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1. Preliminaries

This paper is a survey of the known results on homogeneous operators. A small proportion
of these results are as yet available only in preprint form. A miniscule proportion may even
be new. The paper ends with a list of thirteen open problems suggesting possible directions
for future work in this area. This list is not purported to be exhaustive, of course!

All Hilbert spaces in this paper are separable Hilbert spaces over the field of complex
numbers. All operators are bounded linear operators between Hilbert spatgsC dire
two Hilbert spacesi3(H, ) will denote the Banach space of all operators franto /C,
equipped with the usual operator norm. Hf = K, this will be abridged td3(H). The
group of all unitary operators iB(#) will be denoted by/ (). When equipped with any
of the usual operator topolodgy(H) becomes a topological group. All these topologies
induce the same Borel structure &i(H). We shall viewl/ (H) as a Borel group with this
structure.

Z, R andC will denote the integers, the real numbers and the complex numbers, respec-
tively. D andT will denote the open unit disc and the unit circlelinrespectively, and
will denote the closure db in C. Mdb will denote the Mbbius group of all biholomorphic
automorphisms db. Recall that Mb= {¢, s : @ € T, B € D}, where

z—p
P p(2) Ly i eD. (1.1)
Forg € D, g = ¢_1 g is the unique involution (element of order 2) indld which
interchanges 0 anél. Mdb is topologized via the obvious identification withx D. With
this topology, Mbb becomes a topological group. Abstractly, itisisomorphié $d. (2, R)
andtoPSU(1,1).

The following definition from [6] has its origin in the papers [21] and [22] by the second
named author.
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DEFINITION 1.1

An operatorT is calledhomogeneou$f ¢(T) is unitarily equivalent td” for all ¢ in Mob
which are analytic on the spectrum Bf

It was shown in Lemma 2.2 of [6] that

Theorem 1.1.The spectrum of any homogeneous operatis eitherT or D. Hencep(T)
actually makes sengand is unitarily equivalent t@") for all elementsy of Mob.

Let x denote the involution (i.e. automorphism of order two) dftvdefined by
9*(2) = 9(2), z€D, ¢ € Mob. (1.2)

Thus<p;§ﬁ = @5 g for (o, B) € T x D. Itis known that essentially (i.e. up to multiplication
by arbitrary inner automorphisms}, is the only outer automorphism of &b. It also
satisfiesp*(z) = ¢(z~1) "1 for z € T. It follows that for any operatof whose spectrum
is contained i, we have

o(T*) = o*(T)*, o(T™Y) = ¢*(1)7 4, (1.3)

the latter in casé is invertible, of course. It follows immediately from (1.3) that the adjoint
T* — as well as the inversé—! in caseT is invertible — of a homogeneous operaldis
again homogeneous.
Clearly a direct sum (more generally, direct integral) of homogeneous operators is again
homogeneous.

2. Characteristic functions

Recall that an operatdf is called acontractionif || T|| < 1, and it is calleccompletely
non-unitary(cnu) if 7 has no non-trivial invariant subspagd such that the restriction of

T to M is unitary . T is called apure contractionif ||Tx| < ||x|| for all non-zero vectors

x. To any cnu contractiofi on a Hilbert space, Sz-Nagy and Foias associate in [25] a pure
contraction valued analytic functighr on D, called thecharacteristic functionof T.

Reading through [25] one may get the impression that the characteristic function is only
contraction valued and its value at O is a pure contraction. Howewgisifi contraction
valued analytic function o and the value of at some point is pure, its value at all points
must be pure contractions. This is immediate on applying the strong maximum modulus
principle to the functiory — 6(z)x, wherex is an arbitrary but fixed non-zero vector.

Two pure contraction valued analytic functiofis: D — B(K;, £;),i = 1, 2 are said
to coincideif there exist two unitary operatorg : K1 — Ko, 72 : £1 — L2 such that
02(z)t1 = 1201(2) for all z € D. The theory of Sz-Nagy and Foias shows that (i) two cnu
contractions are unitarily equivalent if and only if their characteristic functions coincide,
(i) any pure contraction valued analytic function is the characteristic function of some cnu
contraction. In general, the model for the operator associated with a given fuidgon
difficult to describe. However, # is an inner function (i.e9 is isometry-valued on the
boundary ofD), the description of the Sz-Nagy and Foias model simplifies as follows:

Theorem 2.1.Let6 : D — B(K, £) be a pure contraction valued inner analytic function.
Let M denote the invariant subspace BP(D) ® £ corresponding ta@ in the sense of
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Beurling’s theorem. ThatisM = {z — 0(z) f(z) : f € H%(D) ® K}. Thend coincides
with the characteristic function of the compression of multiplication Iy the subspace
ML,

