differen-

tial of the map G ∋ h �→ ghg−1 ∈ G at h = e (identity element of G). The adjoint

representation of G (see page 127 of [9]), i.e. g �→ Adg identifies G with a matrix

group acting on G, i.e. as subgroup of GL(G). We refer the reader to page 104 of [9] for

the definition and properties of the exponential map ‘exp’ and shall use the abbreviation

βt (X) = Adexp(tX) = exp(tadX) for X ∈ GC. We also note that the adjoint representation

is an irreducible representation of G as G has a trivial centre.

Suppose that G has rank n. Let T be a maximal torus with the corresponding maximal

abelian Lie subalgebra (Cartan algebra) T . From the general structure theory of simple

Lie algebras (see e.g. page 96 of [11]), GC is generated (as Lie algebra) by elements

{Ei, Fi,Hi : i = 1, 2, . . . , n}, satisfying the following relations (Serre relations):

[Ei, Fi] = Hi, [Ej ,Hi] = −aijEj , [Fj ,Hi] = aijFj ,

[Ei, Fj ] = 0 ∀i �= j, [Hi,Hj ] = 0 ∀i, j,

ad
1−aij

Ei
(Ej ) = 0, ad

1−aij

Fi
(Fj ) = 0, i �= j.
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Here, {H1, . . . , Hn} is a set of generators of T and ((aij )) is the so-called Cartan matrix

(page 55 of [11]), with aii = 2, aij ≤ 0 for i �= j . Thus, a spanning set (as vector space)

of the Lie algebra GC consists of Ei, Fi,Hi , i = 1, . . . , n, and those elements of the form

ad
m1

Ei1
. . . ad

mk

Eik
(Eik+1

), ad
n1

Fi1
. . . ad

nl

Fil
(Fil+1

), 1 ≤ i ≤ n, k, l ≤ n − 1, i1 < · · · < ik+1

which are nonzero. Let us denote this spanning set by B̂.

Given an element X of G, consider the adjoint-orbit space OX = {Adg(X) : g ∈ G}

which is a closed subset of G. It is easy to see that OX can be identified as a manifold with

the homogeneous space G/L, where L = {g : Adg(X) = X}. Indeed, it is clear from

the definition that L is a closed subgroup, hence a Lie subgroup. Thus, its Lie algebra,

say GX, will be a Lie subalgebra of G. In fact, Y ∈ GX if and only if exp(tY ) ∈ L for

all t ∈ R, i.e. βt (Y )(X) = 0 for all t . This is equivalent to [Y,X] = 0. In other words,

GX = {Y ∈ G : [Y,X] = 0}.

In this paper, we shall consider G to be one of the classical groups (i.e. special unitary,

special orthogonal or symplectic groups) and X = H1 (equivalently, Hi for some fixed i).

The following fact is easily verifiable from the explicit description of the group of inner

automorphisms, in particular the Weyl groups for the classical simple Lie groups.

Fact. For each i, there is gi ∈ GC such that Adgi
(H1) = Hi .

Remark 4.1. We do not know whether the above fact is true for exceptional Lie algebras

as well. If so, the above fact and hence all the results of this paper will hold for an arbitrary

simple compact connected centreless Lie group.

Now, as G is a simple Lie algebra, its Cartan matrix is indecomposable (page 73 of

[11]). That is, for every i and j , we can find a ‘path’, say i1 = i, i2, . . . , ik = j , such

that ail il+1
�= 0 for each l = 1, . . . , k − 1. Unless otherwise mentioned, we shall always

assume that no two induces in a ‘path’ are chosen equal, and let us say that the length of

such a path is k − 1. Denote by Ŵk
m the subset of i such that we can find a ‘path’ of length

at most m from k to i and let B̂k
m be the subset of B̂ consisting of those Ei, Fi,Hi with

i ∈ Ŵk
m and also [Ei1 , . . . , Eik ], [Fj1

, . . . , Fjl
] with all ip and jq belonging to Ŵk

m. Choose

a linearly independent subset B of B̂ as follows. Start with all Ei, Fi,Hi’s in Ŵ1
1 (which

are clearly linearly independent), then extend this collection to a linearly independent set,

say B1, which has the same span as that of B̂1 by adding appropriate elements from B̂1
1 .

