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1. Preliminaries

This paper is a survey of the known results on homogeneous operators. A small proportion
of these results are as yet available only in preprint form. A miniscule proportion may even
be new. The paper ends with a list of thirteen open problems suggesting possible directions
for future work in this area. This list is not purported to be exhaustive, of course!

All Hilbert spaces in this paper are separable Hilbert spaces over the field of complex
numbers. All operators are bounded linear operators between Hilbert spaces. IfH, K are
two Hilbert spaces,B(H,K) will denote the Banach space of all operators fromH to K,
equipped with the usual operator norm. IfH = K, this will be abridged toB(H). The
group of all unitary operators inB(H) will be denoted byU(H). When equipped with any
of the usual operator topologyU(H) becomes a topological group. All these topologies
induce the same Borel structure onU(H). We shall viewU(H) as a Borel group with this
structure.

Z, R andC will denote the integers, the real numbers and the complex numbers, respec-
tively. D andT will denote the open unit disc and the unit circle inC, respectively, and̄D
will denote the closure ofD in C. Möb will denote the M̈obius group of all biholomorphic
automorphisms ofD. Recall that M̈ob= {ϕα, β : α ∈ T, β ∈ D}, where

ϕα,β(z) = α
z− β

1 − β̄z
, z ∈ D. (1.1)

For β ∈ D, ϕβ := ϕ−1, β is the unique involution (element of order 2) in Möb which
interchanges 0 andβ. Möb is topologized via the obvious identification withT × D. With
this topology, M̈ob becomes a topological group. Abstractly, it is isomorphic toPSL(2,R)

and toPSU(1, 1).
The following definition from [6] has its origin in the papers [21] and [22] by the second

named author.
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DEFINITION 1.1

An operatorT is calledhomogeneousif ϕ(T ) is unitarily equivalent toT for all ϕ in Möb
which are analytic on the spectrum ofT .

It was shown in Lemma 2.2 of [6] that

Theorem 1.1.The spectrum of any homogeneous operatorT is eitherT or D̄. Henceϕ(T )
actually makes sense(and is unitarily equivalent toT ) for all elementsϕ of Möb.

Let ∗ denote the involution (i.e. automorphism of order two) of Möb defined by

ϕ∗(z) = ϕ(z̄), z ∈ D, ϕ ∈ Möb. (1.2)

Thusϕ∗
α,β = ϕᾱ,β̄ for (α, β) ∈ T × D. It is known that essentially (i.e. up to multiplication

by arbitrary inner automorphisms),∗ is the only outer automorphism of M̈ob. It also
satisfiesϕ∗(z) = ϕ(z−1)−1 for z ∈ T. It follows that for any operatorT whose spectrum
is contained inD̄, we have

ϕ(T ∗) = ϕ∗(T )∗, ϕ(T −1) = ϕ∗(T )−1, (1.3)

the latter in caseT is invertible, of course. It follows immediately from (1.3) that the adjoint
T ∗ – as well as the inverseT −1 in caseT is invertible – of a homogeneous operatorT is
again homogeneous.

Clearly a direct sum (more generally, direct integral) of homogeneous operators is again
homogeneous.

2. Characteristic functions

Recall that an operatorT is called acontractionif ‖T ‖ ≤ 1, and it is calledcompletely
non-unitary(cnu) if T has no non-trivial invariant subspaceM such that the restriction of
T to M is unitary .T is called apure contractionif ‖T x‖ < ‖x‖ for all non-zero vectors
x. To any cnu contractionT on a Hilbert space, Sz-Nagy and Foias associate in [25] a pure
contraction valued analytic functionθT on D, called thecharacteristic functionof T .

Reading through [25] one may get the impression that the characteristic function is only
contraction valued and its value at 0 is a pure contraction. However, ifθ is a contraction
valued analytic function onD and the value ofθ at some point is pure, its value at all points
must be pure contractions. This is immediate on applying the strong maximum modulus
principle to the functionz → θ(z)x, wherex is an arbitrary but fixed non-zero vector.

Two pure contraction valued analytic functionsθi : D → B(Ki ,Li ), i = 1, 2 are said
to coincideif there exist two unitary operatorsτ1 : K1 → K2, τ2 : L1 → L2 such that
θ2(z)τ1 = τ2θ1(z) for all z ∈ D. The theory of Sz-Nagy and Foias shows that (i) two cnu
contractions are unitarily equivalent if and only if their characteristic functions coincide,
(ii) any pure contraction valued analytic function is the characteristic function of some cnu
contraction. In general, the model for the operator associated with a given functionθ is
difficult to describe. However, ifθ is an inner function (i.e.,θ is isometry-valued on the
boundary ofD), the description of the Sz-Nagy and Foias model simplifies as follows:

Theorem 2.1.Letθ : D → B(K,L) be a pure contraction valued inner analytic function.
Let M denote the invariant subspace ofH 2(D) ⊗ L corresponding toθ in the sense of
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Beurling’s theorem. That is,M = {z 7→ θ(z)f (z) : f ∈ H 2(D)⊗ K}. Thenθ coincides
with the characteristic function of the compression of multiplication byz to the subspace
M⊥.

From the general theory of Sz-Nagy and Foias outlined above, it follows that ifT is a cnu
contraction with characteristic functionθ then, lettingT [µ] denote the cnu contraction with
characteristic functionµθ for 0< µ ≤ 1, we find that{T [µ] : 0 < µ ≤ 1} is a continuum
of mutually unitarily inequivalent cnu contractions (providedθ is not the identically zero
function, of course). In general, it is difficult to describe these operators explicitly in terms
of T alone. But, in [7], we succeeded in obtaining such a description in caseθ is an inner
function (equivalently, whenT is in the classC.0, i.e.,T ∗nx → 0 asn → ∞ for every
vectorx) – so thatT has the description in terms ofθ given in Theorem 2.1. Namely, for
a suitable Hilbert spaceL, T may be identified with the compression ofM to M⊥, where
M : H 2

L := H 2(D)⊗ L → H 2
L is multiplication by the co-ordinate function andM is the

invariant subspace forM corresponding to the inner functionθ . LetM =
(
M11 0
M21 M22

)
be

the block matrix representation ofM corresponding to the decompositionH 2
L = M⊥⊕M.

(Thus, in particular,T = M11 andM22 is the restriction ofM to M.) Finally, letK denote
the co-kernel ofM22,N : H 2

K → H 2
K be multiplication by the co-ordinate function and let

E : H 2
K → M be defined byEf = f (0) ∈ K. In terms of these notations, we have

Theorem 2.2. Let T be a cnu contraction in the classC.0 with characteristic functionθ .
Letµ be a scalar in the range0< µ < 1 and putδ =

√
1 − µ2. Then, with respect to the

decompositionM⊥ ⊕M⊕H 2
K of its domain, the operatorT [µ] : H 2

L ⊕H 2
L ⊕H 2

K → H 2
K

has the block matrix representation

T [µ] =

 M11 0 0
δM21 M22 µE

0 0 N∗


 .

In Theorem 2.9 of [6], it was noted that

Theorem 2.3.A pure contraction valued analytic functionθ onD is the characteristic func-
tion of a homogeneous cnu contraction if and only ifθ ◦ ϕ coincides withθ for everyϕ in
Möb.

From this theorem, it is immediate that wheneverT is a homogeneous cnu contraction,
so are the operatorsT [µ] given by Theorem 2.2. Some interesting examples of this phe-
nomenon were worked out in [7]. See §6 for these examples.

As an interesting particular case of Theorem 2.3, one finds that any cnu contraction
with a constant characteristic function is necessarily homogeneous. These operators are
discussed in [11] and [6]. Generalizing a result in [6], Kerchy shows in [19] that

Theorem 2.4. Let θ be the characteristic function of a homogeneous cnu contraction. If
θ(0) is a compact operator thenθ must be a constant function.

