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In this paper, a Fourier transform based periodic approach is developed for wave-propagation analysis in a generic multi-

coupled one-dimensional periodic structure. Dispersion relations in 1-D metallic waveguides with periodic defects are

investigated. Defects considered here are horizontal cracks and staggered cracks, respectively. The formulation is based

on the Bloch’s theorem and uses the dynamic stiffness matrix of the sub-element obtained from spectral super element

theory. Numerical investigations are carried out to study the dispersion characteristics and the evolution of band gaps in

these structures.
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1. Introduction

Periodic structures are often encountered in
engineering such as a bridge with repeated truss like
structure, a periodically stiffened fuselage and wing
of an aircraft, a periodically supported pipe conveying
the fluid etc. Rivet holes in an aircraft stiffened
connections are very common and they are periodic
in nature. When the stress concentration in these holes
exceeds the threshold values, they give rise to a
number of cracks, which again is periodic in nature.
Recently, with the advent of nano-structured materials
such as carbon nano-tubes and their composites, the
study of their periodic properties will help in
exploring their functional properties. Thus periodic
structures have been investigated intensively in the
last decade.

Currently wave propagation analysis in periodic
structures is performed using spectral finite element
method [1], which is applicable for healthy structures
only, and the conventional finite element method,
which is applicable for any type of structures, without
utilizing the periodic property of the structures. Since
the wave propagation analysis deals with very high
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frequency waves, which imply very small
wavelengths, finite element mesh size for such
problems require that it should be at least of the order
of minimum wavelength to capture the proper
response. Thus if the structure to be analyzed is large
enough with many periodic cells, then the system size
for such problems will be too large and solving it
will be computationally very expensive.

In this paper, the defects considered are the
horizontal cracks, and staggered cracks. The
procedure developed here can be easily extended to
other defects such as elliptical or circular holes.
Timoshenko beam theory is used here to obtain a
healthy spectral frame element to model a sub-
element of the periodic system. Equivalent Bernoulli-
Euler beam theory can be recovered by setting the
shear rigidity very high and making rotational inertia
equal to zero. A single sub-element of the periodic
system is modelled by two different methods, one by
using spectral super element model [2] and the second
using damaged spectral element model [3]. Using
the Timoshenko beam theory, the eigenvalues and
eigenvectors of the system is obtained, which are
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essential to determine the dispersion relation of the
structure using periodic approach.

Research on periodic structures started in
eighteenth century by Brillouin [4], wherein the study
was made on their dynamic properties to understand
the wave characteristics of lattice structures. An
interesting characteristic of a periodic structure is the
band-gap phenomenon, i.e., they exhibit certain
frequency bands within which no wave propagates,
resulting in filtering capabilities. Another important
and useful feature of periodic system is the
simplification of the calculation procedure due to
periodic nature, as only one periodic subsystem needs
to be analyzed and the wave propagation of a
complete (infinite) profile strip can be deduced from
the single subsystem results. Mead [5-7] proposed a
general theory for wave propagation in mono-coupled
and multi-coupled periodic systems. The mono-
coupled periodic systems are connected by only one
displacement variable in contrast to the multi-coupled
systems. Signorelli et al. [8] investigated the wave
propagation in a periodic truss system. This analysis
is based on the transfer matrix of a single bay of the
structure. The phase closure principle is invoked to
predict natural frequencies of a fixed-free portion of
the truss. At the same time, mono-coupled and
undamped periodic systems were examined by wave,
modal, receptance and finite element analyses by
Keane et al. [9]. These analyses were aimed at
providing an improved insight into the vibratory
behavior of engineering structures, which exhibit
periodicity and the effects of deviation from perfect
periodicity were also demonstrated. The effect on the
properties of periodic structure due to imperfections
or near periodicity is discussed in detail by Benaroya
et al. [10].