Then add further suitable elements from B̂1
2

⋂

(B̂1
1)

c to get a linearly independent set B2

with the same span as that of B̂1
2 . Go on like this to get B =

⋃

m Bm, which is a basis of

G, with Bm = B
⋂

B̂1
m. Here Bm is a basis for Span(B̂1

m) for all m. Note that B is actually

a union of finitely many Bm’s due to the Serre relations.

5. Main results

5.1 Nonexistence of linear quantum actions on the adjoint-orbit space

The real C∗ algebra of real-valued continuous functions C(M)R of the adjoint-orbit space

M = G/L can be identified with real C∗-subalgebra of C(G)R generated by functions of

the form fλ(g) = λ(Adg(H1)), where λ varies over the dual G′ of G. Let V be the real

vector space consisting of functions of the form fλ, with λ ∈ G′. We can complexify all

the vector spaces involved, and observe that VC will generate C(M) (continuous complex
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valued functions) as a (complex) C∗ algebra. The real-valued functions (i.e. self-adjoint

as elements of C(M) ⊂ C(G)) {fi ≡ fλi
, i = 1, . . . , n}, where {λ1, . . . , λn} is a basis

of G′, can be interpreted as ‘coordinates’ of the compact homogeneous manifold M .

Note that the canonical action of G on the homogeneous space M = G/L leaves

invariant the subspace V mentioned above, i.e. it is ‘linear’ in the sense discussed before.

It is thus natural to consider linear actions by quantum groups as well. In fact, very often

the natural invariant Laplacian on M given by the action of the Casimir will have V as

an eigenstate, hence any isometric action by a compact quantum group must leave V

invariant and is determined by the restriction of the action to V .

However, as we will see below, there is no genuine quantum group action on M which

is linear.

We claim the following.

Theorem 5.1. The vector space V is quadratically independent.

The proof will be divided into several steps. First of all, we need to pass to the complex

Lie group GC.

Lemma 5.2. Consider the natural extension of adjoint action of GC on GC, and let ṼC be

the linear subspace spanned by functions of the form f̃λ(g) := λ(Adg(H1)) (g ∈ GC) in

C(GC). Then the quadratic independence of V is equivalent to quadratic independence

of ṼC.

Proof. We already noted that quadratic independence of V and VC are equivalent. More-

over, as f̃λ’s are extensions of fλ’s, it is clear that quadratic independence of VC will

imply that of ṼC. To prove the converse, assume that ṼC is quadratically independent.

We have to show that VC is quadratically independent. Choose a basis f1, . . . , fm of VC;

clearly f̃1, . . . , f̃m are linearly independent and hence forms a basis of ṼC. If possible,

suppose that cij , i ≤ j are complex numbers such that
∑

ij cijfifj = 0. This means for

every element X of G and t ∈ R, we have
∑

ij cijfi(exp(tX))fj (exp(tX)) = 0. Now, it

is known that z �→ exp(zX) is holomorphic, and from this, it can be seen that the above

expression with t replaced by z ∈ C is holomorphic, so that it must be identically zero for

all z ∈ C. But then, as GC is the Lie algebra of the connected Lie group GC, we conclude

that
∑

ij cij f̃i(g)f̃j (g) = 0 for all g ∈ GC. By assumption, this implies cij = 0 for all

i, j , i.e. VC is proved to be quadratically independent. �

In view of this lemma, we can prove the theorem by showing quadratic independence

of ṼC. Let us first show that the vector space of functions f̃λ has the same dimension as

the dimension of GC.

Lemma 5.3. The map G′ ∋ λ �→ f̃λ ∈ ṼC is an isomorphism of vector spaces.

Proof. We need only to show injectivity of the map G′
C

∋ λ �→ f̃λ. Let λ be such that

λ(Adg(H1) = 0. Let H be the subset of GC consisting of all Y such that λ(Adg(Y )) = 0

for all g. H is nonzero as it contains H1, by assumption. Now, H is clearly a subspace

and moreover, it is a Lie ideal in GC. Indeed, if Y ∈ H and Z is an arbitrary element

of GC, considering h ∈ GC, t ∈ R and g = h exp(tZ) we see λ(Adh exp(tZ)(Y )) = 0.