(Actually Kerchy proves the same theorem with the weaker hypothesis that all the points
in the spectrum ofθ(0) are isolated from below.)
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Sketch of Proof. Let θ : D → B(K,L) be the characteristic function of a homogeneous
operator. AssumeC := θ(0) is compact. Replacingθ by a coincident analytic function if
neceesary, we may assume without loss of generality thatK = L andC ≥ 0. By Theorem
2.3 there exists unitariesUz, Vz such thatθ(z) = UzCVz, z ∈ D. Let λ1 > λ2 > · · · be
the non-zero eigenvalues of the compact positive operatorC. At this point Kerchy shows
that (as a consequence of the maximum modulus principle for Hilbert space valued analytic
functions) the eigenspaceK1 corresponding to the eigenvalueλ1 is a common reducing
subspace forUz, Vz, z ∈ D (as well as forC of course) and hence forθ(z), z ∈ D. So we
can writeθ(z) = θ1(z)⊕ θ2(z) whereθ1 is an analytic function intoB(K1). Sinceθ1 is a
unitary valued analytic function, it must be a constant. Repeating the same argument with
θ2, one concludes by induction onn that the eigenspaceKn corresponding to the eigenvalue
λn is reducing forθ(z), z ∈ D, and the projection ofθ to eachKn is a constant function.
Since the same is obviously true of the zero eigenvalue, we are done.

3. Representations and multipliers

LetGbe a locally compact second countable topological group. Then a measurable function
π : G → U(H) is called aprojective representationof G on the Hilbert spaceH if there
is a function (necessarily Borel)m : G×G → T such that

π(1) = I, π(g1g2) = m(g1, g2)π(g1)π(g2) (3.1)

for all g1, g2 in G. (More precisely, such a functionπ is called a projective unitary repre-
sentation ofG; however, we shall often drop the adjective unitary since all representations
considered in this paper are unitary.) The projective representationπ is called an ordi-
nary representation (and we drop the adjective ‘projective’) ifm is the constant function
1. The functionm associated with the projective representationπ via (3.1) is called the
multiplierof π . The ordinary representationπ of G which sends every element ofG to
the identity operator on a one dimensional Hilbert space is called the identity (or trivial)
representation ofG. It is surprising that although projective representations have been with
us for a long time (particularly in the Physics literature), no suitable notion of equivalence
of projective representations seems to be available. In [7], we offered the following:

DEFINITION 3.1

Two projective representationsπ1, π2 ofG on the Hilbert spacesH1, H2 (respectively) will
be called equivalent if there exists a unitary operatorU : H1 → H2 and a function (nec-
essarily Borel)f : G → T such thatπ2(ϕ)U = f (ϕ)Uπ1(ϕ) for all ϕ ∈ G.

We shall identify two projective representations if they are equivalent. This has the some
what unfortunate consequence that any two one dimensional projective representations are
identified. But this is of no importance if the groupG has no ordinary one dimensional
representation other than identity representation (as is the case for all semi-simple Lie
groupsG.) In fact, the above notion of equivalence (and the resulting identifications) saves
us from the following disastrous consequence of the above (commonly accepted) notion
of projective representations: Any Borel function fromG into T is a (one dimensional)
projective representation of the group!!
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3.1 Multipliers and cohomology

Notice that the requirement (3.1) on a projective representation implies that its associated
multiplierm satisfies

m(ϕ, 1) = 1 = m(1, ϕ), m(ϕ1, ϕ2)m(ϕ1ϕ2, ϕ3) = m(ϕ1, ϕ2ϕ3)m(ϕ2, ϕ3) (3.2)

for all elementsϕ, ϕ1, ϕ2, ϕ3 of G. Any Borel functionm : G ×G → T satisfying (3.2)
is called amultiplier of G. The set of all multipliers onG form an abelian groupM(G),
called the multiplier group ofG. If m ∈ M(G), then takingH = L2(G) (with respect to
Haar measure onG), defineπ : G → U(H) by(

π(ϕ)f
)
(ψ) = m(ψ, ϕ)f (ψϕ) (3.3)

forϕ,ψ inG,f inL2(G). Then one readily verifies thatπ is a projective representation ofG
with associated multiplierm. Thus each element ofM(G) actually occurs as the multiplier
associated with a projective representation. A multiplierm ∈ M(G) is calledexact if
there is a Borel functionf : G → T such thatm(ϕ1, ϕ2) = (f (ϕ1)f (ϕ2))/f (ϕ1ϕ2) for
ϕ1, ϕ2 in G. Equivalently,m is exact if any projective representation with multiplierm
is equivalent to an ordinary representation. The setM0(G) of all exact multipliers on
G form a subgroup ofM(G). Two multipliersm1, m2 are said to be equivalent if they
belong to the same coset ofM0(G). In other words,m1 andm2 are equivalent if there exist
equivalent projective representationsπ1, π2 whose multipliers arem1 andm2 respectively.
The quotientM(G)/M0(G) is denoted byH 2(G,T) and is called the second cohomology
group ofG with respect to the trivial action ofG on T (see [24] for the relevant group
cohomology theory). Form ∈ M(G), [m] ∈ H 2(G,T) will denote the cohomology class
containingm, i.e., [ ] :M(G) → H 2(G,T) is the canonical homomorphism.

The following theorem from [8] (also see [9]) provides an explicit description ofH 2(G,T)

for any connected semi-simple Lie groupG.

Theorem 3.1. LetG be a connected semi-simple Lie group. ThenH 2(G,T) is naturally
isomorphic to the Pontryagin dual̂π1(G) of the fundamental groupπ1(G) ofG.

Explicitly, if G̃ is the universal cover ofG andπ : G̃ → G is the covering map (so that
the fundamental groupπ1(G) is naturally identified with the kernelZ of π ) then choose a
Borel sections : G → G̃ for the covering map (i.e.,s is a Borel function such thatπ ◦ s is
the identity onG, ands(1) = 1). Forχ ∈ Ẑ, definemχ : G×G → T by

mχ(x, y) = χ(s(y)−1s(x)−1s(xy)), x, y ∈ G. (3.4)

Then the main theorem in [8] shows thatχ 7→ [mχ ] is an isomorphism from̂Z onto
H 2(G,T) and this isomorphism is independent of the choice of the sections.

The following companion theorem from [8] shows that to find all the irreducible projec-
tive representations of a groupG satisfying the hypotheses of Theorem 3.1, it suffices to
find the ordinary irreducible representations of its universal coverG̃. LetZ be the kernel of
the covering map from̃G ontoG. Letβ be an ordinary unitary representation ofG̃. Then
we shall say thatβ is of pure typeif there is a characterχ of Z such thatβ(z) = χ(z)I for
all z inZ. If we wish to emphasize the particular character which occurs here, we may also
say thatβ is pure of typeχ . Notice that, ifβ is irreducible then (asZ is central) by Schur’s
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Lemmaβ is necessarily of pure type. In terms of this definition, the second theorem in [8]
says

Theorem 3.2. Let G be a connected semi-simple Lie group and letG̃ be its universal
cover. Then there is a natural bijection between(the equivalence classes of) projective
unitary representations ofG and(the equivalence classes of) ordinary unitary representa-
tions of pure type of̃G. Under this bijection, for eachχ the projective representations ofG
with multipliermχ correspond to the representations ofG̃ of pure typeχ , and vice versa.
Further, the irreducible projective representations ofG correspond to the irreducible rep-
resentations of̃G, and vice versa.

Explicitly, if β is an ordinary representation of pure typeχ of G̃ then definefχ : G̃ → T

by fχ(x) = χ(x−1 · s ◦π(x)), x ∈ G̃. Defineα̃ onG̃ by α̃(x) = fχ(x)β(x). Thenα̃ is a
projective representation of̃G which is trivial onZ. Therefore there is a well-defined (and
uniquely determined) projective representationα ofG such that̃α = α ◦π . The multiplier
associated withα ismχ . The mapβ 7→ α is the bijection mentioned in Theorem 3.2.

Finally, as was pointed out in [9], any projective representation (say with multiplierm) of a
connected semi-simple Lie group can be written as a direct integral of irreducible projective
representations (all with the same multiplierm) of the group. It follows, of course, that any
multiplier of such a group arises from irreducible projective representations. It also shows
that, in order to have a description of all the projective representations, it is sufficient to
have a list of the irreducible ones and to know when two of them have identical multipliers.
This is where Theorems 3.1 and 3.2 come in handy.