Spectral FEM is an established wave
propagation analysis tool. It is essentially a finite
element analysis tool in the frequency domain. Due
to use of exact solution to frequency domain as
interpolating function for element formulation and
exact inertial distribution, the problem sizes in
spectral element approach is orders of magnitude
smaller compared to conventional FEM. In addition,
spectral FEM provides understanding the nature of

waves through wavenumber and group speeds
computation, which is not possible directly through
conventional FEM. There are two variants of spectral
FEM, one based on Fourier transform and the other
based on wavelet transform. Former uses Fast Fourier
Transform (FFT) to go back and forth in time and
frequency domain, while latter uses Daubechies
compactly supported basis functions as wavelet
functions. The details of Fourier based spectral FEM
can be obtained from [1], while the details of wavelet
based spectral element is found in the textbook [11].
The major disadvantage with spectral finite element
method is its inherent difficulty in handling
waveguides with arbitrary geometries and
waveguides with defects. Although, a spectral
element model for horizontal mid-plane or offset
cracks are available (see [3]), such models for inclined
or staggered cracks are not available. All the more,
the wavenumbers and hence the group speeds are very
difficult to obtain, especially for waveguides with
defects. In this paper, we develop new methods based
on Bloch theorem and FE model to obtain propagation
constants in waveguides with periodic defects. It was
mentioned earlier that a spectral finite element
method is very useful to study wave propagation in
an ideal structure without any defects but the concept
of spectral super element for wave propagation in
structures with local non-uniformities given by
Gopalakrishnan and Doyle [2], which enhanced its
utility and made it suitable for handling waveguides
with defects.

The propagation of elastic wave in periodic
composites called phononic crystals (PCs) has
received a great deal of attention in the recent past.
Particularly, much interest is focused on the
characteristics of the so-called phononic band gaps
(PBQG), in which elastic waves are all forbidden. The
directional propagation characteristics of elastic wave
during pass bands in two-dimensional thin plate
phononic crystals are analyzed by using the lumped-
mass method to yield the phase constant surface by
Wen et al. [12]. Hong et al. [13] investigated the
propagation characteristics of flexural waves in
periodic grid structures designed with the idea of
phononic crystals by combining the Bloch theorem
with the finite element method. The same kind of
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analysis was done by Wen et al. [14] on periodic
binary straight beam with different cross sections with
the plane-wave expansion method.

Periodic structures and structures with defects
have been investigated extensively but the periodicity
of defect is not considered yet in detail to the best of
author’s knowledge. Thus in this study, a Fourier
transform based periodic approach is developed for
wave propagation in generic 1-D periodic waveguide
and examples of 1-D structures with periodic defects
are used to show the validity and prominence of
periodic approach. In this periodic approach, the
dynamic stiffness matrix of sub-element is needed in
order to obtain the reduced dynamic stiffness matrix
of the whole periodic structure. Based on the theory
of wave propagation in multi coupled periodic
systems, there are two approaches, namely
determinantal equation approach and transfer matrix
approach, and these can be used to obtain the modal
parameters, which are required to formulate the
reduced dynamic stiffness matrix of the system.

The outline of the paper is as follows. Section
2 gives a brief introduction to formulation of dynamic
stiffness matrix using spectral super element
approach. Section 3 briefly describes the computation
procedure for computing the dispersion
characteristics and numerical examples are presented
in Section 4. This is followed by conclusions in
Section 5.

2. Dynamic Stiffness Matrix of a Sub-Element

Dynamic stiffness matrix of sub-element of a periodic
structure is needed in order to obtain the
wavenumbers of the structure using periodic
approach. It requires the dynamic stiffness matrix of
spectral healthy frame element modelled using
Timoshenko beam theory, which is discussed in [1].
Two different methods are used to obtain the dynamic
stiffness matrix. First method is based on the damaged
spectral finite element model, which was developed
in [3]. This model represents the dynamics of the
cracked beam exactly. However it has a major
drawback that only horizontal cracks can be modelled
using this approach. Second one is the spectral super
element approach, in which region very near the

defect is modelled using conventional 2-D finite
elements, which is coupled to the regular 1-D healthy
spectral element model. Again, this model is adopted
from [2]. Due to versatility of FE model, practically,
any type of defect having any orientation can be
modelled with this approach. That is, this approach
enables determination of dispersion characteristics
of periodic defects of any type and hence in this paper,
we propose to use the spectral super element approach
to formulate the dynamic stiffness matrix of sub-
element.

