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Visceral leishmaniasis (VL) or kala-azar, a vector-borne protozoan disease, shows endemic-
ity in larger areas of the tropical, subtropical and the Mediterranean countries. WHO report
suggested that an annual incidence of VL is nearly 200,000 to 400,000 cases, resulting in
20,000 to 30,000 deaths per year. Treatment with available anti-leishmanial drugs are not
cost effective, with varied efficacies and higher relapse rate, which poses a major challenge
to current kala-azar control program in Indian subcontinent. Therefore, a vaccine against
VL is imperative and knowing the fact that recovered individuals developed lifelong immu-
nity against re-infection, it is feasible. Vaccine development program, though time taking,
has recently gained momentum with the emergence of omic era, i.e., from genomics
to immunomics. Classical as well as molecular methodologies have been overtaken with
alternative strategies wherein proteomics based knowledge combined with computational
techniques (immunoinformatics) speed up the identification and detailed characterization
of new antigens for potential vaccine candidates. This may eventually help in the design-
ing of polyvalent synthetic and recombinant chimeric vaccines as an effective intervention
measures to control the disease in endemic areas. This review focuses on such newer
approaches being utilized for vaccine development against VL.

Keywords: visceral leishmaniasis, recombinant vaccines, DNA vaccines, mutant vaccines, synthetic peptide
vaccines

VISCERAL LEISHMANIASIS: AN UNSOLVED PROBLEM
Visceral leishmaniasis (VL), synonymously known as kala-azar, is
caused by obligate intra-macrophage protozoan parasite and is
characterized by both diversity and complexity (1). The disease is
prevalent in larger areas of tropical, subtropical, and the Mediter-
ranean countries. As per WHO report, nearly 200,000 to 400,000
new cases of VL (with an average duration of several months to
more than one year) occur annually with 20,000 to 30,000 deaths
per year (http://www.who.int/mediacentre/factsheets/fs375/en/),
which is lesser than by malaria among parasitic diseases, although
its exact impact has been underestimated as an exact number of
cases were never recorded. Ninety percent of the VL cases occur
in Bangladesh, Brazil, India, Nepal, and Sudan. In India, 80%
VL cases were only from the state of Bihar (2). A sharp ascent
in the prevalence of disease is directly related to environmental
changes and migration of non-immune people in endemic areas
(3). Occurrence of HIV–Leishmania co-infection has placed VL
as category-1 disease by WHO (4). The arthropod vector – female
phlebotomine sandflies, nocturnal, and telmophagous, are respon-
sible for the transmittance of the disease. Two species – Leishmania
donovani donovani (in East Africa and the Indian subcontinent)
and L. donovani infantum (in the Mediterranean region of Europe,
North Africa, and Latin America) are the main causative organisms
for VL (5). The parasite bears two distinct life forms: promastigote,
a flagellar form, found in the gut of the vector, which is inoc-
ulated into the dermis where it is internalized by dendritic cells

and the macrophages and eventually is transformed into an afla-
gellated amastigote form, which thrives and multiply within the
phagolysosomes through a complex parasite–host interaction (6).
Current control strategies for VL rely on anti-leishmanial drugs
such as pentavalent antimonials, amphotericin B (AmB), miltefo-
sine, paromomycin, etc., but they are far from satisfactory because
of their cost, toxicity as well as unpleasant side effects, longer dose
schedule with variable efficacies (7). The situation has further
worsened with the emergence of resistance against current anti-
leishmanial drugs in various regions of endemicity (8). Hence,
in the present situation, there is an urgent need to develop an
effective vaccine against VL. Although vaccination against VL has
received limited attention as compared to cutaneous leishmaniasis
(CL), till date, there is no commercial vaccine against any human
parasitic disease including leishmaniasis (9). The fact that healing
and recovery from the active infection protects individuals from
re-infection specifies the possibility of a vaccine against VL (1).
An effective vaccine against the disease must rely on the genera-
tion of a strong T-cell immunity (10). Both innate (macrophages
and neutrophils) as well as adaptive (B-cells, T-cells, and dendritic
cells) immune response plays a significant role against Leishmania
infection where macrophages play the critical role. It has been a
consensus for a long time that a Th1 dominant response instead
of Th2 promotes IFN-γ production, which activates macrophages
to kill parasites via nitric oxide (NO) production, ultimately lead-
ing to reduction in parasitic burden (4). The cytokine production
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and cytotoxic activity by CD8+ T-cells also contribute to the dis-
ease outcome in Leishmania infection. Initially, CD8+T-cells were
thought to play a role only during re-infection, however, they were
also shown to be crucial in controlling the primary infection by
skewing the responses toward Th1-type. Effector CD4+ T-cells
allow activation of macrophages through various cytokines and
are required for optimal host response to infection (11) whereas
cytotoxic CD8+ T-cells play a role in parasite clearance with the
generation of memory responses (12).

As Leishmania parasite follows a digenetic life cycle it results
in significant antigenic diversity, which ultimately hampered the
passage of vaccine development against VL, therefore, the knowl-
edge of such antigenic diversity is of utmost importance (13).
Researchers have utilized several approaches for identification of
potential antigens, which can be targeted as suitable vaccine can-
didate (Figure 1). Among them, proteomics attract the most since
it addresses several unanswered questions related to microbial
pathogens, including its development, evolution, and pathogenic-
ity. Proteomic studies revealed several proteins, which are seen

as potential vaccine targets offering varied levels of protection
in different animal models. Recent advancement in computa-
tional biology further simplifies our knowledge regarding the
in-depth study of parasite. T-cell epitope prediction via bioin-
formatics analysis of protein sequences has been proposed as
another alternative for rationale vaccine development (14). The
concept that CD8+ T lymphocytes could be important in pro-
tection and long-lasting resistance to infection has opened up
a new strategy in Leishmania vaccine design known as “poly-
tope vaccine” (15). Its major advantages include greater potency,
can be controlled better, can be designed to break tolerance, can
overcome safety concerns associated with entire organisms or
proteins, etc.

CLASSICAL APPROACHES TO LEISHMANIA VACCINE
DEVELOPMENT
LIVE/KILLED WHOLE PARASITE VACCINE
Cutaneous leishmaniasis remained the focus point for earlier
attempts for vaccination made in the Middle East due to the fact

FIGURE 1 | An overview of different approaches of vaccine development for visceral leishmaniasis.
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that people who had their skin lesions healed up were protected
lifelong from re-infection. Leishmanization (LZ), the deliberate
inoculation of virulent parasite from the exudate of a cutaneous
lesion to uninfected individuals, was successfully practiced in
Western and South-Western Asia, which offers a strong immunity
among individuals through the formation of self-healing lesions
(16). As the researchers started culturing promastigote form of
parasite in artificial media, the concept of live vaccination came
into existence. A number of large-scale vaccination trials were
conducted during the 1970s and 1980s in Israel, Iran, and the
Soviet Union with a higher success rate. However, standardiza-
tion and quality control are the major issues associated with live
vaccines because parasites used for LZ losses its infectivity due to
repeated sub-culturing. Therefore, the focus of vaccine develop-
ment program was shifted toward killed organisms in the early 90s
(17). This concept was abandoned for many years due to the con-
flicting results obtained in the 40s. However, the vaccination trial
conducted in a Brazilian population showed excellent protection
with up-regulation of IFN-γ and absence of IL-4, an indicator of
long-lasting Th1-type immune response (18, 19). Use of whole
killed parasites with or without adjuvant was proposed for both
therapeutic as well as for prophylactic purposes (20).