3.2 The multipliers on M¨ob

Notice that for any elementϕ of the Möbius group,ϕ′ is a non-vanishing analytic function
on D̄ and hence has a continuous logarithm on this closed disc. Let us fix, once for
all, a Borel determination of these logarithms. More precisely, we fix a Borel function
(z, ϕ) 7→ logϕ′(z) from D̄ × Möb intoC such that logϕ′(z) ≡ 0 for ϕ = id. Now define
argϕ′(z) to be the imaginary part of logϕ′(z).

Define the Borel functionn : Möb× Möb → Z by

n(ϕ−1
1 , ϕ−1

2 ) = 1

2π
(arg(ϕ2ϕ1)

′(0)− argϕ′
1(0)− argϕ′

2(ϕ1(0))).

For anyω ∈ T, definemω : Möb× Möb → T by

mω(ϕ1, ϕ2) = ωn(ϕ1,ϕ2).

The following proposition is a special case of Theorem 3.1. Detailed proofs may be
found in [9].

PROPOSITION 3.1

For ω ∈ T, mω is a multiplier ofMöb. It is trivial if and only ifω = 1. Every multiplier
onMöb is equivalent tomω for a uniquely determinedω in T. In other words,ω 7→ [mω]
is a group isomorphism between the circle groupT and the second cohomology group
H 2(Möb,T).
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3.3 The projective representations of the Möbius group

Every projective representation of a connected semi-simple Lie group is a direct integral
of irreducible projective representations (cf. [9], Theorem 3.1). Hence, for our purposes,
it suffices to have a complete list of these irreducible representations of Möb. A complete
list of the (ordinary) irreducible unitary representations of the universal cover of Möb was
obtained by Bargmann (see [29] for instance). Since Möb is a semi-simple and connected
Lie group, one may manufacture all the irreducible projective representations of Möb (with
Bargmann’s list as the starting point) via Theorem 3.2. Following [8] and [9], we proceed
to describe the result. (Warning: Our parametrization of these representations differs
somewhat from the one used by Bargmann and Sally. We have changed the parametrization
in order to produce a unified description.)

Forn ∈ Z, let fn : T → T be defined byfn(z) = zn. In all of the following examples,
the Hilbert spaceF is spanned by an orthogonal set{fn : n ∈ I }, whereI is some subset
of Z. Thus the Hilbert space of functions is specified by the setI and{‖fn‖, n ∈ I }. (In
each case,‖fn‖ behaves at worst like a polynomial in|n| asn → ∞, so that this really
defines a space of function onT.) Forϕ ∈ Möb and complex parametersλ andµ, define
the operatorRλ,µ(ϕ−1) onF by

(Rλ,µ(ϕ
−1)f )(z) = ϕ′(z)λ/2|ϕ′(z)|µ(f (ϕ(z)), z ∈ T, f ∈ F, ϕ ∈ Möb.

Here one definesϕ′(z)λ/2 as expλ/2 logϕ′(z) using the previously fixed Borel determina-
tion of these logarithms.

Of course, there is noa priori guarantee thatRλ,µ(ϕ−1) is a unitary (or even bounded)
operator. But, when it is unitary for everyϕ in Möb, it is easy to see thatRλ,µ is then a
projective representation of M̈ob with associated multipliermω, whereω = eiπλ. Thus the
description of the representation is complete if we specifyI , {‖fn‖2, n ∈ I } and the two
parametersλ, µ. It turns out that almost all the irreducible projective representations of
Möb have this form.

In terms of these notations, here is the complete list of the irreducible projective unitary
representations of M̈ob. (However, see the concluding remark of this section.)

• Principal series representationsPλ,s, − 1 < λ ≤ 1, s purely imaginary. Hereλ =
λ, µ = 1−λ

2 + s, I = Z, ‖fn‖2 = 1 for all n (so the space isL2(T)).

• Holomorphic discrete series representationsD+
λ : Hereλ > 0, µ = 0, I = {n ∈

Z : n ≥ 0} and‖fn‖2 = 0(n+1)0(λ)
0(n+λ) for n ≥ 0. For eachf in the representation

space there is añf , analytic in D, such thatf is the non-tangential boundary value
of f̃ . By the identificationf ↔ f̃ , the representation space may be identified with
the functional Hilbert spaceH(λ) of analytic functions onD with reproducing kernel
(1 − zw̄)−λ, z, w ∈ D.

• Anti-holomorphic discrete series representationsD−
λ , λ > 0: D−

λ may be defined as
the composition ofD+

λ with the automorphism∗ of eq. (1.2):D−
λ (ϕ) = D+

λ (ϕ
∗), ϕ in

Möb. This may be realized on a functional Hilbert space of anti-holomorphic functions
on D, in a natural way.

• Complementary series representationCλ,σ , − 1< λ < 1, 0 < σ < 1
2(1 − |λ|): Here

λ = λ, µ = 1
2(1 − λ)+ σ, I = Z, and
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‖fn‖2 =
|n|−1∏
k=0

k ± λ
2 + 1

2 − σ

k ± λ
2 + 1

2 + σ
, n ∈ Z,

where one takes the upper or lower sign according asn is positive or negative.

Remark3.1. (a) All these projective representation of Möb are irreducible with the sole
exception ofP1,0 for which we have the decompositionP1,0 = D+

1 ⊕D−
1 . (b) The multiplier

associated with each of these representations ismω whereω = e−iπλ if the representation
is in the anti-holomorphic discrete series, andω = eiπλ otherwise. It follows that the
multipliers associated with two representationsπ1 andπ2 from this list are either identical
or inequivalent. Further, if neither or both ofπ1 andπ2 are from the anti-holomorphic
discrete series, then their multipliers are identical iff theirλ parameters differ by an even
integer. In the contrary case (i.e., if exactly one ofπ1 andπ2 is from the anti-holomorphic
discrete series), then they have identical multipliers iff theirλ parameters add to an even
integer. This is Corollary 3.2 from [9]. Using this information, one can now describe all
the projective representations of Möb (at least in principle).

4. Projective representations and homogeneous operators

If T is an operator on a Hilbert spaceH then a projective representationπ of Möb onH is
said to be associated withT if the spectrum ofT is contained inD̄ and

ϕ(T ) = π(ϕ)∗T π(ϕ) (4.1)

for all elementsϕ of Möb. Clearly, ifT has an associated representation thenT is homo-
geneous. In the converse direction, we have

Theorem 4.1.If T is an irreducible homogeneous operator thenT has a projective repre-
sentation of M̈ob associated with it. This projective representation is unique up to equiva-
lence.

We sketch a proof of Theorem 4.1 below. The details of the proof may be found in [9]. The
existence part of this theorem was first proved in [23] using a powerful selection theorem.
This result is the prime reason for our interest in projective unitary representations of Möb. It
is also the basic tool in the classification program for the irreducible homogeneous operators
which is now in progress.

Sketch of Proof. Notice that the scalar unitaries inU(H) form a copy of the circle groupT
in U(H). There exist Borel transversalsE to this subgroup, i.e., Borel subsetsE of U(H)
which meet every coset ofT in a singleton. Fix one such (in the Proof of Theorem 2.2 in
[9], we present an explicit construction of such a transversal). For each elementϕ of Möb,
let Eϕ denote the set of all unitariesU in U(H) such thatU∗T U = ϕ(T ). SinceT is an
irreducible homogeneous operator, Schur’s Lemma implies that eachEϕ is a coset ofT in
U(H). Defineπ : Möb → U(H) by

{π(ϕ)} = E ∩ Eϕ.
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It is easy to see thatπ , thus defined, is indeed a projective representation associated withT .
Another appeal to Schur’s Lemma shows that any representation associated withT must
be equivalent toπ . This completes the proof.

For any projective representationπ of Möb, letπ# denote the projective representation of
Möb obtained by composingπ with the automorphism∗ of Möb (cf. (1.2)). That is,

π#(ϕ) := π(ϕ∗), ϕ ∈ Möb. (4.2)

Clearly, ifm is the multiplier ofπ , thenm̄ is the multiplier ofπ#. Also, from (1.3) it is
more or less immediate that ifπ is associated with a homogeneous operatorT thenπ# is
associated with the adjointT ∗ of T . If, further,T is invertible, thenπ# is associated with
T −1 also.