Spectral Super Element Approach

In this approach the region of defect, whether it is
hole or crack, is meshed with conventional finite
elements and its stiffness and mass matrices are
dynamically condensed leaving only the connection
degrees of freedom. These are further condensed to
just waveguide connectivity thus making the element
suitable for assembly with spectral frame element.
The detailed formulation of spectral super element
for 1-D waveguides is discussed in [2] and only
relevant information is provided here for the sake of
completeness.

As mentioned earlier, the defect region is
modelled using finite elements. The equation of
motion of this region is given by

(M Wi} +[CHa}+[K{u} ={P} (D

where [K ] is the stiffness matrix, [C] is the damping
matrix, [M ] is the mass matrix, {u} is the vector of
nodal degrees of freedom and {P} the vector of
applied loads. The force and displacement vector can
be transformed to frequency domain using Discrete
Fourier Transform (DFT) [1] and the resulting
equation will become

[K1{a}={P}, [K]1=[K]+io[C]-®*[M] (2)

The dynamic stiffness matrix can be portioned

(K] Rl {{ac}}z {{é }}
K. K1) o) (3)

as
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where {i.} and {if;} are the vector of connection
and internal degrees of freedom respectively. After
eliminating {i,}, the stiffness relation of super

element can be written as

(BY=[K i), [K,1=[K, 1-[KK; 1T [K,]
(4)

This equation relates connection forces { ﬁc }

to only connection displacements {i_.}; all the

internal degrees of freedom have been condensed out.

The computation of requires (K s 1, Trequires [I%l-l-]_1

which is nearly of the order of [K]and is frequency

dependent, thus its efficient computation is absolutely
essential and that can be done as given in [2]. This
process is not repeated here. There are several other
efficient methods to dynamically condense the
stiffness matrix which are discussed in detail in [15].

2.1.1 Connection to Spectral Element

A node in spectral waveguide which is a frame
element is a point at a center of cross section where
average displacement and resultant force is assumed
to act. The degrees of freedom at each waveguide

node are two displacements (i,7) and one rotation

(), giving a total of three degrees of freedom. These
displacements and corresponding forces can be
represented as

4 F
(W={o}, (F)={V 5
o M

In order to assemble super element with
waveguide, it is necessary to further reduce the
connection nodes as shown in Fig. 1 to give average
displacement and resultant forces and this is
accomplished as

i = %{ach, p= %{ﬁch, ¢ = %{ﬁcydA, 6)

e 2-D Finite element connection

@ Spectral waveguide connection

Fig. 1: Connection between super element and waveguide spectral
element

where integration is over the connection area A and /
is the moment of inertia of cross section. Using this

approach {ii.} vector can be written as
{a.y=IT1" {@ay (7

where [T] is the transformation matrix and stiffness
relation of super element in terms of an equivalent
waveguide element can be written as

(P =R T{@), (K, =ITNR LTI (8)

where [K I’ 18 the reduced dynamic stiffness matrix

of size [6x6] for sub-element of 1-D structure with
periodic defects. The elements of transformation

matrix [T] and the efficient computation of [K o118

as given in [2] and the steps and equations are not
repeated here.

3. Dispersion Characteristics

The sub-element of the structure is connected at two
nodes, with three degrees of freedom at each node,
with the rest of the structure resulting in a multi-
coupled periodic system with six coupling
coordinates. The reduced dynamic stiffness matrix
of sub-element can be partitioned into left and right
degree of freedoms and equation of motion of sub-
element can be written as

(FY) o [l ] [ 1KG] 1K, |flu),
=K 17he 1 e ©)
{F}, {u}, [K,] [K,1|Uul )
Here, index [ represents the quantities on the
left hand side of the element and index r represents

the quantities on the right. According to the Bloch’s
theorem, the quantities on the left are always related
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to the quantities on the right by an exponential factor,
and one may write the following relation using the
complex propagation constant |l = —3+i€ where € is
the phase constant and d is the attenuation constant.
That is,

(@, }=e (i) = e (i), (F)

=—€_ﬂ{ﬁ;}=—€_iﬂ{ﬁl} (10)

Here, k is the complex wavenumber with real
part defining the phase difference per unit length and
imaginary part defining the attenuation per unit length
and L is the periodic length. Substitution of these
Bloch relations into the equation of motion (Eq. (9)),
results in a homogeneous matrix equation which has
non-trivial solutions when the determinant of the
matrix vanishes, which is given by