Knowing the fact that deliberate infection of L. major to naive
people could confer protection against subsequent VL (21) sev-
eral attempts utilizing this approach was also initiated for the
development of vaccine against VL. In this direction, autoclaved L.
major (ALM) along with BCG was evaluated for its cross protec-
tion against VL (Table 1). Dube et al. (22) assessed its protective
potential against L. donovani challenge in Indian langur mon-
keys in single as well as triple dose schedules where triple dose
schedule was found to be more effective. Immunogenicity of the
ALM+BCG vaccine was further enhanced by adsorbing ALM to
alum (aluminum hydroxide), which resulted in successful vacci-
nation against L. donovani infection in Indian langur monkeys
(23). Encouraged with these results Khalil et al. (24) performed a
double-blind randomized trial with ALM±BCG in human sub-
jects against VL in Sudan. None of the evidences showed that
ALM+BCG offered significant protective immunity as compared
to BCG alone. Here also, the addition of alum improved the
immunogenicity of ALM, when administered intradermally (i.d.)
at different doses in healthy volunteers from a non-endemic area of
Sudan. Results indicated toward the safety of the vaccine mixture,
which induced strong delayed type hypersensitivity (DTH) reac-
tion with minimal side effects (25). A similar trial was conducted
against canine leishmaniasis in Iran wherein a single injection of
alum-ALM+BCG was found to be protective to the tune of 69.3%
(26). Killed Leishmania can also be given therapeutically in com-
bination with antimonial therapy in order to enhance cure rates
and to reduce incidence of relapse (27). However De Luca et al.
(28), advocated that autoclaving lowers the immunogenicity of the
parasite as it destroys most of the immunogenic proteins. As such
Breton et al. (29), applied another approach where they utilized L.
tarentolae, a non-pathogenic species, to immunize BALB/c mice
and found a significant protective immune response after single
peritoneal injection against L. donovani challenge.

Though, whole parasite vaccine (either live/killed or attenuated
one) offered vast array of antigens to the host immune system that

induced both protective as well as non-protective responses (94),
recent advent in our knowledge about the immunobiology of the
Leishmania infection provided probable explanations for the fail-
ure of the first generation vaccines, which further insisted for the
development of newer vaccination strategies against VL. A vari-
ety of different molecules were identified from parasite based on
their abundance, surface localization, T-cell clones, screening of
antigen pools/expression libraries with sera of infected animals
and humans, which was further evaluated as suitable vaccine can-
didates leading to the production of a number of experimental
vaccines against different forms of leishmaniasis over past few
decades (95). In case of VL, extensive vaccination studies have
not been possible due to unavailability of an appropriate ani-
mal model. Although, golden hamsters and dogs were utilized
for studying the immunobiology of L. donovani and L. infantum,
respectively, lack of immunological reagents and assays needed
for the characterization of immune responses makes inconclu-
sive study. In such case, a mouse model of VL has been exten-
sively utilized since it exhibit organ-specific pathology in the liver
and spleen.

PROTEIN FRACTIONS BASED VACCINE
Selection of suitable vaccine candidates seems to be a difficult task
due to the multitude of antigens that has been evaluated with
varied success rate depending on their formulation and the type
of animal model used (20). Complete protection has not been
achieved so far due to the complexity of the parasite, which gen-
erates poly-specific response (96). Therefore, different fractions of
the parasite in the form of crude preparations were tested as vac-
cine preparation in order to draw any conclusive results (Table 1).
Jaffe et al. (38) demonstrated that mice receiving promastigote-
derived membrane protein dp72 yielded a 81.1% reduction in
the liver parasitemia as compared with the adjuvant controls, but
there has been no further advance on the use of this antigen
for the development of vaccines. Another membranous protein,
FML, a glycoprotein mixture, of L. donovani in combination with
saponin was assessed as vaccine in mice, hamster, and dog mod-
els of VL and found to be protective (39–42). Lemesre et al. (43)
and Bourdoiseau et al. (44) utilized naturally excretory/secretory
(ES) antigens of L. infantum promastigotes (LiESAp) and found
them to be protective in dogs against experimental L. infantum
infections. Mutiso et al. (37) delivered sonicated antigen of L.
donovani i.d. with alum-BCG (AlBCG), MISA, or monophos-
phoryl lipid A (MPLA) in vervet monkeys against homologous
challenge and concluded that L. donovani sonicated antigen con-
taining MISA is safe and is associated with protective immune
response.

A recent meta-analysis of different vaccination trials using these
classical approaches had shown the lack of efficacy of these vac-
cines in clinical trials (97). Also, the efficacy of LZ has not been
shown against VL (98). Standardization and quality control are
the major problems associated with LZ, which limit its practical-
ity and acceptability (10). Genetic variation and polymorphism
in Leishmania isolates also deject this approach (99). In case of
fraction based vaccines, there are issues related to purity and
yield of immunogenic protein. All these lead to explore alternate
approaches for generation of better vaccine.
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Table 1 | Summary of vaccines evaluated against visceral leishmaniasis.

Vaccine delivery Antigen Species used Challenge with Host system Remarks Reference

(1) WHOLE PARASITE

(a) Killed ALM±BCG L. major L. donovani Indian langur Triple dose is more effective

than single dose

Dube et al. (22)

Human Poor efficacy (6%) Khalil et al. (24)

Alum-ALM+BCG Indian langur Single dose is effective;

increased IFN-γ production

Misra et al. (23)

Human Protective; induced strong

DTH response

Kamil et al. (25)

L. infantum Dog Moderate efficacy (69.3%) Mohebali et al. (26)

(b) Live-attenuated BT1 deleted parasite L. donovani L. donovani BALB/c mice Protective immunity;

increased IFN-γ production

Papadopoulou et al.