4.1 Classification of irreducible homogeneous operators

Recall that an operatorT on a Hilbert spaceH is said to be ablock shiftif there are non trivial
subspacesVn (indexed by all integers, all non-negative integers or all non-positive integers
– accordinglyT is called a bilateral, forward unilateral or backward unilateral block shift)
such thatH is the orthogonal direct sum of these subspaces and we haveT (Vn) ⊆ Vn+1

for each indexn (where, in the case of a backward block shift, we takeV1 = {0}). In [9]
we present a proof (due to Ordower) of the somewhat surprising fact that in caseT is an
irreducible block shift, these subspacesVn (which are called the blocks ofT ) are uniquely
determined byT . This result lends substance to the following theorem.

For any connected semi-simple Lie groupG takes a maximal compact subgroupK ofG
(it is unique up to conjugation). Let̂K denote, as usual, the set of all irreducible (ordinary)
unitary representation ofK (modulo equivalence). Let us say that a projective representa-
tionπ ofG is normalizedif π |K is an ordinary representation ofK. (If H 2(K,T) is trivial,
then it is easy to see that every projective representation ofG is equivalent to a normalized
representation). Ifπ is normalized, then, for anyχ ∈ K̂, letVχ denote the subspace ofHπ

(the space on whichπ acts) given by

Vχ = {v ∈ Hπ : π(k)v = χ(k)v ∀k ∈ K}.

ClearlyHπ is the orthogonal direct sum of the subspacesVχ, χ ∈ K̂. The subspaceVχ is
called theK-isotypic subspaceof Hπ of typeχ .

In particular, for the groupG = Möb, we may takeK to be the copy{ϕα,0 : α ∈ T} of the
circle groupT. (K may be identified withT via α 7→ ϕα,0.) Forπ as above andn ∈ Z, let
Vn(π)denote theK-isotypic subspace corresponding to the characterχn : z 7→ z−n, z ∈ T.
With these notations, we have the following theorem from [9].

Theorem 4.2.Any irreducible homogeneous operator is a block shift. Indeed, ifT is such
an operator, andπ is a normalized projective representation associated withT then the
blocks ofT are precisely the non-trivialK-isotypic subspaces ofπ .

(Note that ifT is an irreducible homogeneous operator, then by Theorem 4.1 there is a
representationπ associated withT . Since such a representation is determined only up to
equivalence, we may replaceπ by a normalized representation equivalent to it. Then the
above theorem applies.)
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A block shift is called aweighted shiftif its blocks are one-dimensional. In [9] we define
a simple representationof Möb to be a normalized representationπ such that (i) the set
T (π) := {n ∈ Z : Vn(π) 6= {0}} is connected (in an obvious sense) and (ii) for each
n ∈ T (π), Vn(π) is one dimensional. IfT is an irreducible homogeneous weighted shift,
then, by the uniqueness of its blocks and by Theorem 4.2, it follows that any normalized
representationπ associated withT is necessarily simple. Using the list of irreducible
projective representations of M̈ob given in the previous section (along with Remark 3.1(b)
following this list) one can determine all the simple representations of Möb. This is done
in Theorem 3.3 of [9]. Namely, we have

Theorem 4.3.Up to equivalence, the only simple projective unitary representations ofMöb
are its irreducible representations along with the representationsD+

λ ⊕D−
2−λ, 0< λ < 2.

Since the representations associated with irreducible homogeneous shifts are simple, to
complete a classification of these operators, it now suffices to take each of the representa-
tions π of Theorem 4.3 and determine all the homogeneous operatorsT associated with
π . Given that Theorem 4.2 pinpoints the way in which such an operatorT must act on
the space ofπ , it is now a simple matter to complete the classification of these operators
(at least it is simple in principle – finding the optimum path to this goal turns out to be a
challenging task!). To complete a classification of all homogeneous weighted shifts (with
non-zero weights – permitting zero weights would introduce uninteresting complications),
one still needs to find the reducible homogeneous shifts. Notice that the technique outlined
here fails in the reducible case since Theorem 4.1 does not apply. However, in Theorem
2.1 of [9], we were able to show that there is a unique reducible homogeneous shift with
non-zero weights, namely the unweighted bilateral shiftB. Indeed, ifT is a reducible shift
(with non-zero weights) such that the spectral radius ofT is = 1, then it can be shown that
T k = Bk for some positive integerk, and henceT k is unitary. But Lemma 2.1 in [9] shows
that if T is a homogeneous operator such thatT k is unitary, thenT itself must be unitary.
Clearly,B is the only unitary weighted shift. This shows thatB is the only reducible ho-
mogeneous weighted shift with non-zero weights. When all this is put together, we have
the main theorem of [9].

Theorem 4.4. Up to unitary equivalence, the only homogeneous weighted shifts are the
known ones(namely, the first five series of examples from the list in§6).

Yet another link between homogeneous operators and projective representations of Möb
occurs in [10]. Beginning with Theorem 2.3, in [10] we prove a product formula, involv-
ing a pair of projective representations, for the characteristic function of any irreducible
homogeneous contraction. Namely we have

Theorem 4.5.If T is an irreducible homogeneous contraction then its characteristic func-
tion θ : D → B(K,L) is given by

θ(z) = π(ϕz)
∗Cσ(ϕz), z ∈ D

whereπ andσ are two projective representations ofMöb (on the Hilbert spacesL andK
respectively) with a common multiplier. Further,C : K → L is a pure contraction which
intertwinesσ |K andπ |K.
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Conversely, wheneverπ, σ are projective representations ofMöbwith a common multi-
plier andC is a purely contractive intertwiner betweenσ |K andπ |K such that the function
θ defined byθ(z) = π(ϕz)

∗Cσ(ϕz) is analytic onD, thenθ is the characteristic function
of a homogeneous cnu contraction(not necessarily irreducible).

(Here ϕz is the involution in M̈ob which interchanges 0 andz. Also, K = {ϕ ∈
Möb : ϕ(0) = 0} is the standard maximal compact subgroup of Möb.)

Sketch of Proof. Let θ be the characteristic function of an irreducible homogeneous cnu
contractionT . For anyϕ in Möb look at the set

Eϕ := {(U, V ) : U∗θ(w)V = θ(ϕ−1(w)) ∀w ∈ D} ⊆ U(L)× U(K).
By Theorem 2.3,Eϕ is non-empty for eachϕ. By Theorem 3.4 in [25], for(U, V ) ∈ Eϕ
there is a unitary operatorτ(U, V ) such that (i)τ(U, V )∗T τ(U, V ) = ϕ(T ) and (ii) the
restriction ofτ(U, V ) to L andK equalU andV respectively. Therefore, irreducibility of
T implies that, for(U, V ), (U ′, V ′) in Eϕ , τ(U ′, V ′)∗τ(U, V ) is a scalar unitary. Hence
Eϕ is a coset of the subgroupS (isomorphic to the torusT2) of U(L) × U(K) consisting
of pairs of scalar unitaries. As in the proof of Theorem 4.1, it follows that there are
projective unitary representationsπ andσ with a common multiplier (on the spacesL and
K respectively) such that(π(ϕ), σ (ϕ)) ∈ Eϕ for all ϕ in Möb. So we have

π(ϕ)∗θ(w)σ(ϕ) = θ(ϕ−1(w)), w ∈ D, ϕ ∈ Möb. (4.3)

Now, chooseϕ = ϕz and evaluate both sides of (4.3) atw = 0 to find the claimed formula
for θ with C = θ(0). Also, takingw = 0 andϕ ∈ K in (4.3), one sees thatC intertwines
σ |K andπ |K.

For the converse, letθ(z) := π(ϕz)
∗Cσ(ϕz) be an analytic function. SinceC = θ(0)

is a pure contraction andθ(z) coincides withθ(0) for all z, θ is pure contraction valued.
Henceθ is the characteristic function of a cnu contractionT . Forϕ ∈ Möb andw ∈ D,
write ϕwϕ = kϕz wherek ∈ K andz = (ϕwϕ)

−1(0) = ϕ−1(w). Then we have

π(φ)∗θ(w)σ(ϕ) = π(ϕ)∗π(ϕw)∗Cσ(ϕw)σ(ϕ)
= π(ϕwϕ)

∗Cσ(ϕwϕ)
= π(kϕz)

∗Cσ(kϕz)
= π(ϕz)

∗π(k)∗Cσ(k)σ (ϕz)
= π(ϕz)

∗Cσ(ϕz)
= θ(ϕ−1(w)).