[[R1+1K, + K, Je* +1K,Je ™ ]=0 (1)

At any frequency six values of L can exist. The
phase constant related to propagating waves is multi-
valued. If g, is the solution between 0 and 7, then

€, =€+ 2nmt (n=0, +1, 42, 43 ..)

is also a solution of determinantal equation. Thus the
real part of wavenumber which is the phase difference
per unit length can be written as

k, =+ (g, + 2nm)/L (12)

As the real part of wavenumber is multi-valued,
an infinite series of (harmonic) waves with the given
wavenumbers exists in a periodic system. The positive
and negative wavenumbers are related to left and right
wards traveling waves, respectively. In analogy to
the wavenumber definition for traveling waves, an
imaginary wavenumber component for the decaying
waves can be defined by

k =+ i0/L 13)

decay —

In contrast to the multi-valued solution for the
traveling waves, the decaying waves are single
valued. Thus six wavenumbers, which corresponds
to six waves traveling in waveguide, are calculated
and separated out and the wavenumbers, which
corresponds to axial and flexural wave, are plotted
and studied for different configurations.

4. Numerical Results

In order to get better understanding of dispersion
characteristics and band gaps in one dimensional
structure with defects, examples with different types
of defects are studied and based on the results
conclusions will be drawn about the nature of
wavenumber variation and band gaps phenomenon.
Aluminum (£ = 70GPa, G = 27GPa and p = 2700kg/
m3) 18 used as a material of beam and the various
dimensions of the periodic cell are taken as length
(L) = 2.1 m; width (B) = 0.05 m, thickness (7) = 0.01
m.

4.1 Beam with Periodic Single Horizontal Cracks

Here a periodic horizontal crack is situated in a beam
at some offset with respect to beam axis as shown in
Fig. 2(a). Here crack length of the horizontal crack
is fixed as 2 cm and its offset(c) is varied from O to
1.5 cm. Four specific values of offset are 0, 0.5 cm, 1
cm, 1.5 cm; which are used in the analysis, for which
dispersion characteristics are plotted and compared.
The equivalent FE model for spectral super element
approach, for zero offset case, is shown in Fig. 2(b).

Fig. 2: (a) A periodic cell with axial crack with offset (b) Equivalent
FE model of a beam with horizontal crack with zero offset

Horizontal crack can be modelled using both
the above-mentioned approaches, namely damaged
spectral finite element approach (given in reference
[3] and not explained in this paper) and spectral super
element approach. Dispersion characteristics for
flexural case, obtained for these two different
approaches using Euler-Bernoulli beam theory
(obtained by setting shear rigidity to infinity and
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Fig. 3: Comparison of flexural wavenumber and band gaps in beam with periodic horizontal crack obtained for two different approaches
using Euler-Bernoulli beam theory. (a) Real part of flexural wavenumber. (b) Particular stop band in real part of flexural wavenumber.
(c) Imaginary part of flexural wavenumber. (d) Corresponding stop band in imaginary part of flexural wavenumber

Fig. 4: Flexural wavenumber and band gaps in beam with periodic horizontal crack, obtained using Euler-Bernoulli beam theory, for four
different values of offset (c). (a) Real part of flexural wavenumber. (b) Particular stop band in real part of flexural wavenumber.
(c) Imaginary part of flexural wavenumber. (d) Corresponding stop band in imaginary part of flexural wavenumber
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Fig. 5: Flexural wavenumber and band gaps in beam with periodic horizontal crack, obtained using Timoshenko beam theory, for four
different values of offset(c). (a) Real part of flexural wavenumber. (b) Particular stop band in real part of flexural wavenumber.
(c) Imaginary part of flexural wavenumber. (d) Corresponding stop band in imaginary part of flexural wavenumber

rotational inertia to zero), are compared for a
particular case when crack is situated in the middle
of beam (c = 0) and shown in Fig. 3. As shown in
figure the real part of wavenumber is matching in
both the cases, however the amplitude of imaginary
part of wavenumber is less in case of spectral finite
element approach. As far as the band gaps are
concerned, results validates the spectral super element
approach

Results for different offset values, using spectral
finite element approach, with Euler-Bernoulli beam
theory are shown in Fig. 4, while results obtained
using Timoshenko beam theory are shown in Fig. 5.
These results, obtained from both the beam theories,
demonstrate that the band gap in flexural wavenumber
reduces as the offset increases and it is maximum
when crack is situated at the axis of beam and location
of band gaps does not change with the offset provided

the length of a crack remains same. However, crack
offset does not introduce appreciable variation in the
flexural wavenumber.