From the general theory of Sz-Nagy and Foias outlined above, it follows tiiasif cnu
contraction with characteristic functierthen, lettingl'[ 1] denote the cnu contraction with
characteristic functiop6 for 0 < u < 1, we find thaf7[u] : 0 < u < 1} is a continuum
of mutually unitarily inequivalent cnu contractions (provided not the identically zero
function, of course). In general, it is difficult to describe these operators explicitly in terms
of T alone. But, in [7], we succeeded in obtaining such a description inccesan inner
function (equivalently, whefT is in the clas< g, i.e., T*"x — 0 asn — oo for every
vectorx) — so thatT' has the description in terms @fgiven in Theorem 2.1. Namely, for
a suitable Hilbert spacé, T may be identified with the compressionmfto M=, where
M : H} = H*(D)® L — H? is multiplication by the co-ordinate function ard is the
invariant subspace fae correspondingto the inner functiénLetM = (Mll 0 ) be
M2 M2
the block matrix representation &f corresponding to the decompositilanf = MtoM.
(Thus, in particular] = M1 andM>; is the restriction o/ to M.) Finally, letKC denote
the co-kernel oMo, N : H,% — H,% be multiplication by the co-ordinate function and let
E: H,% — M be defined by f = f(0) € K. In terms of these notations, we have

Theorem 2.2. Let T be a cnu contraction in the clag$g with characteristic functior.
Letu be a scalarinthe rangd < 1 < 1and puts = /1 — u2. Then, with respect to the
decompositiooM* & M @ H2 of its domain, the operatdf[u] : H3 ® H2® H2 — H?
has the block matrix representation

Mqq 0 0
T[u] = | M1 Mz pE
0 0 N*

In Theorem 2.9 of [6], it was noted that

Theorem 2.3.A pure contraction valued analytic functiéronD is the characteristic func-
tion of a homogeneous cnu contraction if and only if ¢ coincides withy for everyg in
Mob.

From this theorem, it is immediate that wheneffers a homogeneous cnu contraction,
so are the operatofB[ ] given by Theorem 2.2. Some interesting examples of this phe-
nomenon were worked out in [7]. See 86 for these examples.

As an interesting particular case of Theorem 2.3, one finds that any cnu contraction
with a constant characteristic function is necessarily homogeneous. These operators are
discussed in [11] and [6]. Generalizing a result in [6], Kerchy shows in [19] that

Theorem 2.4. Let# be the characteristic function of a homogeneous cnu contraction. If
6(0) is a compact operator the/ must be a constant function.

(Actually Kerchy proves the same theorem with the weaker hypothesis that all the points
in the spectrum of (0) are isolated from below.)
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Sketch of ProofLetd : D — B(K, £) be the characteristic function of a homogeneous
operator. Assumé€ = 6(0) is compact. Replacing by a coincident analytic function if
neceesary, we may assume without loss of generalitythatC andC > 0. By Theorem

2.3 there exists unitarids;, V, such thab(z) = U,CV,,z € D. Leti1 > A2 > --- be

the non-zero eigenvalues of the compact positive opetatdkt this point Kerchy shows

that (as a consequence of the maximum modulus principle for Hilbert space valued analytic
functions) the eigenspadé; corresponding to the eigenvalig is a common reducing
subspace fot/,, V., z € D (as well as foiC of course) and hence férz), z € D. So we

can writef (z) = 01(z) @ 62(z) wherefq is an analytic function intd(X1). Sincef; is a
unitary valued analytic function, it must be a constant. Repeating the same argument with
62, one concludes by induction arthat the eigenspadé€, corresponding to the eigenvalue

An IS reducing foM(z), z € D, and the projection of to each/C, is a constant function.
Since the same is obviously true of the zero eigenvalue, we are done.

3. Representations and multipliers

LetG be alocally compact second countable topological group. Thenameasurable function
7w . G — U(H) is called aprojective representationf G on the Hilbert space( if there
is a function (necessarily Borel) : G x G — T such that

7(1) =1, m(g182) = m(g1, §2)m(g1)7(g2) (3.1)

for all g1, g2 in G. (More precisely, such a functionis called a projective unitary repre-
sentation ofG; however, we shall often drop the adjective unitary since all representations
considered in this paper are unitary.) The projective representatisncalled an ordi-
nary representation (and we drop the adjective ‘projective?) ik the constant function

1. The functiormn associated with the projective representatiomia (3.1) is called the
multiplierof 7. The ordinary representation of G which sends every element 6f to

the identity operator on a one dimensional Hilbert space is called the identity (or trivial)
representation af. Itis surprising that although projective representations have been with
us for a long time (particularly in the Physics literature), no suitable notion of equivalence
of projective representations seems to be available. In [7], we offered the following:

DEFINITION 3.1

Two projective representations, w2 of G onthe Hilbert spaceX 1, Ho (respectively) will
be called equivalent if there exists a unitary operéfor 1 — H> and a function (nec-
essarily Borel)f : G — T such thatra(p)U = f(@)Um1(p) forall ¢ € G.