(Here, for the second and fourth equality we have used the assumption thatπ and σ
are projective representations with a common multiplier. For the penultimate equality,
the assumption thatC intertwinesσ |K andπ |K has been used.) Thusθ satisfies (4.3).
Thereforeθ ◦ ϕ coincides withθ for all ϕ in Möb. Hence Theorem 2.3 implies thatT is
homogeneous.

5. Some constructions of homogeneous operators

Let us say that a projective representationπ of Möb is amultiplier representationif it is
concretely realized as follows.π acts on a Hilbert spaceH of E – valued functions on
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�, where� is eitherD or T andE is a Hilbert space. The action ofπ on H is given by
(π(ϕ)f )(z) = c(ϕ, z)f (ϕ−1z) for z ∈ �, f ∈ H, ϕ ∈ Möb. Herec is a suitable Borel
function from Möb×� into the Borel group of invertible operators onE.

Theorem 5.1.LetH be a Hilbert space of functions on� such that the operatorT onH
given by

(Tf )(x) = xf (x), x ∈ �, f ∈ H,
is bounded. Suppose there is a multiplier representationπ of Möb onF . ThenT is homo-
geneous andπ is associated withT .

This easy but basic construction is from Proposition 2.3 of [6]. To apply this theorem,
we only need a good supply of what we have called multiplier representations of Möb.
Notice that all the irreducible projective representations of Möb (as concretely presented
in the previous section) are multiplier representations.

A second construction goes as follows. It is contained in Proposition 2.4 of [6].

Theorem 5.2. Let T be a homogeneous operator on a Hilbert spaceH with associated
representationπ . LetK be a subspace ofH which is invariant or co-invariant under both
T andπ . Then the compression ofT to K is homogeneous. Further, the restriction ofπ to
K is associated with this operator.

A third construction (as yet unreported) goes as follows:

Theorem 5.3. Letπ be a projective representation ofMöb associated with two homoge-
neous operatorsT1 andT2 on a Hilbert spaceH. LetT denote the operator onH ⊕ H
given by

T =
(
T1 T1 − T2

0 T2

)
.

ThenT is homogeneous with associated representationπ ⊕ π .

Sketch of proof. Forϕ in Möb, one verifies that

ϕ(T ) =
(
ϕ(T1) ϕ(T1)− ϕ(T2)

0 ϕ(T2)

)
.

Hence it is clear thatπ ⊕ π is associated withT .

6. Examples of homogeneous operators

It would be tragic if we built up a huge theory of homogeneous operators only to find at
the end that there are very few of them. Here are some examples to show that this is not
going to happen.
• The principal series example. The unweighted bilateral shiftB (i.e., the bilateral shift

with weight sequencewn = 1, n = 0,±1, . . .) is homogeneous. To see this, apply
Theorem 5.1 to any of the principal series representations of Möb. By construction, all
the principal series representations are associated withB.
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• The discrete series examples. For any real numberλ > 0, the unilateral shiftM(λ) with

weight sequence
√
n+1
n+λ , n = 0, 1, 2, . . . is homogeneous. To see this, apply Theorem

5.1 to the discrete series representationD+
λ .

Forλ ≥ 1,M(λ) is a cnu contraction. Forλ = 1, its characteristic function is the (constant)
function 0 – not very interesting! But forλ > 1 we proved the following formula for the
characteristic function ofM(λ) (cf. [7]).

Theorem 6.1. For λ > 1, the characteristic function ofM(λ) coincides with the function
θλ given by

θλ(z) = (λ(λ− 1))−1/2D+
λ−1(ϕz)

∗∂∗D+
λ+1(ϕz), z ∈ D,

where∂∗ is the adjoint of the differentiation operator∂ : H(λ−1) → H(λ+1).

This theorem is, of course, an instance of the product formula in Theorem 4.5.

• The anti-holomorphic discrete series examples. These are the adjointsM(λ)∗ of the
operators in the previous family. The associated representation isD−

λ .

It was shown in [22] that

Theorem 6.2.Up to unitary equivalence, the operatorsM(λ)∗, λ > 0 are the only homo-
geneous operators in the Cowen–Douglas classB1(D).

This theorem was independently re-discovered by Wilkins in ([33], Theorem 4.1).

• The complementary series examples. For any two real numbersa andb in the open unit

interval(0, 1), the bilateral shiftKa,b with weight sequence
√
n+a
n+b , n = 0,±1,±2, . . . ,

is homogeneous. To see this in case 0< a < b < 1, apply Theorem 5.1 to the
complementary series representationCλ,σ with λ = a + b − 1 andσ = (b − a)/2. If
a = b thenKa,b = B is homogeneous. If 0< b < a < 1 thenKa,b is the adjoint
inverse of the homogeneous operatorKb,a , and hence is homogeneous.

• The constant characteristic examples. For any real numberλ > 0, the bilateral shiftBλ
with weight sequence. . . ,1, 1, 1, λ,1, 1, 1, . . . , (λ in the zeroth slot, 1 elsewhere) is
homogeneous. Indeed, if 0< λ < 1 thenBλ is a cnu contraction with constant charac-
teristic function−λ; hence it is homogeneous. Of course,B1 = B is also homogeneous.
If λ > 1, Bλ is the inverse of the homogeneous operatorBµ with µ = λ−1, hence it
is homogeneous. (In [6] we presented an unnecessarily convoluted argument to show
thatBλ is homogeneous forλ > 1 as well.) It was shown in [6] that the representation
D+

1 ⊕ D−
1 is associated with each of the operatorsBλ, λ > 0. (Recall that this is the

only reducible representation in the principal series!)

In [6] we show that apart from the unweighted unilateral shift and its adjoint, the operators
Bλ, λ > 0 are the only irreducible contractions with a constant characteristic function.
In fact,

Theorem 6.3. The only cnu contractions with a constant characteristic function are the
direct integrals of the operatorsM(1),M(1)∗ andBλ, λ > 0.
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Since all the constant characteristic examples are associated with a common represen-
tation, one might expect that the construction in Theorem 5.3 could be applied to any
two of them to yield a plethora of new examples of homogeneous operators. Unfortu-
nately, this is not the case. Indeed, it is not difficult to verify that forλ 6= µ, the operator(
Bλ Bλ − Bµ
0 Bµ

)
is unitarily equivalent toBσ ⊕Bδ whereσ andδ are the eigenvalues of

(AA∗)1/2, A =
(
λ λ− µ

0 µ

)
.

Notice that the examples of homogeneous operators given so far are all weighted shifts.
By Theorem 4.4, these are the only homogeneous weighted shifts with non-zero weights.
Wilkins was the first to come up with examples of (irreducible) homogeneous operators
which are not scalar shifts.

• The generalized Wilkins examples. Recall that for any real numberλ > 0, H(λ) denotes
the Hilbert space of analytic functions onD with reproducing kernel(z, w) 7→ (1 −
zw̄)−λ. (It is the Hilbert space on which the holomorphic discrete series representation
D+
λ lives.) For any two real numbersλ1 > 0, λ2 > 0, and any positive integerk,

view the tensor productH(λ1) ⊗ H(λ2) as a space of analytic functions on the bidisc
D × D. Look at the Hilbert spaceV (λ1, λ2)

k ⊆ H(λ1) ⊗ H(λ2) defined as the ortho-
complement of the subspace consisting of the functions vanishing to orderk on the
diagonal1 = {(z, z) : z ∈ D} ⊆ D×D. Finally define the generalized Wilkins operator
W
(λ1, λ2)
k as the compression toV (λ1, λ2)

k of the operatorM(λ1)⊗I onH(λ1)⊗H(λ2). The

subspaceV (λ1, λ2)
k is co-invariant under the homogeneous operatorM(λ1) ⊗ I as well as

under the associated representationD+
λ1

⊗D+
λ2

. Therefore, by Theorem 5.2,W(λ1, λ2)
k is

a homogeneous operator. Fork = 1,W(λ1, λ2)
1 is easily seen to be unitarily equivalent to

M(λ1+λ2), see [7] and [14], for instance. But fork ≥ 2, these are new examples.