(30)

SIR2 single allele

deletion

L. infantum L. infantum High IFN-γ/IL-10 ratio with

increased NO production;

protective immunity

Silvestre et al. (31)

Non-pathogenic

strain expressing L.

donovani A2 antigen

L. tarentolae L. infantum Protective response with high

level of IFN-γ production

Mizbani et al. (32)

Amastigote-specific

protein p27

L. donovani L. donovani,

L. major, and

L. braziliensis

Significant reduction in

parasite burden, Th1-type

response

Dey et al. (33)

Suicidal mutant L. amazonensis L. donovani Hamster Effective cellular immunity;

increased iNOS expression

and IFN-γ, IL-12 production

Kumari et al. (34)

Replication deficient

centrin gene

L. donovani L. donovani and

L. brazilensis

BALB/c mice

and Hamster

Protective immunity with

increased level of IFN-γ, IL-2,

and TNF-α producing cells

Selvapandiyan

et al. (35)

L. infantum Beagle dog High immunogenicity;

increased secretion of IFN-γ,

TNF-α, IL-12, and decreased

production of IL-4

Fiuza et al. (36)

(2) NATIVE PROTEIN OF PARASITE

Parasite fraction Sonicated antigen+

AlBCG/MISA/MPLA

L. donovani L. donovani Vervet Monkey Good protection; elicit IFN-γ

production

Mutiso et al. (37)

Membrane protein Dp72 and gp70-2 BALB/c mice Dp 72 showed 81.1%

efficacy; gp70-2 is

non-protective

Jaffe et al. (38)

FML+ saponin Mice 84.4% Protection Palatnik et al. (39)

Hamster Protective Palatnik et al. (40)

Mice Increase in IgG2 and decrease

in parasite load by 88%

Santos et al. (41)

L. donovani and

L. chagasi

Dog Effective protection; cellular

and humoral response

Saraiva et al. (42)

(Continued)
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Table 1 | Continued

Vaccine delivery Antigen Species used Challenge with Host system Remarks Reference

Secretory protein LiESAp L. infantum L. infantum Beagle dog Protective; high level of IFN-γ

and low level of IL-4 with

increased NO production

Lemesre et al. (43)

Humoral response with

cell-mediated immunity

Bourdoiseau et al.

(44)

(3) RECOMBINANT PROTEIN OF PARASITE

Membrane protein LCR 1 L. chagasi L. chagasi BALB/c mice Partial protection with

increased IFN-γ production

but not IL-4, IL-5, and IL-10

Wilson et al. (45)

HASPB1 L. donovani L. donovani Mice Protective (70 and 90%);

increased IL-12 production by

dendritic cells

Stager et al. (12)

A2 Beagle dog Partial protection with

increased IgG and IFN-γ

production; low IL-10 level

Fernandes et al.

(46)

Soluble protein F14 L. donovani L. donovani Golden hamster Partial protection; increased

level of IFN-γ

Bhardwaj et al. (47)

elF2 Protective (65%); increased

level of IFN-γ, IL-12, TNF-α,

IgG2, and down-regulation of

IL-4, IL-10, TGF-β

Kushawaha et al.

(48)

P45 Protective (85%); increased

level of IFN-γ, IL-12, TNF-α,

iNOS, and decreased TGF-β,

IL-4

Gupta et al. (49)

PDI Protective (90%); increased

level of IFN-γ, TFN-α, IL-12,

and IgG2

Kushawaha et al.

(50)

TPI Protective (90%); increased

level of IFN-γ, TFN-α, IL-12,

IgG2, and down-regulation of

IL-10, IL-4

Kushawaha et al.

(51)

TPR Good efficacy (~60%);

increased iNOS, IFN-γ, IL-12,

TNF-α, and downregualation

of IL-4, IL-10, and TGF-β

Khare et al. (52)

Aldolase and enolase Increased expression of

iNOS, IFN-γ, TNF-α, and IL-12

with down-regulation of

TGF-β, IL-4, and IL-10

Gupta et al. (53)

Ribosomal

protein+ saponin

L. infantum L. chagasi BALB/c mice Increased production of

IFN-γ, IL-12, and GM-CSF

Chavez-Fumagalli

et al. (54)

Hypothetical

amastigote-specific

protein

L. infantum BALB/c mice Protective; increased level of

IFN-γ, IL-12, GM-CSF, and

down-regulation of IL-4, IL-10

Martins et al. (55)

Secretory protein Secretory serine

protease

L. donovani L. donovani BALB/c mice Exhibit significant protection

with lower parasite burden

Choudhury et al.

(56)

(Continued)
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Table 1 | Continued

Vaccine delivery Antigen Species used Challenge with Host system Remarks Reference

LiESAp-MDP L. chagasi L. infantum Dog Efficacy (92%); increased

IgG2, NO, and IFN-γ

production

Lemesre et al. (57)

(4) POLYPROTEIN

Q protein L. infantum L. infantum Dog Protective (90%); positive

DTH response

Molano et al. (58)

BALB/c mice Induced significant protection

with long-lasting IgG

response

Parody et al. (59)

Leish-111f L. major and

L. braziliensis

L. infantum Beagle dog No protection Gradoni et al. (60)

Mice and

hamster

Decreased parasite load

(99.6%); strong Th1 response

(increased IFN-γ, IL-2, TNF-α)

Coler et al. (61)

Dog Protection Trigo et al. (62)

Leish-110f L. major L. infantum Dog Protective with increased

IFN-γ, TNF-α, and IL-2

Bertholet et al. (63)

KSAC L. infantum or

L. donovani

L. infantum C57BL/6 mice Protective Th1-type response Goto et al. (64)

(5) DNA OF PARASITE

A2 DNA L. donovani L. donovani Mice Significant protection with

increased IFN-γ production

Ghosh et al. (65)

P36LACK Mice Strong Th1-type response

(IFN-γ); non-protective

Melby et al. (66)

ORFF BALB/c mice Significant protection (80%)

with increased IFN-γ

expression

Sukumaran et al.

(67)

KMP-11 Hamster Mixed Th1/Th2 response;

protective with up-regulation

of IFN-γ, TNF-α, and IL-12 and

down-regulation of IL-10

Basu et al. (68)

BALB/c mice Protective; mixed Th1/Th2

response (enhanced IFN-γ

and depressed IL-4

production)

Bhaumik et al. (69)

H2A, H2B, H3, H4,

and p36 (LACK)

Dog Partial protection; elicit type 1

cellular response (IFN-γ)

Saldarriaga et al.

(70)

γGCS Mice Protective immunity;

production of specific IgG1

and IgG2a antibodies;

enhanced granuloma

formation

Carter et al. (71)

UBQ-ORFF Mice Protective; higher levels of

IL-12 and IFN-γ and the low

levels of IL-4 and IL-10

Sharma and

Madhubala (72)

(Continued)

Frontiers in Immunology | Immunotherapies and Vaccines August 2014 | Volume 5 | Article 380 | 6

http://www.frontiersin.org/Immunotherapies_and_Vaccines
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Joshi et al. Advancements in vaccine development against VL

Table 1 | Continued

Vaccine delivery Antigen Species used Challenge with Host system Remarks Reference

PPG Hamster Efficacy about 80% with

increased IFN-γ, TNF-α, IL-12,

and decreased IL-4, IL-10,

TGF-β

Samant et al. (73)

HbR BALB/c mice

and hamster

Complete protection;

increased Th1 response

(IFN-γ, TNF-α, IL-12) with

down-regulation of IL-4 and

IL-10

Guha et al. (74)

p36 LACK L. infantum L. chagasi BALB/c mice Non-protective(IL-10

production); no reduction in

parasite load (both liver and

spleen)

Marques-da-Silva

et al. (75)

PapLe22 Dog Downregulate Th2-type

response and reduces

parasite burden by 50%

Fragaki et al. (76)

P36 LACK Mice Protective immunity;

significantly increased IFN-γ

and IL-4 with decreased IL-10

production

Gomes et al. (77)

H2A, H2B, H3, and

H4

BALB/c mice No protection Carrion et al. (78)

Purified FML,

rNH36, and NH36

DNA

L. donovani L. chagasi and

L. mexicana

BALB/c mice Significant protection with

88% reduction in parasite

load; Th1-type response

Aguilar-Be et al. (79)

VR1012-NH36 L. chagasi BALB/c mice Protective (77%); reduction in

parasite burden (91%)

Gamboa-Leon et al.