We shall identify two projective representations if they are equivalent. This has the some
what unfortunate consequence that any two one dimensional projective representations are
identified. But this is of no importance if the gro@phas no ordinary one dimensional
representation other than identity representation (as is the case for all semi-simple Lie
groupsG.) Infact, the above notion of equivalence (and the resulting identifications) saves
us from the following disastrous consequence of the above (commonly accepted) notion
of projective representations: Any Borel function fraghinto T is a (one dimensional)
projective representation of the group!!
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3.1 Multipliers and cohomology

Notice that the requirement (3.1) on a projective representation implies that its associated
multiplier m satisfies

m(p, ) =1=m(1, @), m(e1, p2)m(p192, ¢3) = m(@1, p203)m (@2, ¢3) (3.2)

for all elementsp, ¢1, 2, p3 of G. Any Borel functionm : G x G — T satisfying (3.2)
is called amultiplier of G. The set of all multipliers oz form an abelian group/ (G),
called the multiplier group ofs. If m € M(G), then taking{ = L?(G) (with respect to
Haar measure oG), definer : G — U(H) by

(7@ f) ) = m(w. o) f o) (33)

forg, ¥ inG, fin L?(G). Thenone readily verifies thatis a projective representationGf
with associated multiplier.. Thus each element éf (G) actually occurs as the multiplier
associated with a projective representation. A multipiere M (G) is calledexactif
there is a Borel functiorf : G — T such thatm(¢1, ¢2) = (f(¢1) f (¢2))/f (@192) for
o1, p2 In G. Equivalently,m is exact if any projective representation with multiplier
is equivalent to an ordinary representation. TheMgtG) of all exact multipliers on
G form a subgroup o (G). Two multipliersm1, mo are said to be equivalent if they
belong to the same coset&fy(G). In other wordsyzy andmo are equivalent if there exist
equivalent projective representations w2 whose multipliers arei1 andmo respectively.
The quotientM (G)/Mo(G) is denoted by 2(G, T) and is called the second cohomology
group of G with respect to the trivial action off on T (see [24] for the relevant group
cohomology theory). Fan € M(G), [m] € H?(G, T) will denote the cohomology class
containingm, i.e., [ ]: M(G) — H?(G, T) is the canonical homomorphism.

The following theorem from [8] (also see [9]) provides an explicit descriptiddaiG, T)
for any connected semi-simple Lie groGp

Theorem 3.1. Let G be a connected semi-simple Lie group. THEH G, T) is naturally
isomorphic to the Pontryagin duall(G) of the fundamental group(G) of G.

Explicitly, if G is the universal cover af andr : G — G is the covering map (so that
the fundamental group(G) is naturally identified with the kerné of r) then choose a
Borel sections : G — G for the covering map (i.es, is a Borel function such that o s is
the identity onG, ands(1) = 1). Fory € Z, definem, : G x G — T by

my(x,y) = x(s(») () Ls(xy)), x,y€G. (3.4)

Then the main theorem in [8] shows that— [m,] is an isomorphism fronZ onto
H2(G, T) and this isomorphism is independent of the choice of the segtion

The following companion theorem from [8] shows that to find all the irreducible projec-
tive representations of a group satisfying the hypotheses of Theorem 3.1, it suffices to
find the ordinary irreducible representations of its universal cGveret Z be the kernel of
the covering map front ontoG. Let 8 be an ordinary unitary representation®f Then
we shall say thas is of pure typef there is a charactey of Z such thai8(z) = x(z)I for
allzin Z. If we wish to emphasize the particular character which occurs here, we may also
say thatg is pure of typey. Notice that, ifg is irreducible then (a£ is central) by Schur’s
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Lemmag is necessarily of pure type. In terms of this definition, the second theorem in [8]
says

Theorem 3.2. Let G be a connected semi-simple Lie group anddebe its universal
cover. Then there is a natural bijection betwegine equivalence classes) gfrojective
unitary representations @ and (the equivalence classes @fidinary unitary representa-
tions of pure type of.. Under this bijection, for eacly the projective representations 6f
with multiplier m, correspond to the representations@fof pure typey, and vice versa.
Further, the irreducible projective representations®torrespond to the irreducible rep-
resentations o, and vice versa.

Explicitly, if § is an ordinary representation of pure typef G then definef, : G — T
by f,(x) = x(x"L-som(x)), x € G. Definea onG by &(x) = f, (x)B(x). Thena is a
projective representation 6f which is trivial onZ. Therefore there is a well-defined (and
uniquely determined) projective representatioof G such thatx = « o r. The multiplier
associated witkx ism, . The map8 — « is the bijection mentioned in Theorem 3.2.

Finally, as was pointed outin [9], any projective representation (say with multip)iefa
connected semi-simple Lie group can be written as a direct integral of irreducible projective
representations (all with the same multipliey of the group. It follows, of course, that any
multiplier of such a group arises from irreducible projective representations. It also shows
that, in order to have a description of all the projective representations, it is sufficient to
have a list of the irreducible ones and to know when two of them have identical multipliers.
This is where Theorems 3.1 and 3.2 come in handy.

3.2 The multipliers on Mb

Notice that for any element of the Mobius groupg’ is a non-vanishing analytic function
on D and hence has a continuous logarithm on this closed disc. Let us fix, once for
all, a Borel determination of these logarithms. More precisely, we fix a Borel function
(z, ¢) — log¢/(z) from D x Mdb intoC such that log’(z) = 0 for ¢ = id. Now define
arge’(z) to be the imaginary part of log/ (z).

Define the Borel functiom : Mdb x Mob — Z by

Nipr o) = %(arg(wzwl)’(o) — argy; (0) — arge,(¢1(0))).
For anyw € T, definem,, : Mob x Mob — T by
Mo (@1, 92) = " W19?.
The following proposition is a special case of Theorem 3.1. Detailed proofs may be

found in [9].