The operatorW(λ1, λ2)
k may alternatively be described as multiplication by the co-ordinate

functionz on the space ofCk-valued analytic functions onD with reproducing kernel

(z, w) 7→ (1 − zw̄)−λ1
((
∂i ∂̄j (1 − zw̄)−λ2

))
0≤i,j≤k−1

.

(Here∂ and∂̄ denote differentiation with respect toz andw̄, respectively.) Indeed (with
the obvious identification of1 andD) the mapf 7→ (f, f ′, . . . , f (k−1))|1 is easily seen
to be a unitary betweenV (λ1, λ2)

k and this reproducing kernel Hilbert space intertwining

W
(λ1, λ2)
k and the multiplication operator on the latter space. (This is a particular instance

of thejet constructiondiscussed in [15].) Using this description, it is not hard to verify that
the adjoint ofW(λ1, λ2)

k is an operator in the Cowen–Douglas classBk(D). The following
is (essentially) one of the main results in [34].

Theorem 6.4.Up to unitary equivalence, the only irreducible homogeneous operators in
the Cowen–Douglas classB2(D)are the adjoints of the operatorsW(λ1, λ2)

2 ,λ1 > 0, λ2 > 0.

This is not the description of these operators given in [34]. But it can be shown that
Wilkin’s operatorT ∗

λ,% is unitarily equivalent to the operatorW(λ1, λ2)
2 with λ = λ1+λ2+1,

% = (λ1 + λ2 + 1)/(λ2 + 1). Indeed, though his reproducing kernelHλ,% looks a little
different from the kernel (withk = 2) displayed above, a calculation shows that these
two kernels have the same normalization at the origin (cf. [12]), so that the corresponding
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multiplication operators are unitarily equivalent. However, it is hard to see how Wilkins
arrived at his examplesT ∗

λ,% while the construction of the operatorsW(λ1, λ2)
k given above

has a clear geometric meaning, particularly in view of Theorem 5.2. But, as of now, we
know that the casek = 2 of this construction provides a complete list of the irreducible
homogeneous operators inB2(D) only by comparing them with Wilkins’ list – we have no
independent explanation of this phenomenon.

Theorem 6.1 has the following generalization to some of the operators in this series.
(Theorem 6.1 is the special casek = 1 of this theorem.)

Theorem 6.5. For k = 1, 2, . . . and real numbersλ > k, the characteristic func-
tion of the operatorW(1, λ−k)

k coincides with the inner analytic functionθ(λ)k : D →
B(H(λ+k),H(λ−k)) given by

θ
(λ)
k (z) = cλ,kD

+
λ−k(ϕz)

∗∂k∗D+
λ+k(ϕz), z ∈ D.

Here∂k∗ is the adjoint of thek-times differentiation operator∂k : H(λ−k) → Hλ+k) and
cλ,k = ∏k

`=−(k−1)(λ− `)−1/2.

Sketch of Proof. It is easy to check thatC := cλ,k∂
k∗ is a pure contraction intertwining the

restrictions toK of D+
λ+k andD+

λ−k. Since we already know (by Theorem 6.1) thatθλk is
an inner analytic function fork = 1, the recurrence formula

θ
(λ)
k+1 = θ

(λ−k)
1 θ

(λ)
k−1θ

(λ+k)
1

(for k ≥ 1, λ > k + 1, with the interpretation thatθ(λ)0 denotes the constant function 1)

shows thatθ(λ)k is an inner analytic function onD for λ > k, k = 1, 2, . . .. Hence it is
the characteristic function of a cnu contractionT in the classC.0. By Theorem 2.1,T
is the compression toM⊥ of the multiplication operator onH(1) ⊗ H(λ−k), whereM is
the invariant subspace corresponding to this inner function. But one can verify thatM is
the subspace consisting of the functions vanishing to orderk on the diagonal. Therefore
T = W

(1, λ−k)
k .

• Some perturbations of the discrete series examples. Let H be a Hilbert space with
orthonormal basis{fk : k = 0, 1, . . .} ∪ {hk,` : k = 0,±1,±2, . . .}. For any three
strictly positive real numbersλ, µ andδ, letM(λ)[µ, δ] be the operator onH given by

M(λ)[µ, δ]fk =
√

k + 1

k + λ+ 1
fk+1 +

√
δ

k + λ+ 1
h1,k+1,

M(λ)[µ, δ]h0,` = µh1,`,

and

M(λ)[µ, δ]hk,` = hk+1,`, for k ≥ 1.

An application of Theorem 2.2 to the operatorsM(λ) in conjunction with an analytic
continuation argument shows that these operators are homogeneous. This was observed
in [7].
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• The normal atom.Define the operatorN onL2(D) by (Nf )(z) = zf (z), z ∈ D, f ∈
L2(D). The discrete series representationD+

2 naturally lifts to a representation of M̈ob
onL2(D). Applying Theorem 5.1 to this representation yields the homogeneity ofN .

Using spectral theory, it is easy to see that the operatorsB andN are the only homogeneous
normal operators of multiplicity one. In consequence, we have

Theorem 6.6. Every normal homogeneous operator is a direct sum of(countably many)
copies ofB andN .

Let us define anatomic homogeneous operatorto be a homogeneous operator which
can not be written as the direct sum of two homogeneous operators. Trivially, irreducible
homogeneous operators are atomic. As an immediate consequence of Theorem 6.6, we
have

COROLLARY 6.1

B andN are atomic(but reducible) homogeneous operators.

N is a cnu contraction. Its characteristic function was given in [7].

Theorem 6.7.The characteristic functionθN : D → B(L2(D)) of the operatorN is given
by the formula

(θN(z)f )(w) = −ϕw(z)f (w), z, w ∈ D, f ∈ L2(D).

(Here, as before,ϕw is the involution in M̈ob which interchanges 0 andw.)
The usual transition formula between cartesian and polar coordinates shows thatL2(D) =

L2(T)⊗L2([0, 1], rdr). SinceB may be represented as multiplication by the coordinate
function onL2(T), it follows that the normal atomN is related to the other normal atom
B byN = B⊗C whereC is multiplication by the coordinate function onL2([0, 1], rdr).
Clearly C is a positive contraction. Let{fn : n ≥ 0} be the orthonormal basis of
L2([0, 1], rdr) obtained by Gram–Schmidt orthogonalization of the sequence{r 7→
rn : n ≥ 0}. (Except for scaling,fn is given in terms of classical Jacobi polynomi-
als byx 7→ P

(0,1)
n (2x − 1), cf. [31].) Then the theory of orthogonal polynomials shows

that (with respect to this orthonormal basis)C is a tri-diagonal operator. Thus we have

Theorem 6.8. Up to unitary equivalence, we haveN = B ⊗ C where the positive con-
tractionC is given on a Hilbert space with orthonormal basis{fn : n ≥ 0} by the formula

Cfn = anfn−1 + bnfn + an+1fn+1, n = 0, 1, 2, . . .

where(f−1 = 0) and the constantsan, bn are given by

an =
√
n(n+ 1)

4n+ 2
, bn = 2(n+ 1)2

(2n+ 1)(2n+ 3)
, n ≥ 0.
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7. Open questions

7.1 Classification

The primary question in this area is, of course, the classification of homogeneous operators
up to unitary equivalence. Theorem 4.4 is a beginning in this direction. We expect that the
same methodology will permit us to classify all the homogeneous operators in the Cowen–
Douglas classesBk(D), k = 1, 2, . . .. Work on this project has already begun. More
generally, though there seem to be considerable difficulties involved, it is conceivable that
extension of the same techniques will eventually classify all irreducible homogeneous op-
erators. But, depending as it does on Theorem 4.1, this technique draws a blank when it
comes to classifying reducible homogeneous operators. In particular, we do not know how
to approach the following questions.

Question1. Is every homogeneous operator a direct integral of atomic homogeneous
operators?

Question2. AreB andN the only atomic homogeneous operators which are not irreducible?

We have seen that the homogeneous operatorN can be written asN = B ⊗ C. In this
connection, we can ask:

Question3. Find all homogeneous operators of the formB ⊗ X. More generally, find all
homogeneous operators which have a homogeneous operator as a ‘tensor factor’.