(80)

A2 and NH L. chagasi L. chagasi BALB/c mice Protective response (only A2)

with increased IFN-γ and

decreased IL-4 and IL-10

production

Zanin et al. (81)

(6) RECOMBINANT PROTEIN+DNA

ORFF (HPB) L. donovani L. donovani BALB/c mice Protective; reduction in

parasite load (75–80%) with

increased IgG2a and IFN-γ

production

Tewary et al. (82)

GP63 as

heterologous prime

boost (HPB)

Enhanced IFN-γ, IL-12, NO,

IgG2a/IgG1 ratio, and reduced

IL-4 and IL-10

Mazumder et al.

(83)

Virus expressing

LACK antigen

(WRp36 or MVAp36)

L. infantum L. infantum BALB/c mice Protective; significant level of

IFN-γ and TNF-α

Dondji et al. (84)

LACK Dog Moderate protection (60%);

increased level of IL-4 and

IFN-γ

Ramiro et al. (85)

Type I (cpb) and

II (cpa)

BALB/c mice Protective; strong Th1

response (higher level of

IFN-γ/IL-5 ratio)

Rafati et al. (86)

(Continued)
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Table 1 | Continued

Vaccine delivery Antigen Species used Challenge with Host system Remarks Reference

CP type I and II L. donovani Dog Increased IFN-γ expression

and IgG, IgG2 level with

strong DTH response

Rafati et al. (87)

(7) LIPOSOMISED DELIVERY OF PARASITE PROTEINS

Liposomised

L. donovani antigens

L. donovani L. donovani BALB/c mice Induced both Th1 and

Th2-type responses with high

level of IgG2a, IgG2b, and

IgG1

Afrin et al. (88)

pDNA+SLA Protective; potentiate Th1

response and downregulate

Th2 response

Mazumder et al.

(89)

GP63 in stable

cationic liposomes

Up-regulation of IFN-γ and

down-regulation of IL-4; mixed

Th1/Th2-type response

Bhowmick et al.

(90)

BM-DCs pulsed with

H1

L. infantum L. infantum Increased level of IFN-γ and

IgG2a/IgG1 ratio; decreased

level of IL-10

Agallou et al. (91)

(8) SALIVARY PROTEIN OF VECTOR

LJM19 Lutzomyia

longipalpis

L. infantum

chagasi

Golden hamster Protective; high IFN-γ/TGF-β

ratio and increased iNOS

expression

Gomes et al. (92)

LJM143 and LJM17 L. infantum Beagle dog Strong Th1-type response

with IFN-γ and IL-12

expression

Collin et al. (93)

ALM, autoclaved L. major; BCG, Mycobacterium bovis bacillus Calmette Guerin; BT1, biopterin transporter; SIR2, silent information regulatory 2; AlBCG, alum-BCG;

MISA, montanide ISA 720; MPLA, monophosphoryl lipid A; dp72, L. donovani promastigote antigen of 72 kDa; FML, fucose–mannose ligand; SLA, soluble leishmanial

antigens; LiESAp, L. infantum excreted-secreted antigen purified; HASPB1, hydrophilic acylated surface protein B1; elF-2, elongation factor-2; PDI, protein disulfide

isomerase; TPI, triose phosphate isomerase; MDP, muramyl dipeptide; UBQ-ORFF, ubiquitin open reading frame F; KMP-11, kinetoplastid membrane protein-11; NH,

nucleoside hydrolase; LACK, Leishmania homolog of receptors for activated C-kinase; γGCS, gamma-glutamyl cysteine synthetase; PPG, proteophosphoglycan; HPB,

heterologous prime boost; HbR, hemoglobin receptor; CP, cysteine proteinase; BM-DCs, bone marrow-dendritic cells; TPR, trypanothione reductase.

MOLECULAR APPROACHES TO LEISHMANIA VACCINE
DEVELOPMENT
RECOMBINANT PROTEIN VACCINE
With the advancement in recombinant DNA technology, several
leishmanial molecules, either species or life cycle stage specific,
were extensively studied as a promising vaccine candidate in the
form of recombinant proteins. The major advantages associated
with these proteins are in terms of purity as well as yield. Numerous
proteins were examined against the cutaneous form of diseases,
which were later examined against VL when found suitable. LCR1,
A2, HASPB1 are the major membrane protein, which was made
recombinant and were tested against experimentalVL. Wilson et al.
(45) identified specific parasite antigens LCR1 from the amastig-
ote stage of the L. chagasi that stimulate IFN-γ production and
provided partial protection against homologous challenge direct-
ing its possible utility in a subunit vaccine. Stager et al. (12)
confirmed the role of recombinant hydrophilic acylated surface
protein B1 (HASPB1) in protection against L. donovani challenge
in mice. Fernandes et al. (46) investigated the protective immunity

of recombinant A2 protein with saponin against L. chagasi infec-
tion in dogs where partial protection was noticed with significantly
increased IFN-γ and low IL-10 levels (Table 1).

However, several proteins from the soluble fractions of pro-
mastigotes stage were also found to be a potent Th1 stimulatory by
Kumari et al. (100, 101), which were further developed as recom-
binant molecules such as protein disulfide isomerase (PDI), triose
phosphate isomerase (TPI), elongation factor-2 (elF-2), aldolase,
enolase, P45, trypanothione reductase (TPR), etc. Kushawaha et al.
(48, 50, 51) studied the immunogenicity of LelF-2, TPI, and PDI
of L. donovani in PBMCs of cured Leishmania-infected patients
and hamsters where they found Thl-type cytokine profile (pro-
duction of IFN-γ, IL-12, and TNF-α but not IL-4 or IL-10)
with a remarkable increase in IgG2 and considerable protection.
Gupta et al. (49, 53) reported p45, enolase, and aldolase as a
potential vaccine candidate with considerable prophylactic effi-
cacy to the tune of 85–90% with an increased mRNA expression
of iNOS, IFN-γ, TNF-α, and IL-12 and decrease in TGF-β and IL-
4. Vaccination with rLdTPR+BCG provided considerably good

Frontiers in Immunology | Immunotherapies and Vaccines August 2014 | Volume 5 | Article 380 | 8

http://www.frontiersin.org/Immunotherapies_and_Vaccines
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Joshi et al. Advancements in vaccine development against VL

prophylactic efficacy (∼60%) against L. donovani challenge in
hamsters well supported by the increased inducible NO synthase
mRNA transcript and Th1-type cytokines IFN-γ, IL-12 and TNF-α
and downregulation of IL-4, IL-10 and TGF-β (52). Several other
proteins from soluble lysate were also evaluated as recombinant
vaccines against VL. For example, recombinant F14 and riboso-
mal proteins offered partial protection in hamster and BALB/c
mice against L. donovani/L. chagasi challenges (47, 54). Among
the proteins from amastigote stage, recently, a hypothetical Leish-
mania amastigote-specific protein (LiHyp1) was reported to offer
protection via IL-12-dependent production of IFN-γ mainly by
CD4+ T-cells (55).