PROPOSITION 3.1

For w € T, m, is a multiplier ofMob. It is trivial if and only if o = 1. Every multiplier
onMaobis equivalent ton,, for a uniquely determined in T. In other wordsw — [m,,]

is a group isomorphism between the circle groliand the second cohomology group
H2(Mdb, T).
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3.3 The projective representations of thébdus group

Every projective representation of a connected semi-simple Lie group is a direct integral
of irreducible projective representations (cf. [9], Theorem 3.1). Hence, for our purposes,
it suffices to have a complete list of these irreducible representation®lof M complete
list of the (ordinary) irreducible unitary representations of the universal covebaf\Was
obtained by Bargmann (see [29] for instance). Sincé#Né a semi-simple and connected
Lie group, one may manufacture all the irreducible projective representationsofiith
Bargmann’s list as the starting point) via Theorem 3.2. Following [8] and [9], we proceed
to describe the result. Warning Our parametrization of these representations differs
somewhat from the one used by Bargmann and Sally. We have changed the parametrization
in order to produce a unified description.)

Forn e Z,let f, : T — T be defined byf,(z) = z". In all of the following examples,
the Hilbert spaceF is spanned by an orthogonal §¢}, : n € I}, wherel is some subset
of Z. Thus the Hilbert space of functions is specified by the/ssd{|| f, ||, n € I}. (In
each case| f,,|| behaves at worst like a polynomial jn| asn — oo, so that this really
defines a space of function dn) For¢p € Mob and complex parametexsand ., define
the operator;, ,,(¢~1) on F by

Ri (0 H @) =0 @ Q" f(9(), z€T, feF, ¢cMbb.

Here one defines’(z)*/2 as exp./2log¢’(z) using the previously fixed Borel determina-
tion of these logarithms.

Of course, there is na priori guarantee thalh,“((p*l) is a unitary (or even bounded)
operator. But, when it is unitary for evegyin Mob, it is easy to see thd, , is then a
projective representation of b with associated multiplien,,, wherew = €7*. Thus the
description of the representation is complete if we spekif§l| /|12, n € I} and the two
parameters., u. It turns out that almost all the irreducible projective representations of
Mob have this form.

In terms of these notations, here is the complete list of the irreducible projective unitary
representations of bb. (However, see the concluding remark of this section.)

e Principal series representation8, ;, —1 < A < 1, s purely imaginary. Here. =
A= 4s, I=2Z, || fyll> = 1foralln (so the space i82(T)).

e Holomorphic discrete series representatioD§“: Hereh > 0, u =0, 1 = {n €

Z:n > 0)and|f,|? = LR for n > 0. For eachy in the representation

space there is aif, analytic inD, such thatf is the non-tangential boundary value
of 7. By the identificationf < f, the representation space may be identified with
the functional Hilbert space/® of analytic functions ord with reproducing kernel
A—-zw)™, z,weD.

¢ Anti-holomorphic discrete series representatidds, A > 0: D, may be defined as
the composition oD;\* with the automorphism of eq. (1.2):D; (¢) = D: (™), @in
Mob. This may be realized on a functional Hilbert space of anti-holomorphic functions
onD, in a natural way.

¢ Complementary series representatiof,, —1<i <1, 0<o < %(1 — |A]): Here
A=A pn=31-1+o0, [ =2 and
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e
IaP=]] ——%—.nez
k=0 kT3t 3+0

where one takes the upper or lower sign according iagositive or negative.

Remark3.1. (a) All these projective representation obMare irreducible with the sole
exception ofPy o for which we have the decompositiéh g = DT@DI. (b) The multiplier
associated with each of these representations,istherew = e~"* if the representation
is in the anti-holomorphic discrete series, and= €7* otherwise. It follows that the
multipliers associated with two representatiansands, from this list are either identical
or inequivalent. Further, if neither or both af andx, are from the anti-holomorphic
discrete series, then their multipliers are identical iff theparameters differ by an even
integer. In the contrary case (i.e., if exactly oner@fandrn, is from the anti-holomorphic
discrete series), then they have identical multipliers iff therarameters add to an even
integer. This is Corollary 3.2 from [9]. Using this information, one can now describe all
the projective representations ofdld (at least in principle).

4. Projective representations and homogeneous operators

If T'is an operator on a Hilbert spagéthen a projective representatiarof Mob on’H is
said to be associated withif the spectrum off" is contained i) and

o(T) = () Tn(p) (4.1)

for all elementsy of Mob. Clearly, ifT has an associated representation tfiégs homo-
geneous. In the converse direction, we have

Theorem 4.1.1f T is an irreducible homogeneous operator tHehas a projective repre-
sentation of Mbb associated with it. This projective representation is unique up to equiva-
lence.

We sketch a proof of Theorem 4.1 below. The details of the proof may be foundin[9]. The
existence part of this theorem was first proved in [23] using a powerful selection theorem.
Thisresultis the prime reason for our interest in projective unitary representatiori®oi iV
is also the basic tool in the classification program for the irreducible homogeneous operators
which is now in progress.