Another possible approach towards the classification of irreducible homogeneous con-
tractions could be via Theorem 4.5. (Notice that any irreducible operator is automatically
cnu.) Namely, given any two projective representationsπ andσ of Möb having a common
multiplier, we can seek to determine the classC(π, σ ) of all operatorsC : Hσ → Hπ such
that (i)C intertwinesσ |K andπ |K and (ii) the functionz 7→ π(ϕz)

∗Cσ(ϕz) is analytic
on D. ClearlyC(π, σ ) is a subspace ofB(Hσ ,Hπ ), and Theorem 4.5 says that any pure
contraction in this subspace yields a homogeneous operator. Further, this method yields
all irreducible homogeneous contractions as one runs over allπ andσ . This approach
is almost totally unexplored. We have only observed that, up to multiplication by scalars,
the homogeneous characteristic functions listed in Theorem 6.5 are the only ones in which
bothπ andσ are holomorphic discrete series representations. (But the trivial operation of
multiplying the characteristic function by scalars correspond to a highly non-trivial opera-
tion at the level of the operator. This operation was explored in [7].) So a natural question
is:

Question4. DetermineC(π, σ ) at least for irreducible projective representationsπ andσ
(with a common multiplier).

Note that Theorem 6.5 gives the product formula for the characteristic function of
W
(λ1,λ2)
k for λ1 = 1. But forW(λ1,λ2)

k to be a contraction it is sufficient (though not
necessary) to haveλ1 ≥ 1. So on a more modest vein, we may ask:
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Question5. What is the(explicit) product formula for the characteristic functions of the
operatorsW(λ1, λ2)

k for λ1 > 1?

Recall that a cnu contractionT is said to be in the classC11 if for every nonzero vector
x, limn→∞ T nx 6= 0 and limn→∞ T ∗nx 6= 0. In [19], Kerchy asks:

Question6. Does every homogeneous contraction in the classC11 have a constant charac-
teristic function?

7.2 Möbius bounded and polynomially bounded operators

Recall from [30] that a Hilbert space operatorT is said to beMöbius boundedif the family
{ϕ(T ) : ϕ ∈ Möb} is uniformly bounded in norm. Clearly homogeneous operators are
Möbius bounded, but the converse is false. In [30], Shields proved:

Theorem 7.1.If T is a Möbius bounded operator then‖T m‖ = O(m) asm → ∞.

Sketch of proof. Say‖ϕ(T )‖ ≤ c for ϕ ∈ Möb. For anyϕ ∈ Möb, we have an expansion
ϕ(z) = ∑∞

m=0 amz
m, valid in the closed unit disc. Hence,

amT
m =

∫
T
ϕ(αT )α−m dα,

where the integral is with respect to the normalized Haar measure onT. Therefore we
get the estimate|am|‖T m‖ ≤ c for all m. Choosingϕ = ϕ1,β , we see that form ≥ 1,
|am| = (1 − r2)rm−1 wherer = |β|. The optimal choicer = √

(m− 1)/(m+ 1) gives
|am| = O(1/m) and hence‖T m‖ = O(m).

On the basis of this Theorem and some examples, we may pose:

Conjecture. For any M̈obius bounded operatorT , we have‖T m‖ = O(m1/2) asm → ∞.

In [30], Shields already asked if this is true. This question has remained unanswered
for more than twenty years. One possible reason for its intractability may be the dif-
ficulty involved in finding non-trivial examples of M̈obius bounded operators. (Con-
tractions are M̈obius bounded by von Neumann’s inequality, but these trivially satisfy
Shield’s conjecture.) As already mentioned, non-contractive homogeneous operators pro-
vide non-trivial examples. For the homogeneous operatorT = M(λ) with λ < 1, we

have‖T m‖ =
√
0(λ)0(m+1)
0(m+λ) and hence (by Sterling’s formula)‖T m‖ ∼ cm(1−λ)/2 with

c = 0(λ)1/2. Thus the above conjecture, if true, is close to best possible (in the sense that
the exponent 1/2 in this conjecture cannot be replaced by a smaller constant). An analogous
calculation with the complementary series examplesC(a, b) (with 0 < a 6= b < 1) leads
to a similar conclusion. This leads us to ask:

Question7. Is the conjecture made above true at least for homogeneous operatorsT ?

(It is conceivable that the operatorsTλ,s introduced below contain counter examples to
Shield’s conjecture in its full generality.)
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Recall that an operatorT , whose spectrum is contained inD̄, is said to bepolynomially
boundedif there is a constantc > 0 such that‖p(T )‖ ≤ c for all polynomial maps
p : D → D. (von Neumann’s inequality says that this holds withc = 1 iff T is a
contraction.) Clearly, ifT is similar to a contraction thenT is polynomially bounded.
Halmos asked if the converse is true, i.e., whether every polynomially bounded operator is
similar to a contraction. In [28], Pisier constructed a counter-example to this conjecture.
(Also see [13] for a streamlined version of this counter-example.) However, one may
still hope that the Halmos conjecture is still true of some ‘nice’ classes of operators. In
particular, we ask

Question8. Is every polynomially bounded homogeneous operator similar to a contraction?
For that matter, is there any polynomially bounded (even power bounded) homogeneous op-
erator which is not a contraction?

Notice that the discrete series examples show that homogeneous operators (though
Möbius bounded) need not even be power bounded. So certainly they need not be polyno-
mially bounded.

7.3 Invariant subspaces

If T is a homogeneous operator with associated representationπ , then for each invariant
subspaceM of T and eachϕ ∈ Möb, π(ϕ)(M) is againT -invariant. Thus M̈ob acts
on the lattice ofT -invariant subspaces viaπ . We wonder if this fact can be exploited to
explore the structure of this lattice. Further, ifT is a cnu contraction, then the Sz-Nagy–
Foias theory gives a natural correspondence between the invariant subspaces ofT and the
‘regular factorizations’ of its characteristic function (cf. [25]). Since we have nice explicit
formulae for the characteristic functions of the homogeneous contractionsM(λ), λ > 1,
may be these formulae can be exploited to shed light on the structure of the corresponding
lattices.

Recall that Beurling’s theorem describes the lattice of invariant subspaces ofM(1) in
terms of inner functions. Recently, it was found ([18] and [1]) that certain partial analogues
of this theorem are valid for the Bergman shiftM(2) as well. We may ask:

Question9. Do the theorems of Hedenmalm and Alemanet al generalize to the family
M(λ), λ ≥ 1 of homogeneous unilateral shifts?

7.4 Generalizations of homogeneity

In the definition of homogeneous operators, one may replace unitary equivalence by simi-
larity. Formally, we define aweakly homogeneous operatorto be an operatorT such that
(i) the spectrum ofT is contained inD̄ and (ii)ϕ(T ) is similar toT for everyϕ in Möb. Of
course, every operator which is similar to a homogeneous operator is weakly homogeneous.
In [11] it was asked if the converse is true. It is not – as one can see from the following
examples:

Example1. TakeH = L2(T) and, for any real number in the range−1 < λ ≤ 1 and any
complex numbers with Im(s) > 0, definePλ,s : Möb → B(H) by
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Pλ,s(ϕ
−1)f = ϕ′λ/2|ϕ′|(1−λ)/2+sf ◦ ϕ, f ∈ H.

For purely imaginarys, these are just the principal series unitary projective representa-
tions discussed earlier. Fors outside the imaginary axis,Pλ,s is not unitary valued. But,
formally, it still satisfies the condition (3.1) withm = mω, ω = eiπλ. In consequence,
Pλ,s is an invertible operator valued function on Möb.

Forλ ands as above, letTλ,s denote the bilateral shift onL2(T) with weight sequence

n+ (1 + λ)/2 + s

n+ (1 + λ)/2 − s
, n ∈ Z.