Fewer recombinant ES molecules like cysteine proteinases, ser-
ine proteases, etc., were also tested as potential vaccine molecule
against experimental VL. Lemesre et al. (57) combined ES anti-
gens of LiESAp with muramyl dipeptide (MDP) and found 100%
protection in dogs with increased IgG2 and IFN-γ level against
homologous challenge. In vivo studies of Choudhury et al. (56)
in BALB/c mice confirmed serine protease as a potential vaccine
candidate.

POLYPROTEIN VACCINE
Due to the genetic polymorphism in the mammalian immune sys-
tem, a multicomponent vaccine thought to elicit a better protective
immune response (64). Therefore, multicomponent or polypro-
tein preparations such as Q protein, Leish-111f, Leish-110f, KSAC,
etc., came into existence that had been demonstrated to afford
better protection against experimental VL. Among these, Q pro-
tein containing five genetically fused antigenic determinants from
Lip2a, Lip2b, H2A, and P0 proteins, was initially assessed along
with either BCG or CpG-ODN in mice and dogs (58, 59) against
L. donovani challenge. Results showed 90% protection with Q
protein+BCG in dogs with strong DTH response while Q pro-
tein+CpG-ODN motifs were able to induce a long-lasting IgG
response in mice. Lately, a phase III trial was conducted in dogs
with another potent single polyprotein – Leish-111f, composed
of L. major homolog of eukaryotic thiol specific antioxidant
(TSA), the L. major stress-inducible protein-1 (LmSTI-1), and
the L. braziliensis elongation and initiation factor (LeIF), which
was found to be ineffective against L. infantum challenge (60).
However, when Leish-111f was combined with adjuvant MPLA-
stable emulsion (MPL-SE) a significant protection was achieved
against experimental L. infantum infection in mice and hamsters
(61) as well as in dogs (62) with reduction in parasite burden
and a cytokine profile indicative of Th1-type immune response.
Later on, a new formulation of Leish-111f vaccine – viz Leish-110f
was prepared after removal of His-tag, due to the manufacturing
and regulatory purposes (102) and was evaluated for its pro-
phylactic potential with different adjuvants [natural (MPL-SE)
or synthetic (EM005) toll-like receptor 4 agonists]. This vac-
cine was also found to be protective, generating good humoral
and cellular responses (63). Another defined polyprotein vac-
cine – KSAC utilizing four proteins, namely, kinetoplastid mem-
brane protein-11 (KMP-11), SMT, A2, and CPB was developed
against VL which, along with MPL was found to be immunogenic
and offer significant protection against L. infantum challenge in
mice (64).

Among all these polyprotein vaccines, Leish-110f is under clin-
ical trial in Indian population and the outcome of this vaccination
trial is yet to be seen.

DNA VACCINES
Besides proteins, DNA had also been extensively utilized as a means
of vaccine delivery, which reformed the area of vaccinology. Here,
genes encoding the target proteins are cloned into a mammalian
expression vector, which is injected either intradermally or intra-
muscularly leading to induction of Th1 responses, resulting in
strong cytotoxic T-cell immunity. Safety, stability, long-term pro-
tection, ease of administration, and cost effectiveness are the major
issues associated with this form of vaccine delivery. Several mol-
ecules were evaluated using this approach such as A2, PapLe22,
P36LACK, ORFF, KMP-11 proteophosphoglycan (PPG), etc., in
different animal models with significant level of protection. A2
(65) and ORFF (67) when administered as a DNA vaccine were
found to be significantly protective in BALB/c mice against VL,
which induced both humoral and cellular immune responses.
However, mice immunized with truncated 24-kDa LACK antigen,
which, though, generated a robust parasite-specific Th1 immune
response (IFN-γ but not IL-4), did not confer any protection in
BALB/c mice (66). PapLe22, another protein, was assessed in the
golden hamster by Fragaki et al. (76) experienced down-regulation
of Th2 response and half reduction of parasitic episodes in blood
circulation. The potential of a p36 (LACK) DNA vaccine was eval-
uated in BALB/c mice against L. chagasi wherein no reduction in
parasite load (liver and spleen both) was observed, possibly due
to IL-10 production (75). On the other hand, Aguilar-Be et al.
(79) reported significant protection with the NH36-DNA vaccine
against L. chagasi in BALB/c mice with 88% reduction in para-
site load and with two to fivefold increase in IFN-γ producing
CD4+ T-cells confirming Th1-type immune response. Further,
Gamboa-Leon et al. (80) used garlic extract with NH36-DNA vac-
cine, which did not reduce parasite load, but increased survival
(100%) with non-specific enhancement of IFN-γ. In an another
interesting study, the efficacy of intranasal (i.n.) vaccination with
pCIneo-LACK against VL in BALB/c mice was assessed wherein
significant reduction in parasite burden was noticed in both liver
and spleen along with significantly increased IFN-γ and IL-4 level
with decreased IL-10 production (77). Basu et al. (68) and Bhau-
mik et al. (69) utilized KMP-11 for DNA vaccine in hamsters and
BALB/c mice, respectively, where they found significant protection
with the mixed Th1/Th2 response (surge of IFN-γ, TNF-α, and IL-
12 with extreme down-regulation of IL-10). In another study by
Samant et al. (73), vaccination with DNA-encoding N-terminal
domain of the PPG gene in golden hamsters yielded 80% pro-
tection against the L. donovani challenge with generation of Th1
type of immune response. Recently, Guha et al. (74) showed that
immunization with hemoglobin receptor (HbR)–DNA induces
complete protection against virulent L. donovani infection in both
BALB/c mice and hamsters with an up-regulation of IFN-γ, IL-12,
and TNF-α with concomitant down-regulation of IL-10 and IL-4.

Several enzymes related to protection against oxidative stress
were also shown to be better vaccine targets in Leishmania as well as
in other parasitic diseases. Carter et al. (71) and Sharma and Mad-
hubala (72) vaccinated mice with pVAXγGCS (gamma-glutamyl
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cysteine synthetase) and UBQ-ORFF, respectively, which resulted
in a protective response to increased levels of IL-12 and IFN-γ and
the lower levels of IL-4 and IL-10 confirming Th1-type response.

Several workers utilized different antigens in the combinatorial
approach in order to enhance the efficacy and protective response
of different antigens. Zanin et al. (81) immunized mice with a
NH/A2 DNA vaccine resulted in increased IFN-γ, IL-4, and IL-10
levels associated with edema and increased parasite loads. Das
et al. (103) very recently have developed a DNA vaccine using
conserved proteins from various Leishmania species and found
to be immunogenic inducing CD4+ and CD8+ T-cell responses
in genetically diverse human populations of different endemic
regions.