Sketch of ProofNotice that the scalar unitariesfif(7{) form a copy of the circle group

in U (H). There exist Borel transversalsto this subgroup, i.e., Borel subsdiof U (H)
which meet every coset df in a singleton. Fix one such (in the Proof of Theorem 2.2 in
[9], we present an explicit construction of such a transversal). For each elgroEMob,

let £, denote the set of all unitarid$ in /(H) such thatU*TU = ¢(T). SinceT is an
irreducible homogeneous operator, Schur's Lemma implies that&acha coset ofl in
U(H). Definerr : Mob — U(H) by

{m(p)} =ENE,.
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Itis easy to see that, thus defined, is indeed a projective representation associated with
Another appeal to Schur's Lemma shows that any representation associatgd rwitkt
be equivalent tar. This completes the proof.

For any projective representatiarof Mob, letz# denote the projective representation of
Mob obtained by composing with the automorphism of Mob (cf. (1.2)). That is,

7% (@) = n(¢*), ¢ € Mob. 4.2)

Clearly, if m is the multiplier ofr, thens is the multiplier ofz*. Also, from (1.3) it is
more or less immediate thatif is associated with a homogeneous operatthenrz* is
associated with the adjoifit* of T'. If, further, T is invertible, thent* is associated with
71 also.

4.1 Classification of irreducible homogeneous operators

Recall that an operatd@ion a Hilbert spac@{ is said to be &lock shiftif there are non trivial
subspace¥,, (indexed by all integers, all non-negative integers or all non-positive integers
—accordinglyT is called a bilateral, forward unilateral or backward unilateral block shift)
such that is the orthogonal direct sum of these subspaces and weTh@jg C V,1
for each index: (where, in the case of a backward block shift, we t&ke= {0}). In [9]
we present a proof (due to Ordower) of the somewhat surprising fact that irff'dasan
irreducible block shift, these subspadés(which are called the blocks @f) are uniquely
determined byf". This result lends substance to the following theorem.

For any connected semi-simple Lie groigakes a maximal compact subgradmf G
(it is unigue up to conjugation). Lét denote, as usual, the set of all irreducible (ordinary)
unitary representation &€ (modulo equivalence). Let us say that a projective representa-
tion of G is normalizedf r || is an ordinary representationt (If H2(IK, T) is trivial,
then it is easy to see that every projective representatichisfequivalent to a normalized
representation). b is normalized, then, for any € I, let V, denote the subspacetf;
(the space on which acts) given by

Vy ={veH; :mk)v = xk)v Vk € K}.

Clearly’H, is the orthogonal direct sum of the subspates x e K. The subspac¥, is
called thel-isotypic subspacef H,, of type x.

In particular, for the grouyr = Mob, we may také to be the copYpy.0 : o € T} ofthe
circle groupT. (K may be identified witil viao > ¢4 0.) Form as above and € Z, let
V. () denote thé<-isotypic subspace corresponding to the charggter; — z 7", z € T.
With these notations, we have the following theorem from [9].

Theorem 4.2.Any irreducible homogeneous operator is a block shift. Indeefjsfsuch
an operator, andr is a normalized projective representation associated Witthen the
blocks ofT are precisely the non-trividk-isotypic subspaces af.

(Note that if T is an irreducible homogeneous operator, then by Theorem 4.1 there is a
representatiomr associated witl". Since such a representation is determined only up to
equivalence, we may replaeeby a normalized representation equivalent to it. Then the
above theorem applies.)
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A block shift is called aveighted shifif its blocks are one-dimensional. In [9] we define
a simple representationf Mob to be a normalized representatiersuch that (i) the set
T(m):=1{n e Z: V,(r) # {0}} is connected (in an obvious sense) and (ii) for each
n € 7 (m), V, () is one dimensional. If" is an irreducible homogeneous weighted shift,
then, by the uniqueness of its blocks and by Theorem 4.2, it follows that any normalized
representationr associated with" is necessarily simple. Using the list of irreducible
projective representations ofd given in the previous section (along with Remark 3.1(b)
following this list) one can determine all the simple representations@d.NT his is done
in Theorem 3.3 of [9]. Namely, we have

Theorem 4.3.Up to equivalence, the only simple projective unitary representatioh&xdif
are its irreducible representations along with the representatif);‘ﬁ@ D, ,, 0<A<?2

Since the representations associated with irreducible homogeneous shifts are simple, to
complete a classification of these operators, it now suffices to take each of the representa-
tions = of Theorem 4.3 and determine all the homogeneous operatassociated with
7. Given that Theorem 4.2 pinpoints the way in which such an opefatoust act on
the space ofr, it is now a simple matter to complete the classification of these operators
(at least it is simple in principle — finding the optimum path to this goal turns out to be a
challenging task!). To complete a classification of all homogeneous weighted shifts (with
non-zero weights — permitting zero weights would introduce uninteresting complications),
one still needs to find the reducible homogeneous shifts. Notice that the technique outlined
here fails in the reducible case since Theorem 4.1 does not apply. However, in Theorem
2.1 of [9], we were able to show that there is a unique reducible homogeneous shift with
non-zero weights, namely the unweighted bilateral ghiftndeed, ifT is a reducible shift
(with non-zero weights) such that the spectral radius & = 1, then it can be shown that
T* = Bk for some positive integedr, and hencg* is unitary. But Lemma 2.1 in [9] shows
that if 7 is a homogeneous operator such thétis unitary, ther" itself must be unitary.
Clearly, B is the only unitary weighted shift. This shows tHais the only reducible ho-
mogeneous weighted shift with non-zero weights. When all this is put together, we have
the main theorem of [9].