Differentiating at t = 0 we get λ(Adh([Z, Y ])) = 0 for all h ∈ GC, hence [Z, Y ] ∈ H.
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But GC being simple Lie algebra, any nonzero Lie ideal must be GC itself. This implies

λ(Adg(Y )) = 0 for all Y and for all g, so, in particular, λ(Y ) = 0 for all Y , i.e. λ = 0. �

Using this lemma, we can identify a functional λ on GC with the function on G given

by g �→ λ(Adg(H1)), so λ ⊗ η (for λ, η ∈ G′) can be identified with f̃λ(g)fη(g) =

(λ⊗η)(Adg(H1), Adg(H1)). More generally, c ∈ G′
C
⊗G′

C
is identified with g �→ ĉ(g) :=

c(Adg(H1), Adg(H1)). Thus, the image of the symmetric tensor product of VC with itself

in the algebra C(G) consists of functions of the form ĉ as above with c ∈ G′
C

⊗sym G′
C

.

By definition of quadratic independence, it suffices to show that c �→ ĉ is one-to-one.

Proof of quadratic independence. Consider a bilinear symmetric functional c on GC⊗GC,

i.e. element of G′
C

⊗sym G′
C

and let ĉ denote its canonical image in C(M) given by ĉ(g) =

c(Adg(H1), Adg(H1)) as discussed above. We usually write c(X, Y ) as c(X,Y ). We want

to prove the injectivity of c �→ ĉ. To this end, suppose ĉ = 0, i.e. ĉ(g) = 0 for all g. We

have to show that each c(X,Y ) = 0.

First, let us note the following relations:

βt (Ei)(H1) = H1 − ta1iEi, (1)

βt (Fi)(H1) = H1 + ta1iFi, (2)

βt ([Ei, [Ej , . . . , Ek] . . .])(H1) = H1 − (a1i + a1j + · · · + a1k)

× t[Ei, [Ej , . . . , Ek] . . .], (3)

βt ([Fi, [Fj , . . . , Fk] . . .])(H1) = H1 + (a1i + a1j + · · · + a1k)

× t[Fi, [Fj , . . . , Fk] . . .], (4)

βs(Ei)βt (Fi)(H1) = H1 − sa1iEi + ta1iFi + sta1iHi − s2ta1iEi . (5)

For X = [Ei1 , [. . . , [Eil , . . .]] (respectively [Fi1, [. . . , [Fil , . . .]]) we denote by akX the

sum aki1 + · · · + akil + · · · (−aki1 − · · · respectively), so that we have

βt (X)(Hk) = Hk − akXX. (6)

Also, note that ak[X,Y ] = akX + akY .

The strategy is similar to the proof of the previous lemma. We first give explicit compu-

tations in certain simpler yet illustrative special cases and then give the general inductive

scheme. Consider

ĉ(Adg(H1), Adg(H1)) = 0, g = βt1(X1) . . . βtk (Xk). (7)

Step 1. c(Hi ,X) = 0 for all i and for X = Hi, Ei, Fi . Consider gi such that Adgi
(H1) = Hi

and take g = βt (Ei)gi in (7). Equating coefficients of 1 and t to 0 and noting aii = 2, we

have c(Hi ,Hi ) = 0 and c(Hi ,Ei ) = 0 respectively. Similarly, we get c(Hi ,Fi ) = 0 too.

Step 2. c(Ei ,Fi ) = 0 for all i. Let k and i be such that i ∈ Ŵk
1 , and we have c(Hk,Hi ) = 0.

Using the analogue of (5) with k replacing 1 in (7) with the choice g = βs(Ei)βt (Fi)gk

(where Adgk
(H1) = Hk) and comparing coefficients of s2t2 one gets

−2a2
kic(Ei ,Fi ) + a2

kic(Hi ,Hi ) = 0, i.e. c(Hi ,Hi ) = 2c(Ei ,Fi ). (8)
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As c(Hi ,Hi ) = 0 from Step 1, we conclude c(Ei ,Fi ) = 0. Similarly, from coefficient of

st we get

c(Hk,Hi ) = akic(Ei ,Fi ). (9)

This gives c(Hk,Hi ) = 0.