HETEROLOGOUS PRIME BOOST VACCINE
Different researchers utilized another strategy known as heterol-
ogous DNA-prime protein-boost (HPB) approach for some VL
vaccine antigens such as ORFF, cysteine proteinases, GP63, etc.,
which have also shown success but are yet to reach the level of
clinical trials. Ramiro et al. (85) observed 60% protection in dogs
immunized with DNA-LACK prime/rVV-LACK boost against L.
infantum challenge. Since the immune response in a canine model
differs significantly from murine and human hosts, Dondji et al.
(84) and Tewary et al. (82) conducted similar studies using the
murine intradermal model for VL and found comparable levels
of protection. With another combination of cysteine proteinases
DNA/protein along with ORFF DNA/protein against experimental
VL, Rafati et al. (86, 87) observed that vaccination mainly elicited
antigen-specific IgG2a antibodies, suggesting the induction of a
Th1 immune response. Very recently, Mazumder et al. (83) eval-
uated a membrane protein, GP63 in BALB/c mice and found
robust cellular and humoral responses correlating with durable
protection against L. donovani challenge.

LIPOSOMISED DELIVERY OF PARASITE PROTEIN
Liposome formulations have been adopted as a drug delivery
system against Leishmania infection so as to induce an ele-
vated immune response owing to their adjuvant property (104)
thus can offer a new approach to the development of VL vac-
cines wherein it may induce a sustained Th1 immune response.
This approach using L. donovani promastigote membrane anti-
gens (LAg) encapsulated in positively charged liposomes were
found to induce significant protection against experimental VL
by Afrin et al. (88). Later, a study conducted by Mazumder et al.
(89) showed increase in protective efficacy in animal against
homologous challenge with L. donovani when vaccinated with
both soluble leishmanial antigens (SLA) and non-coding plas-
mid DNA (pDNA) bearing immunostimulatory sequences (ISS),
co-entrapped in cationic liposomes. In another study, using lipo-
somised recombinant membranous protein – GP63 of L. donovani,
there was a long-term protection against VL in BALB/c mice
(90). Recently, vaccination with bone marrow-derived dendritic
cells (BM-DCs) – a new delivery system, pulsed with L. infan-
tum histone H1 against homologous challenge, Agallou et al.
(91) demonstrated antigen-specific splenocyte proliferation with
increased IFN-γ and decreased IL-10 production confirming
Th1-type immune response.

SANDFLY’S SALIVARY ANTIGEN AS VACCINE
Salivary proteins of vector-sandfly also fetch attraction as a suit-
able anti-VL vaccine candidates. They received little attention in
spite of the fact that salivary proteins from the vector are also deliv-
ered to the host during natural transmission of the pathogen and
sometimes found immunomodulatory for the host (20). Several
salivary proteins of Phlebotomus spp. and Lutzomyia spp. such
as PpSP15, maxadilan, LJM17, LJM19, and LJM143 have been
reported as potent immunogens inducing lymphocytic infiltra-
tion with up-regulation of IFN-γ and IL-12 (92, 93). Although,
these proteins conferred protection against CL (105, 106) they
were also assessed for their immunogenicity as well as a protec-
tive response against VL. LJM19, an 11 kDa protein, was found
to be protective with higher expression of IFN-γ and a strong
DTH response in a hamster model (92). Similarly, immunization
with other two salivary proteins – LJL143 and LJM17 generated
strong Th1 responses in dogs with distinct cellular infiltration of
CD3+ lymphocytes and macrophages (93). Therefore, these pro-
teins may further be explored in conjunction with potent parasite
proteins for vaccination studies.

Despite these different approaches offer a variable degree of effi-
cacy, several problems still hampers its feasibility due to variations
in immunogenicity and due to genetic variation in host as well
as in pathogen (99). Therefore, despite of numerous recombinant
proteins that have been suggested as potential vaccine candidates,
to date barely few have reached to clinical trials (107). Similarly,
DNA vaccine faces problems in terms of demonstration of safety
and efficacy in humans in clinical trial (99).

NEWER ALTERNATIVE STRATEGIES FOR DEVELOPING
ANTI-LEISHMANIAL VACCINE
LIVE MUTANT VACCINE
Attenuation of virulent Leishmania parasites through defined
genetic alteration is a new area in vaccine research since the per-
ception of vaccination suggests that the more similar a vaccine is to
the natural disease, better is the generation of protective immune
response (108). Poor long-term immunity is the major issue with
various recombinant vaccines tested so far while whole cell killed
vaccines showed variable efficacy. Consequently, live-attenuated
vaccine attracts the immunologists, since, it offers a complete
milieu of antigens to the antigen presenting cells (APCs), there-
fore, providing an optimal polarization of CD4+ T-cells, resulting
in better immune response (109). Also, they assure persistence of
antigen that may allow the generation of antigen-specific effector
and memory cells, which react immediately following infection
(110). However, till date, only limited attenuated strains have been
tested with various outcomes. Earlier construct generated by gene
replacement was dhfr-ts – and lpg2 – mutants of L. major and L.
mexicana (111) that were excluded as future Leishmania vaccines
due to some inherent problem, but still they did open the door for
live-attenuated vaccine against VL. Papadopoulou et al. (30) inac-
tivated the L. donovani biopterin transporter BT1 by gene disrup-
tion that elicits protective immunity in mice against a L. donovani
challenge (Table 1). However, Silvestre et al. (31) inactivated one
allele of SIR2 in L. infantum, which elicits complete protection in
BALB/c mice with generation of specific anti-Leishmania IgG anti-
body subclasses and increased IFN-γ/IL-10 ratio indicating both
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type 1 and type 2 responses. Mizbani et al. (32) stably expressed the
L. donovani A2 antigen in L. tarentolae to check its protective effi-
cacy in BALB/c mice against L. infantum. Results showed increased
production of IFN-γ followed by reducing levels of IL-5 when
administered intraperitoneally indicates potential Th1 immune
response. In contrast, intravenous injection elicited a Th2-type
response, characterized by higher levels of IL-5 and high humoral
immune response, resulting in a less efficient protection.

Recent investigations have established that tumor cells treated
in vitro by photodynamic therapy (PDT) can be used for generat-
ing potent vaccines against cancers of the same origin. Leishmania,
naturally residing in the phagolysosomes of macrophages, is a
suitable carrier for vaccine delivery. Genetic complementation of
Leishmania to partially rectify their defective heme-biosynthesis
renders them inducible with delta-aminolevulinate to develop
porphyria for selective photolysis, leaving infected host cells
unscathed. Delivery of released“vaccines”to APCs is thus expected
to enhance immune response, while their self-destruction presents
added advantages of safety. Such suicidal L. amazonensis was found
to confer immunoprophylaxis and immunotherapy on hamsters
against L. donovani (34).