Theorem 4.4. Up to unitary equivalence, the only homogeneous weighted shifts are the
known onegnamely, the first five series of examples from the li&6n

Yet another link between homogeneous operators and projective representatidits of M
occurs in [10]. Beginning with Theorem 2.3, in [10] we prove a product formula, involv-
ing a pair of projective representations, for the characteristic function of any irreducible
homogeneous contraction. Namely we have

Theorem 4.5.1f T is an irreducible homogeneous contraction then its characteristic func-
tiond : D — B(K, L) is given by

0(z) =m(p,)"Colp;), z€D

wherer ando are two projective representations bob (on the Hilbert spaceg andC
respectivelywith a common multiplier. Furthet} : X — L is a pure contraction which
intertwineso | and |-
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Conversely, whenever, o are projective representations dMobwith a common multi-
plier andC is a purely contractive intertwiner betweety andrn | such that the function
6 defined by (z) = 7 (¢,)*Co (p.) is analytic onD, thené is the characteristic function
of a homogeneous cnu contractigmt necessarily irreducible

(Here ¢, is the involution in Mdb which interchanges 0 and Also, K = {¢ €
Mob : ¢(0) = 0} is the standard maximal compact subgroup @iy}

Sketch of Proof Let 6 be the characteristic function of an irreducible homogeneous cnhu
contractionT. For anyp in Mob look at the set

E,:={(U,V): U9w)V =6(p L(w)) Yw € D} CU(L) x UK).

By Theorem 2.3E,, is non-empty for eaclp. By Theorem 3.4 in [25], fotU, V) € E,,
there is a unitary operatarU, V) such that (i)c (U, V)*Tt(U, V) = ¢(T) and (ii) the
restriction ofr (U, V) to £ andK equalU andV respectively. Therefore, irreducibility of
T implies that, for(U, V), (U’, V')in E,, t(U’, V/)*t(U, V) is a scalar unitary. Hence
E, is a coset of the subgroup(isomorphic to the torug?) of U(L£) x U(K) consisting
of pairs of scalar unitaries. As in the proof of Theorem 4.1, it follows that there are
projective unitary representationsando with a common multiplier (on the spac€sand
K respectively) such thdir (¢), o (¢)) € E,, for all ¢ in Mob. So we have
7 (p)*0(w)o () = 9((p_1(w)), weD, ¢ € MOb. 4.3)

Now, choosey = ¢, and evaluate both sides of (4.3)at= 0 to find the claimed formula
for 6 with C = 6(0). Also, takingw = 0 andy € K in (4.3), one sees that intertwines
ol andr |-

For the converse, lét(z) := m(p;)*Co (¢;) be an analytic function. Sinc€ = 6(0)
is a pure contraction anglz) coincides withg (0) for all z, 6 is pure contraction valued.

Henced is the characteristic function of a cnu contractibn For¢ € Mob andw € D,
write ¢,,¢ = ko, wherek € IK andz = (¢,¢0)1(0) = ¢~ 1(w). Then we have

n(@)0(w)o(p) = w(p) 7 (pw) Colpy)o(p)
7 (puw®)*Co (puwp)
= w(ke;)*Co(ke,)
7 (p) (k)" Co (k)o (¢7)
= ”(‘Pz)*co'(‘pz)
= O(p (W)
(Here, for the second and fourth equality we have used the assumption tuad o
are projective representations with a common multiplier. For the penultimate equality,
the assumption that intertwineso ¢ andx |y has been used.) Thussatisfies (4.3).

Therefored o ¢ coincides withd for all ¢ in Méb. Hence Theorem 2.3 implies thatis
homogeneous.

5. Some constructions of homogeneous operators

Let us say that a projective representationf Mob is amultiplier representationif it is
concretely realized as followsr acts on a Hilbert spack of E — valued functions on
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Q, whereQ is eitherD or T and E is a Hilbert space. The action af onH is given by
(@) f)(2) = clp,2) fp~iz) forz € Q, f € H, ¢ € Mbb. Herec is a suitable Borel
function from Mob x © into the Borel group of invertible operators @n

Theorem 5.1.LetH be a Hilbert space of functions @2 such that the operator on H
given by
(TfHx)=xf(x), x€Q, feH,

is bounded. Suppose there is a multiplier representatiof Mob onF. ThenT is homo-
geneous and is associated witlT.

This easy but basic construction is from Proposition 2.3 of [6]. To apply this theorem,
we only need a good supply of what we have called multiplier representation®lef M
Notice that all the irreducible projective representations @bMas concretely presented
in the previous section) are multiplier representations.

A second construction goes as follows. It is contained in Proposition 2.4 of [6].

Theorem 5.2. Let T be a homogeneous operator on a Hilbert sp&tavith associated
representation. LetK be a subspace 61 which is invariant or co-invariant under both
T andx. Then the compression 6fto K is homogeneous. Further, the restrictionofo
K is associated with this operator.

A third construction (as yet unreported) goes as follows:

Theorem 5.3. Letr be a projective representation dMob associated with two homoge-
neous operatordy and 7> on a Hilbert space/. LetT denote the operator ol & H

given by
Tmn T —1T>
T = .
( 0 T> )
ThenT is homogeneous with associated representatiom 7.