Step 3. Let X, Y be of the form [Ei1 , [. . . , [Eim ], . . .]] or [Fj1
, [. . . , Fjn ] . . .], i.e. Lie

brackets of E’s or of F ’s only. Then we have the following:

(a) c(Hk,X) = 0 if akX is nonzero.

(b) If akX, akY are nonzero, then c(X,Y ) is a nonzero multiple of c(Hk,[X,Y ]) and hence it

is 0 if and we only if c(Hk,[X,Y ]) = 0.

We prove Step 3(a) by considering coefficient of t in (7) using (6). For Step 3(b),

consider βs(X)βt (Y )(Hk) and we see the coefficient of st in (7).

Step 4. The conclusions of Steps 1, 2, 3 hold even if we replace X, Y , Ei , Fi , Hi, . . . by

Adg(·). For example, we have c(Adg(X),Adg(Hk)) = 0 if akX is nonzero, c(Adg(Ei),Adg(Fi )) =

0. . . .

The proofs are essentially the same as the previous steps. For example, for proving the

analogue of Step 3(a) for a fixed g0, we need to consider the coefficient of t in (7) using

g = βt (Adg0
(X))g0gk .

Step 5. For any X which is either a Lie bracket of only Ei’s or of Fi’s, we have

(a) c(Adg(X),Adg(X)) = 0 ∀g;

(b) c([Y,Adg(X)],Adg(X)) = 0 ∀Y ∈ G, ∀g.

We prove (a) by noting that given any nonzero X as above, there is some i for which

aiX is nonzero, because otherwise X will commute with all Hi , hence must be an element

of the Cartan algebra. Now (a) follows from Step 4. Part (b) is obtained by replacing g

in (a) by βt (Y )g and then differentiating at t = 0 as well as using the fact that c(·, ·) is

symmetric in its arguments.

Step 6. c(Hk,Z) = 0 for all k and Z. This needs an inductive argument. Without loss

of generality, suppose that Z = [Ei1 , [Ei2 , . . . , ]], as the cases with Fi’s can be treated

similarly. First, if none of the il are equal to k and also at least one of them is in Ŵk
1 ,

clearly akZ is nonzero, so that c(Hk,Z) = 0. Next, let us give a simple special case where

akZ is nonzero by just adding one Ek in the chain. Consider Z′ = [Ek, Z] and assume

akZ = −2 so that akZ′ = 0. However, we still want to show c(Hk,Z
′) = 0. We have by

Step 5, taking Y = Adg(Ek) and X = Z, the following:

c(Adg(Z′),Ek) = 0 ∀g.

Choosing g = βt (Fk) and differentiating at t = 0 gives c(Z′,Hk) = c([Fk,Z
′],Ek). But as

Z has no Ek in its expression we have [Fk, Z] = 0, hence [Fk, Z
′] = −akZZ = 2Z.

Moreover, we already know c(Z,Hk) = 0, which proves c(Hk,Z
′) = 0 too.

Now we come to the inductive scheme for proving Step 6. Given any Z which is a Lie

bracket of only Ei’s or only Fj ’s, let us call it is at a distance m (m ≥ 1) from Hk if m

is the smallest positive integer for which we can find j1 = k, j2, . . . , jm so that ajljl+1
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and ajmZ are nonzero for all l. We make a similar definition for Z = Hi replacing the

condition ajmZ �= 0 by ajmi �= 0. We make the induction hypothesis that c(Hk,Z) = 0 for

any Z which is at a distance less than or equal to m. For m = 1, we already know it is true.