Fig. 6: (a) A periodic cell with two staggered cracks (b) Equivalent
FE model of a beam with two staggered cracks
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Fig. 7: Comparison of flexural wavenumber and band gaps in beam with periodic two staggered cracks using Timoshenko beam theory.
(a) Real part of flexural wavenumber. (b) Particular stop band in real part of flexural wavenumber. (c) Imaginary part of flexural
wavenumber. (d) Corresponding stop band in imaginary part of flexural wavenumber.

4.2 Beam with Periodic Horizontal Staggered
Cracks

Beam with two periodic horizontal staggered cracks
is shown in Fig. 6(a) and corresponding FE mesh for
(f = 2cm) in Fig. 6(b). Here crack lengths of both the
horizontal cracks are same and taken as 2 cm and the
vertical distance between the two cracks (e) is taken
as 2 cm. The distance between the two cracks
locations (f) is varied from 0 to 4 cm.

Fig. 7 show the flexural wavenumber variation
obtained using Timoshenko beam theory respectively.
The band gap in flexural wavenumber reduces as the

distance between the two cracks location increases,
however the effect of changing distance on the
flexural wavenumber is very minimal.

5. Conclusions

A generic approach is developed, using spectral super
element theory and Bloch’s theorem, to study the
dispersion characteristics and band gaps in one
dimensional waveguides with arbitrary geometries
and waveguides with periodic defects. The complete
picture of dispersion characteristics and the band gaps
is determined by waveguides with two different defect
configurations. For these waveguides with defects,
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flexural wavenumber and their corresponding band
gaps are studied. Keeping in mind that the band gap
in any mode acts as a mechanical band pass filter for
a wave in that mode, these defects can make the
structure dynamically sound in a particular mode in
frequency ranges, which match with the stop bands
in the corresponding wavenumber. Thus if the
structure is subjected to a harmonic load of particular

References

1. Gopalakrishnan S, Chakraborty A and Roy D Mahapatra
Spectral Element Method Springer-Verlag, United
Kingdom (2007)

2. Gopalakrishnan S and Doyle JF Comput Methods in Appl
Mech and Engng 121(1-4) (1995) 77-90

3. Nag A, Roy Mahapatra D and Gopalakrishnan S Struct
Health Monitg 1(1) (2002) 105-126

4. Brillouin L Wave Propagation in Periodic Structures
McGraw-Hill, New York (1946)

5. Mead DJ J Sound and Vib 40(1) (1975) 1-18
Mead DJ J Sound and Vib 40(1) (1975) 19-39
7. Mead DJ J Sound and Vib 190(3) (1996) 495-524

frequency or a load with small frequency spectrum
and that if this frequency spectrum lies in the
stop bands, then no wave will propagate in the
structure and structure will remain safe and
sound. Hence, in some cases, if required, these defects
can be intentionally introduced in a structure with
some periodicity to make the structure dynamically
sound.

8. Signorelli J and Von Flotow AH J Sound and Vib 126(1)
(1988) 127-144

9. Keane AJ and Price WG J Sound and Vib 128(3) (1989)
423-450

10.  Benaroya H Comp Part B: Engng 28(1-2) (1997) 143-
152

11.  Gopalakrishnan S and Mira Mitra Wavelet Methods for
Dynamical Problems Taylor and Francis Ltd (2010)

12.  Wen J et al. Phys Lett A 364 (2007) 323-328

13. Hong WI et al. Chinese Phys B 18(6) (2009) 2404-2408

14.  Wen I et al. J Appl Phys 97 (2005)

15. Sastry CVS, Mahapatra DR, Gopalakrishnan S and
Ramamurthy TS Comput Methods in Appl Mech and
Engng 192 (2003) 1821-1840.