Sketch of proofFor¢ in Mob, one verifies that

_ (M) @(T1) —e(T2)
“”‘( 0 o(Ty) )

Hence itis clear that @ 7 is associated with'.

6. Examples of homogeneous operators

It would be tragic if we built up a huge theory of homogeneous operators only to find at
the end that there are very few of them. Here are some examples to show that this is not
going to happen.
e The principal series examplérhe unweighted bilateral shi® (i.e., the bilateral shift
with weight sequenca, = 1, n = 0,41,...) is homogeneous. To see this, apply
Theorem 5.1 to any of the principal series representationsadf. By construction, all
the principal series representations are associatedBvith
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e The discrete series examplé=or any real numbex > 0, the unilateral shifty ® with
weight sequean/ ij n=0,12,...is homogeneous. To see this, apply Theorem
5.1 to the discrete series representatigh

Forx > 1, M™ is a cnu contraction. For = 1, its characteristic function is the (constant)
function O — not very interesting! But for > 1 we proved the following formula for the
characteristic function a7 (cf. [7]).

Theorem 6.1. For A > 1, the characteristic function o##» coincides with the function
6, given by

05.(2) = (M — D) 2D 1 (9)*9* D 1 (p2). z €D,

whered* is the adjoint of the differentiation operatér: H*~1 — H*+D,
This theorem is, of course, an instance of the product formula in Theorem 4.5.

e The anti-holomorphic discrete series exampléhese are the adjoint® »* of the
operators in the previous family. The associated representatiof.is

It was shown in [22] that

Theorem 6.2. Up to unitary equivalence, the operatas™*, » > 0 are the only homo-
geneous operators in the Cowen-Douglas clasdD).

This theorem was independently re-discovered by Wilkins in ([33], Theorem 4.1).
e The complementary series examplesr any two real numbersandb in the open unit

interval (0, 1), the bilateral shiftk, , with weight sequencm, n=0,4+1+£2, ...,

is homogeneous. To see this in case<0a < b < 1, apply Theorem 5.1 to the
complementary series representaion, withA =a+b—1ando = (b —a)/2. If

a = bthenkK,, = B is homogeneous. If & b < a < 1thenk, is the adjoint

inverse of the homogeneous operakoyr,, and hence is homogeneous.

e The constant characteristic examplé%r any real number > 0, the bilateral shifi;,
with weight sequence..,1,1,1,1,1,1,1,..., (1 in the zeroth slot, 1 elsewhere) is
homogeneous. Indeed, if9 A < 1 thenB, is a cnu contraction with constant charac-
teristic function—A; hence it is homogeneous. Of cour8e,= B is also homogeneous.
If A > 1, By is the inverse of the homogeneous operagrwith © = 12~ 1, hence it
is homogeneous. (In [6] we presented an unnecessarily convoluted argument to show
that B, is homogeneous for > 1 as well.) It was shown in [6] that the representation
DIL ® D; is associated with each of the operatBjs 1 > 0. (Recall that this is the
only reducible representation in the principal series!)

In [6] we show that apart from the unweighted unilateral shift and its adjoint, the operators
B,, X > 0 are the only irreducible contractions with a constant characteristic function.
In fact,

Theorem 6.3. The only cnu contractions with a constant characteristic function are the
direct integrals of the operatorsf ®, M®* and B;, 1 > 0.
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Since all the constant characteristic examples are associated with a common represen-
tation, one might expect that the construction in Theorem 5.3 could be applied to any
two of them to yield a plethora of hew examples of homogeneous operators. Unfortu-
nately, this is not the case. Indeed, it is not difficult to verify thatfe£ w, the operator

B, B, —B . L . .
( 0* AB ® > is unitarily equivalent tdB, @& Bs whereo ands are the eigenvalues of
w

(AA*)]'/Z,A: A )"_H*
0

Notice that the examples of homogeneous operators given so far are all weighted shifts.
By Theorem 4.4, these are the only homogeneous weighted shifts with non-zero weights.
Wilkins was the first to come up with examples of (irreducible) homogeneous operators

which are not scalar shifts.

e The generalized Wilkins examplé®ecall that for any real number> 0, H* denotes
the Hilbert space of analytic functions @hwith reproducing kerne(z, w) — (1 —
zw)~*. (It is the Hilbert space on which the holomorphic discrete series representation
D;“ lives.) For any two real numberts; > 0,12 > 0, and any positive integek,
view the tensor produckt*? ® H*2 as a space of analytic functions on the bidisc
D x D. Look at the Hilbert spac# %2’ < H*D @ 1?2 defined as the ortho-
complement of the subspace consisting of the functions vanishing to brderthe
diagonalA = {(z, z) : z € D} € D x D. Finally define the generalized Wilkins operator
w*2) as the compression 191 *?) of the operatom V) @ I onH*) @ H*2). The

subspacevk(“’ *2) is co-invariant under the homogeneous operatth) ® I as well as
under the associated representaiiy ® D;; . Therefore, by Theorem 5.8+ *?) is

a homogeneous operator. Foe 1, Wl(“’ *2) ig easily seen to be unitarily equivalent to
M*11+22) see [7] and [14], for instance. But fér> 2, these are new examples.