When s is purely imaginary, these weights are unimodular and henceTλ,s is unitarily
equivalent to the unweighted bilateral shiftB. In [9] it is shown that, in this case the
principal series representationPλ,s is associated withTλ,s as well as toB. That is, we have

ϕ(Tλ,s) = Pλ,s(ϕ)
−1Tλ,sPλ,s(ϕ) (7.1)

for purely imaginarys. By analytic continuation, it follows that eq. (7.1) holds for all
complex numberss. ThusTλ,s is weakly homogeneous for Im(s) > 0. It is easy to see
that‖T mλ,s‖ ≥ ‖T mλ,sf0‖ ≥ |0(m+a)0(b)|

|0(m+b)0(a)| wherea = (1 + λ)/2 + s, b = (1 + λ)/2 − s and
f0 is the constant function 1. Hence by Sterling’s formula, we get

‖T mλ,s‖ ≥ cm2Re(s)

for all largem (and some constantc > 0). If Tλ,s were similar to a homogeneous operator,
it would be Möbius bounded and hence by Theorem 7.1 we would get‖T mλ,s‖ = O(m)

which contradicts the above estimate when Re(s) > 1/2. Therefore we have

Theorem 7.2.The operatorsTλ,s is weakly homogeneous for allλ, s as above. However,
for Re(s) > 1/2, this operator is not M¨obius bounded and hence is not similar to any
homogeneous operator.

Example2 (due to Ordower). For any homogeneous operatorT , say on the Hilbert space

H, let T̃ denote the operator

(
T I

0 T

)
. For anyϕ in a sufficiently small neighbourhood

of the identity,ϕ(T̃ ) makes sense and one verifies thatϕ(T̃ ) =
(
ϕ(T ) ϕ′(T )

0 ϕ(T )

)
. If U is

a unitary onH such thatϕ(T ) = U∗T U then an easy computation shows that the operator
L = Uϕ′(T )1/2 ⊕Uϕ′(T )−1/2 satisfiesLT̃ L−1 = ϕ(T ). Thusϕ(T̃ ) is similar toT̃ for all
ϕ in a small neighbourhood. Therefore an obvious extension of Theorem 1.1 shows that
T̃ is weakly homogeneous. Since‖ϕ(T̃ )‖ ≥ ‖ϕ′(T )‖ and since the familyϕ′, ϕ ∈ Möb
is not uniformly bounded on the spectrum ofT , it follows thatT̃ is not Möbius bounded.
Therefore we have

Theorem 7.3. For any homogeneous operatorT , the operatorT̃ is weakly homoge-
neous but not M¨obius bounded. Therefore this operator is not similar to any homoge-
neous operator.

These two classes of examples indicate that the right question to ask is



Homogeneous operators and projective representations 435

Question10. Is it true that every M̈obius bounded weakly homogeneous operator is similar
to a homogeneous operator?

For purely imaginarys, the homogeneous operatorsTλ,s andB share the common as-
sociated representationPλ,s ; hence one may apply the construction in Theorem 5.3 to this
pair. We now ask

Question11. Is the resulting homogeneous operator atomic? Is it irreducible? More
generally, are there instances where Theorem 5.3 lead to atomic homogeneous operators?

Another direction of generalization is to replace the group Möb by some subgroupG.
For any suchG, one might say that an operatorT isG-homogeneous ifϕ(T ) is unitarily
equivalent toT for all ‘sufficiently small’ ϕ in G. (If G is connected, the analogue of
Theorem 1.1 holds.) The caseG = K has been studied under the name of ‘circularly sym-
metric operators’. See, for instance, [17] and [3]. Notice that ifS is a circularly symmetric
operator then so isS ⊗ T for any operatorT – showing that this is a rather weak notion
and no satisfactory classification can be expected when the groupG is so small. A more
interesting possibility is to takeG to be a Fuchsian group. (Recall that a closed subgroup
of Möb is said to be Fuchsian if it acts discontinuously onD.) Fuchsian homogeneity was
briefly studied by Wilkins in [33]. He examines the nature of the representations (if any)
associated with such an operator.

Another interesting generalization is to introduce a notion of homogeneity for commuting
tuples of operators. Recall that a bounded domain� in Cd is said to be abounded symmetric
domain if, for eachω ∈ �, there is a bi-holomorphic involution of� which hasω as
an isolated fixed point. Such a domain is called irreducible if it cannot be written as the
cartesian product of two bounded symmetric domains. The irreducible bounded symmetric
domains are completely classified modulo biholomorphic equivalence (see [2] or [16] for
instance) – they include the unit ballIm,n in the Banach space of allm × n matrices
(with operator norm). LetG� denote the connected component of the identity in the
group of all bi-holomorphic automorphisms of an irreducible bounded symmetric domain
�. If T = (T1, . . . , Td) is a commutingd-tuple of operators then one may say thatT is
homogeneous if, for all ‘sufficiently small’ϕ ∈ G�, ϕ(T) is (jointly) unitarily equivalent
to T. (Of course, this notion depends on the choice of� – for most values ofd there are
several choices – so, to be precise, one ought to speak of�-homogeneity). Theorem 1.1
generalizes to show that, in this setting, the Taylor spectrum ofT is contained in�̄ (and is a
G�-invariant closed subset thereof). Also, ifT is an irreducible homogeneous tuple (in the
sense that its components have no common non-trivial reducing subspace), then Theorem
4.1 generalizes to yield a projective representation ofG� associated with it. Therefore,
many of the techniques employed in the single variable case have their several variable
counterparts. But these are yet to be systematically investigated. One difficulty is that for
d ≥ 2, the (projective) representation theory ofG� (which is a semi-simple Lie group)
is not as well understood as in the case� = D. But this also has the potential advantage
that when (and if) this theory of homogeneous operator tuples is investigated in depth, the
operator theory is likely to have significant impact on the representation theory.

With each domain� as above is associated a kernelB� (called the Bergman kernel)
which is the reproducing kernel of the Hilbert space of all square integrable (with respect
to Lebesgue measure) analytic functions on�. The Wallach setW = W� of � is the set
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of all λ > 0 such thatBλ/g� is (a non-negative definite kernel and hence) the reproducing
kernel of a Hilbert spaceH(λ)(�). (Hereg is an invariant of the domain� called its genus,
cf. [2].) It is well-known that the Wallach setW can be written as a disjoint unionWd ∪Wc

where the ‘discrete’ partWd is a finite set (consisting ofr points, where the ‘rank’r of �
is the number of orbits into which the topological boundary of� is broken by the action
of G�) and the ‘continuous’ partWc is a semi-infinite interval.

The constant functions are always inH(λ)(�) but, forλ ∈ Wd , H(λ)(�) does not contain
all the analytic polynomial functions on�. It follows that forλ ∈ Wd multiplication by
the co-ordinate functions do not define bounded operators onH(λ)(�). However, it was
conjectured in [4] that forλ ∈ Wc, thed-tupleM (λ) of multiplication by thed co-ordinates
is bounded. (In [5], this conjecture was proved in the cases� = Im,n. In general, it is
known that for sufficiently largeλ the norm onH(λ)(�) is defined by a finite measure
on �̄, so that this tuple is certainly bounded in these cases.) Assuming this conjecture,
the operator tuplesM (λ), λ ∈ Wc, constitute examples of homogeneous tuples – this is in
consequence of the obvious extension of Theorem 5.1 to tuples. In [4] it was shown that
the Taylor spectrum of this tuple is̄� and

Theorem 7.4.Up to unitary equivalence, the adjoints of the tuplesM (λ), λ ∈ Wc, are the
only homogeneous tuples in the Cowen–Douglas classB1(�).

For what values ofλ ∈ Wc is the tupleM (λ) sub-normal? This is equivalent to asking for
the values ofλ for which the norm onH(λ)(�) is defined by a measure. In [4] we conjecture
a precise answer. Again, the special case� = Im,n of this conjecture was proved in [5].

Regarding homogeneous tuples, an obvious meta-question to be asked is

Question12. Formulate appropriate generalizations to tuples of all the questions we asked
before of single homogeneous operators – and answer them!

A d-tupleT on the Hilbert spaceH is said to becompletely contractive with respect to
� if for every polynomial mapP : � → Im,n, P(T) is contractive when viewed as an
operator fromH ⊗ Cn to H ⊗ Cm. T is calledcontractive with respect to� if this holds
in the casem = n = 1. In general one may ask whether contractivity implies complete
contractivity. In general the answer is ‘no’ for alld ≥ 5 [27]. However one has a positive
answer in the case� = D. But an affirmative answer (for special classes of tuples) would
be interesting because complete contractivity is tantamount to existence of nice dilations
which make the tuple in question tractable. For instance, we have an affirmative answer
for subnormal tuples. We ask

Question13. Is every contractive homogeneous tuple completely contractive?
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