Centrin, a growth regulated gene was deleted from the amastig-
ote stage of the L. donovani parasite and was subjected to evalu-
ation of its prophylactic potential (112). The LdCen−/− parasite
was found to be safe and protective in mice and hamsters against
virulent challenge (35) and is under exploration for further devel-
opment as potential vaccine against VL. Fiuza et al. (36) presented
an immunogenicity profile of LdCen−/− in dogs and showed
increased antibody production and amplified lymphoproliferative
response. Further, LdCen−/− vaccinated dogs showed higher fre-
quencies of activated CD4+ and CD8+ T-cells, IFN-γ production
by CD8+ T-cells, increased secretion of TNF-α and IL-12/IL-
23p40 and decreased secretion of IL-4. Very recently, Dey et al. (33)
have demonstrated another knock out – Ldp27 (−/−) parasites to
be safe and can provide protective immunity against both homol-
ogous and heterologous challenge with stimulation of both Th1-
type CD4+ and CD8+ T-cells. Since, effector T-cell population
requires continuous stimulation for excellent protection; it can
be well accomplished through live-attenuated vaccines. Although,
there are certain issues associated with these vaccines such as prob-
able reversal to virulence, reactivation in immune compromised
individuals, manufacturing considerations, restraint to their usage
in clinical studies due to the presence of antibiotic resistance genes
used as selective markers during the steps of gene deletion, etc.,
the two-step approach, i.e., gene deletion with parasite selection
and excision of the antibiotic gene cassette offers a promising
way toward the generation of a safe live-attenuated vaccine. Thus,
all these approaches pave the way for the development of newer
generation of vaccine, which would rather be safer, provide long-
lasting immunity and meet both scientific as well as regulatory
standards.

SYNTHETIC PEPTIDE VACCINE
Recent developments in blending of bioinformatics with vaccinol-
ogy has revolutionized and expedited this area. Sequencing of large
number of pathogen genome and increase in nucleotide and pro-
tein sequence databases accelerate the pace of vaccine development

program. Although, killed or attenuated parasites are utilized for
most of the existing vaccines, protective immune response is more
often triggered by small amino acid sequence (peptides). More
recent bioinformatic approaches utilizes number of algorithms for
predicting epitopes, HLA-binding, transporter of antigen process-
ing (TAP) affinity, proteasomal cleavage, etc., in order to explore
the use of peptide epitopes with the highest probability of inducing
protective immune responses. Generation of synthetic polyvalent
peptide vaccine requires better understanding of T- and B-cell epi-
topes in the microorganism’s proteins and their interaction with
major histocompatibility (MHC) or HLA complexes. The basis of
using such peptide epitopes arises from the screening of hundreds
of overlapping synthetic peptides, which revealed that only a small
number of regions in a protein are immunogenic and capable of
provoking humoral as well as cellular immune responses. Syn-
thetic peptide vaccines offer several advantages over other vaccine
types like absence of any potentially infectious material, ability to
include multiple epitopes, minimization of the amount and com-
plexity of an antigen, economical scale up and decreased chance
of stimulating a response against self-antigens.

T-cell epitopes are presented on APC surface where they inter-
act with MHC molecules in order to induce immune response.
They can be categorized as conformational or linear, depend-
ing on their structure and integration with the paratope. One
of the key issues in T-cell epitope prediction is the prediction of
MHC binding as it is considered a pre-requisite for T-cell recog-
nition. All T-cell epitopes are good MHC binders, but not all
good MHC binders are T-cell epitopes. For epitope prediction,
generally two methods are adopted, first, sequence based that ana-
lyze protein sequences and second, structure based method using
three-dimensional protein structures. Whether the predicted epi-
topes interact with paratope or not can also be assessed by using
computational tools, which determines protein–protein interac-
tions that helps in designing novel vaccines. Several strategies
such as genomic databases, evolutionary relationships, three-
dimensional structure of proteins, presence of specific protein
domains, primary structure of proteins, etc., have been applied to
knowhow novel interacting partners in order to validate the pre-
sumed interactions. Due to the availability of epitope mapping and
binding prediction algorithms, several workers have applied differ-
ent bioinformatic approaches to design synthetic peptide vaccines
against several parasitic diseases. In case of malaria, there have been
nine clinical trials from 2000 to 2009 utilizing synthetic peptide
vaccines, which target the pre-erythrocytic and erythrocytic stages
of the Plasmodium falciparum, with encouraging results (113).
Similarly, this approach has also been utilized in other parasitic
diseases such as Toxoplasma (114), Trypanosoma (115), etc.

In case of Leishmania, several proteins like glycoprotein 63
(GP63), KMP-11, amastigote virulence factor (A2), lipophospho-
glycan (LPG), cysteine proteinase, etc., both from promastigote
as well as amastigote form were screened for determination of
potential antigenic peptides for generation of peptide vaccine
(Table 2).

Glycoprotein 63
GP63 also known as leishmanolysin, is the most widely studied
protein, which is highly conserved among all leishmanial species.
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Table 2 | Summary of peptide vaccines evaluated against leishmaniasis.

Protein(s) Spp. used Epitopes

(no. of amino

acid residues)

Prediction tool(s)

utilized

Challenge

with

Dose and route Host system Immune response Reference

GP63 L. major PT 1–4; PT 6–8

(12–16 residues)

Predictive algorithm L. major 100 µg (each)+8%

poloxamer 407; SC

BALB/c mice Proliferation of CD4+

Th1 sub-set cells

PT3 showed

immunoprotection

Jardim et al. (116)

24 Partially

overlapping peptides

(12–35 residues)

AMPHI algorithm L. major 100 µg+100 µg C.

parvum/entrapped

within liposomes;

SC/IV

CBA and BALB/c

mice

Induction of T-cell

response; classical DTH

reactivity and secretion

of IL-2 and IFN-γ

p146-171 and p467-482

induces significant

host-resistance

Yang et al. (117)

P154 and P467 (16

residues)

AMPHI algorithm L. major 50 µg; IP or SC CBA mice ThI type cytokine

responses

Secretion of IL-2, IFN-γ,

and GM-CSF

Frankenburg et al.