Assume the induction hypothesis for m = N and let us first prove c(Hk,Hj ) = 0 for

k, j with j ∈ Ŵk
N+1. Without loss of generality, we can assume that j does not belong

to Ŵk
N (there is nothing to prove otherwise), and let k = j1, . . . , jN+2 = j being the

corresponding minimal path of length N + 1 from k to j (the jl’s are distinct). Consider

the following function ξ ≡ ξ(w,w′, sN+1, tN+1, . . . , s2, t2) of 2N + 2 real variables,

given by

ξ =βw(Ej)βw′(Fj)βsN+1
(EjN+1

)βtN+1
(FjN+1

) . . . βs2
(Ej2

)βt2(Fj2
)(Adgk

(H1)),

where gk is such that Adgk
(H1) = Hk . We have ĉ(ξ, ξ) = 0 and want to equate

coefficients of different powers of the above real variables to 0. For a 2N + 2-tuple

l = (lN+2, l
′
N+2, lN+1, l

′
N+1, . . . , l2, l

′
2) of nonnegative integers, we denote by ξl the

coefficient of wlN+2(w′)l
′
N+2s

lN+1

N+1 . . . (s′
2)

l′2 in the power series expansion of ξ(·). The

coefficient of ww′sN+1tN+1 . . . s2t2 in ĉ(ξ, ξ) is the sum of all c(ξl, ξm), where l, m are

such that their coordinate-wise sum is (1, 1, . . . , 1). A moment’s reflection would show

that in this expression the coefficient of s2t2 . . . sN+1tN+1ww′, i.e. ξ(1,1,...,1) is a nonzero

multiple of Hj . Note that by minimality of the path chosen, ajpjp+r = 0 for any p and

any r > 1, and so Ejp and Fjq commute whenever |p − q| ≥ 2. Moreover, observe the

following:

(i) If l2 = l′2 = 0 but l is not (0, 0, . . . , 0), then ξl = 0.

(ii) In fact, except for the case (0, 0, . . . , 0), if any two consecutive entries of the finite

sequence l are zero, then ξl = 0 too.

Indeed, as ajpjq = 0 for q > p + 1, we have βtjq
(Fjq )(Hk) = βsjq

(Ejq )(Hk) = Hk

for all q ≥ 3, hence ξ(w,w′, sN+1, tN+1, . . . , s3, t3, 0, 0) is identically equal to Hk ,

which proves (i). Proof of (ii) is similar. Now, (i), (ii) imply that the only choices of

(l,m) which give possibly nonzero contribution are ((0, 0, . . . , 0), (1, 1, . . . , 1)) and

((1, 0, 1, 0, . . . , )(0, 1, 0, 1, . . .)), so that the coefficient of s2t2 . . . sN+1tN+1ww′ is a lin-

ear combination of c(Hk,Hj ) and c(X,Y ), where X = [EjN+1
, [EjN

, . . . , Ej2
] . . .], Y =

[FjN+1
, [FjN

, . . . , Fj2
] . . .]. But aj2X and aj2Y are nonzero, because aj2j3

is nonzero and

aj2jp = 0 for all p > 3. Moreover, [X, Y ] is a linear combination of Hjp ’s, p = 2, 3, . . .

so that by the induction hypothesis, c(Hj2
,[X,Y ]) = 0. This implies c(X,Y ) = 0 by Step 3(b).

This proves c(Hk,Hj ) = 0, as we have already noted that c(Hk,Hj ) occurs with a nonzero

multiple in the expression.
A similar argument considering βw(X)βsN+1

(EjN+1
)βtN+1

(FjN+1
) . . . βs2

(Ej2
)βt2Fj2

(Adgk
(H1)) will prove c(Hk,X) = 0 for any X which is Lie brackets of only E’s or of F ’s,

and at a distance N +1 from k, completing the proof of the inductive step, hence also that

of Step 6.

Step 7. The general case. Consider any two elements X, Y of the Lie algebra. If X = Hk

for some k, we have already proved c(X,Y ) = 0. So, assume X is either Lie bracket of E’s

or that of F ’s. Now, note that by a slight modification of Step 6, we get c(Adg(Hk),Adg(Y )) =

0 for all g, k and Y . As before, this will give us c([X,Hk],Y ) = −c(Hk,[X,Y ]) =

0, i.e. akXc(X,Y ) = 0. Next, choose k such that akX is nonzero, which proves

c(X,Y ) = 0. �



136 Debashish Goswami

From the above theorem and Theorem 3.2, we immediately conclude the following:

Theorem 5.4. Let G be a classical compact, connected, centreless simple Lie group of

rank n as above, with {H1, . . . , Hn} a basis of the Cartan subalgebra corresponding to

simple roots. Let L = {g ∈ G : Adg(H1) = H1} and M = G/L be the corresponding

homogeneous space. One can identify C(M) with the subalgebra of C(G) consisting of f

satisfying f (gh) = f (g) for all h ∈ L and for all g ∈ G. Let V ⊂ C(M) be the subspace

of functions of the form g �→ λ(Adg(H1)), λ ∈ G′. Then any compact quantum group

acting faithfully on C(M) such that V is left invariant by the action must be commutative

as a C∗ algebra.

Remark 5.5. If one tries to generalize the techniques of this paper to semi-simple (but not

necessarily simple) Lie algebras, one faces the following problem. Suppose that the Lie

algebra is a direct sum of k copies of simple classical Lie algebras. Then the natural ana-

logue of the space V considered in this paper is the tensor product of the corresponding

Vi’s, i = 1, . . . , k coming from the constituent simple Lie algebras. But this tensor prod-

uct is not going to be quadratically independent for k > 1. However, the conclusion of

Theorem 5.4 may follow from the more general result of [6] as already remarked earlier.

5.2 Quantum actions on Rieffel-deformed C∗ algebras

We shall now consider deformation of classical manifolds and quantum group actions on

them. Let G be as in Theorem 5.4 above and assume that the rank n of G is at least 2.

We consider the Rieffel-deformation C(M)θ using the left action of T on M = G/L (see

[14] for the definition and details of such deformation), indexed by skew-symmetric n×n

matrices θ , which is a continuous field of possibly noncommutative C∗ algebras.

In a similar way, if a compact group K has an n-toral subgroup T , we can consider

the Rieffel–Wang deformation C(K)θ̃ (see [15, 17]) of C(K) by the action of the 2n-

dimensional torus T × T on K given by (z, w)g := zgw−1, z,w ∈ T , g ∈ K , and

where θ̃ =

(

0 θ

−θ 0

)

. This becomes a compact quantum group with the same coalgebra

structure as C(G). It is known [14] that there are canonical injective linear maps jθ :

C∞(M) → C(M)θ such that C∞(M)θ := jθ (C
∞(M)) is dense in C(M)θ for each θ .

There is a canonical action of T , say β, on C(M)θ , which is defined by βz(jθ (f )) =

jθ (Lzf ), Lz(f )(g) := f (zg), for f ∈ C∞(M), z ∈ T , g ∈ G.

DEFINITION 5.6

We shall call an action α : C(M)θ → C(M)θ ⊗ Q of a compact quantum group ‘linear’

if it leaves invariant the subspace jθ (V ) ⊆ C∞(M)θ , where V is as in Theorem 5.4, i.e.

the subspace of C∞(M) spanned by functions of the form λ(Adg(H1)), λ ∈ G′, where G,

H1 are as before.

Theorem 5.7. Let Q be a compact quantum quantum group with a faithful Haar state

having a faithful and linear action α on C(M)θ . Assume furthermore that there is a quan-

tum subgroup of Q isomorphic with the n-torus T , with the corresponding surjective

morphism π : Q → C(T ), such that the action (id ⊗ π) ◦ α : C(M)θ → C(M)θ ⊗ C(T )

coincides with the canonical T -action β on C(M)θ . Then Q must be isomorphic with the

Rieffel–Wang deformation C(K)θ̃ for some compact group K which acts on M .
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Proof. Note that (C(M)θ )−θ
∼= C(M). We conclude from the proof of Theorem 3.11 of

[4] that there is an action α−θ of Q−θ̃ on C(M), which is clearly faithful and also leaves

invariant j0(V ) ≡ V . This implies, by Theorem 5.4, that Q−θ̃
∼= C(K) for some compact

group acting on M . Thus, Q ∼= C(K)θ̃ . �
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