(118)

PT3 (16 residues) Predictive algorithm L. major 100 µg+8%

poloxamer 407; SC

BALB/c mice Long-lasting protection Spitzer et al. (119)

MHC class

II – restricted

peptides (AAR, AAP,

ASR) (15 residues)

SYFPETHI 100 µg emulsified in

1:1 dilution with IFA;

SC

FVB/N-DR1

transgenic mice

High levels of Th1-type

immune response and

significant level of IFN-γ

Rezvan (120)

L. mexicana/

L. major

HLA-A2 peptides (9

residues)

SYFPETHI 100 µg+140µg

HAP-B (helper

peptide) + 50 µl IFA;

SC

HHDII and BALB/c

mice

Induction of CTL

responses

Up-regulation of IFN-γ

Rezvan et al. (121)

L. donovani P1–P4 (9–18

residues)

EpiMatrix 100 µg of each

peptide

Human PBMCs Moderate increase in

IFN-γ

Elfaki et al. (122)

KMP-11 L. donovani 84 Overlapping

peptides (9 residues)

SYFPEITHI L. donovani 44 µg/ml (each) CD8+ T-cells from

human PBMCs

Trigger interferon-γ

secretion by CD8+

T-cells

Basu et al. (123)
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This zinc metalloprotease is expressed well both in promastigote
as well as in amastigote form and implicated in a number of
mechanisms related to parasite virulence. Also, proteinase activity
of leishmanolysin results in increased resistance to complement-
mediated lysis. All these make it an attractive vaccine candidate.
As early as in 1990, Jardim et al. (116) utilized primary structure
of GP63 to delineate the structures of 7 T-cell epitopes (12–16
residues), which stimulate the proliferation of CD4+ cells. One
of these synthetic antigens (with adjuvant) showed proliferation
of the Thl subset when inoculated subcutaneously and provided
immunoprotection against two species of Leishmania parasites.
Eleven T-cell epitopes out of 24 partially overlapping peptides
(12–35 residues) of GP63 of L. major have been identified and
their prophylactic efficacy was assessed in CBA and BALB/c mice
against L. major challenge. These epitopes induce a T-cell response
suggesting GP63 as a dominant T-cell inducer in vivo. There is a
clear segregation of the antigenicity and the immunogenicity of
the peptides; only 3 of the 11 stimulatory peptides were able to
induce a T-cell response as well as being recognized by T-cells from
recovered mice. Frankenburg et al. (118) also tested two peptides
representing predicted T-cell epitopes of GP63 of L. major in vac-
cines tested in murine model of CL. Either subcutaneous (s.c.) or
intraperitoneal (i.p.) immunization in saline with a peptide repre-
senting GP63 amino acids 467–482 (p467) significantly protected
CBA mice against the development of severe cutaneous lesions
only when the peptide was intrinsically adjuvanted by covalently
adding a lauryl cysteine moiety (LC-p467) to its amino termi-
nus during synthesis. A single synthetic T-cell epitope (PT3) was
obtained from the histidine zinc-binding region of GP63 and was
utilized in a vaccine trial using two virulent strains of L. major by
Spitzer et al. (119). A single s.c. injection of PT3 with poloxamer
407 protected BALB/c mice for 10 months. Protection was similar
for both strains, which manifest different disease sequelae. Elfaki
et al. (122) used EpiMatrix algorithm to select putative T-cell epi-
topes of L. donovani GP63 in order to assess their immunogenicity
in vitro. They found significant reduction in IL-10 level in all indi-
vidual peptides as compared with unstimulated controls. Also,
pooled peptides showed moderate increase in IFN-γ level in some
volunteers while individual peptides did not show significant dif-
ference from negative controls. Similarly, four HLA-A2 peptides
of L. mexicana/major GP63 were predicted by SYFPETHI and
tested in HHD II mice. Results revealed immunogenicity for three
of four peptides predicted for HLA-A2 with induction of CTL
responses detected by standard 4-h cytotoxicity assay and signif-
icant up-regulation of IFN-γ. When HHDII mice were injected
i.m with L. mexicana GP63 cDNA and splenocytes were restim-
ulated with blasts loaded with the immunogenic peptides, two
of the peptides induced significant level of IFN-γ detected by
ELISA (121). Recently, three MHC class II – restricted peptides
(AAR, AAP, and ASR) from L. major GP63 protein were predicted
by SYFPEITHI and tested in FVB/N-DR1 transgenic mice. AAR
produced high levels of Th1-type immune response as well as
IFN-γ (120).

Kinetoplastid membrane protein-11
An 11 kDa highly conserved protein exclusively present in para-
site cell membrane, differentially expressed more in amastigotes
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than in promastigotes, which further increases during metacyclo-
genesis, plays crucial role in host–parasite interaction (126). Basu
et al. (123) scanned the entire sequence of KMP-11 of Leishma-
nia with overlapping nonapeptides to decipher the role of CD8+
T-cells in defense against infection and in the cure of the dis-
ease. Thirty peptides that specifically trigger interferon-γ secretion
by human CD8+ T-cells were identified. Four T-cell lines with
specificities for different peptides recognize Leishmania-infected
autologous macrophages, which prove that KMP-11 is processed
and presented via the MHC class I pathway of infected cells.

A2 protein
It is a member of amastigote stage-specific protein family, iden-
tified in L. donovani, required for the survival of amastigotes in
visceral organs of mammalian host (127). It consists of multiple
copies of a decameric amino acid repeat thus ranges from 45 to
100 kDa inducing a strong Th1 immune response thus conferring
partial protection against natural infection. Resende et al. (124)
predicted hydrophilic, class I and II MHC-binding synthetic pep-
tides recognized by A2-specific antibodies, CD8+ T and CD4+
T-cells, respectively. Immunization of BALB/c mice with aden-
ovirus expressing A2 (AdA2) resulted in low antibody response,
contrasting with high levels of IFN-γ producing CD4+ T and
CD8+ T-cells specific for A2. Further, A2-specific CD8+ T-cells
from immunized mice were capable of lysing sensitized target cells
in vivo. They further demonstrated an association of A2-specific T-
cell responses and reduced parasitism in both liver and spleen from
mice immunized with AdA2 and challenged with L. (L.) chagasi.
Six L. major antigens (CPB, CPC, LmsTI-1, TSA, LeIF, and LPG-3)
were screened for potential CD8+T-cell activating 9-mer epitopes
presented by HLA-A*0201. Specific response to LmsTI-1 and LPG-
3-related peptides presented in HLA-A*0201 was demonstrated
(125). Recently, Agallou et al. (128) analyzed eight peptides from
four known antigenic L. infantum proteins, i.e., cysteine peptidase
A (CPA), histone H1, KMP-11, and Leishmania eukaryotic initia-
tion factor (LeIF) for their immunogenicity in BALB/c mice where
they found that CPA_p2, CPA_p3, LeIF_p3, and LeIF_p6 induced
IFN-γ producing CD4+ T-cells indicating a Th1-type response.
In addition, CPA_p2, CPA_p3, and H1_p1 also induced CD8+
T-cells.

CONCLUDING REMARKS
For effective intervention measures to control VL in endemic areas,
it is imperative to design a vaccine, which is the most economical
way of controlling infectious diseases. An ideal vaccine involves
suitable vaccine candidates, ought to offer long-lasting immu-
nity, which is the prime pre-requisite for evaluating the efficacy
of a vaccine. Although researchers utilize different approaches for
designing vaccines against VL, they still face several challenges
either due to heterogeneity of the human population or due to
unusual host evasive mechanisms of parasite. The key step in vac-
cine designing is the identification of most appropriate vaccine
candidate, which is found to be a time consuming and labor-
intensive task. Therefore, efforts were made for rationale and
faster identification of potential antigens. With the emergence
of immunoinformatics, peptide-based vaccines attract the most

due its several merits. These vaccines should include promiscuous
T-cell epitopes derived from the potential Th1 stimulatory proteins
of L. donovani, which expands host protective immune responses.
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