The operatow,***2’ may alternatively be described as multiplication by the co-ordinate
functionz on the space of*-valued analytic functions ob with reproducing kernel

@) A=) (78 A -y 2))

0<i,j<k-1

(Hered andd denote differentiation with respect toandw, respectively.) Indeed (with
the obvious identification oA andD) the mapf — (f, f/, ..., f*~D)|, is easily seen
to be a unitary betweeﬁk(“’“) and this reproducing kernel Hilbert space intertwining
W,{(M’ *2) and the multiplication operator on the latter space. (This is a particular instance
of thejet constructiordiscussed in [15].) Using this description, it is not hard to verify that
the adjoint of W **"*?) is an operator in the Cowen-Douglas cla#&sD). The following
is (essentially) one of the main results in [34].

Theorem 6.4. Up to unitary equivalence, the only irreducible homogeneous operators in
the Cowen-Douglas clags (D) are the adjoints of the operatowz(“’ *2) ,A1> 0,42 > 0.

This is not the description of these operators given in [34]. But it can be shown that
Wilkin's operator7;” , is unitarily equivalent to the operath(“’ 2 with o = Ap+A2+1,
0 = (A1 + A2+ 1)/(x2 + 1. Indeed, though his reproducing kerrig] , looks a little
different from the kernel (withk = 2) displayed above, a calculation shows that these
two kernels have the same normalization at the origin (cf. [12]), so that the corresponding
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multiplication operators are unitarily equivalent. However, it is hard to see how Wilkins
arrived at his exampleg;* o while the construction of the operatdﬂsf“’ *2) given above
has a clear geometric meaning, particularly in view of Theorem 5.2. But, as of now, we
know that the casgé = 2 of this construction provides a complete list of the irreducible
homogeneous operators# (D) only by comparing them with Wilkins' list — we have no
independent explanation of this phenomenon.

Theorem 6.1 has the following generalization to some of the operators in this series.
(Theorem 6.1 is the special case- 1 of this theorem.)

Theorem 6.5. For k = 1,2,... and real numbers. > k, the characteristic func-
tion of the operatorW,fl’ *=8) coincides with the inner analytic functionf” : D —
B(H*T0  H*=R)y given by

07 (2) = crk Dy (@) 9 D}l 1 (92), z € D.

Here 9%* is the adjoint of thek-times differentiation operatad* : H*—% — H*+K and
Cnk = ngz—(k—l)()‘ — 0712

Sketch of Prooflt is easy to check that := c;_;3** is a pure contraction intertwining the
restrictions tok of D", andD;"_,. Since we already know (by Theorem 6.1) thtis
an inner analytic function fot = 1, the recurrence formula

W) _ g0k g () oGO
9k+1 - 91 ek—lgl

(for k > 1, » > k + 1, with the interpretation tha%é’\) denotes the constant function 1)

shows thae,f“ is an inner analytic function ob for A > k, k = 1,2,.... Hence itis

the characteristic function of a cnu contractifnn the classC o. By Theorem 2.1 T

is the compression a1+ of the multiplication operator off ® @ H*—% whereM is

the invariant subspace corresponding to this inner function. But one can verifythst

the subspace consisting of the functions vanishing to drder the diagonal. Therefore

T — Wk(l,)\fk).

e Some perturbations of the discrete series examplest H be a Hilbert space with
orthonormal basi$f, : £k =0,1,...}U{he : k= 0,+1,£2,...}. For any three
strictly positive real numbers, .« ands, let M ™[, 8] be the operator ofi{ given by

o k+1 5
M, 8] fi = mfkﬂ + mhl,kﬂ,

MM, 81hoe = pha,
and
MP[w, 8lhge = higare. for k> 1.
An application of Theorem 2.2 to the operata#”) in conjunction with an analytic

continuation argument shows that these operators are homogeneous. This was observed
in [7].
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e The normal atomDefine the operatoN on L2(D) by (Nf)(z) = zf(z), z € D, f €
L?(D). The discrete series representatlogi naturally lifts to a representation of db
on L2(D). Applying Theorem 5.1 to this representation yields the homogeneiy. of

Using spectral theory, it is easy to see that the oper@&arsd N are the only homogeneous
normal operators of multiplicity one. In consequence, we have

Theorem 6.6. Every normal homogeneous operator is a direct surcotintably many
copies ofB and N.

Let us define armtomic homogeneous operattr be a homogeneous operator which
can not be written as the direct sum of two homogeneous operators. Trivially, irreducible
homogeneous operators are atomic. As an immediate consequence of Theorem 6.6, we
have

COROLLARY 6.1
B and N are atomic(but reducible¢ homogeneous operators

N is a cnu contraction. Its characteristic function was given in [7].

Theorem 6.7.The characteristic functiofly : D — B(L2(D)) of the operatom is given
by the formula

ON @ W) = —pu @) f(w), z,weD, feLD).

(Here, as beforey,, is the involution in Mbb which interchanges 0 andl)

The usual transition formula between cartesian and polar coordinates shoi/& fhat=
L2(T) ® L?([0, 1], rdr). SinceB may be represented as multiplication by the coordinate
function onL2(T), it follows that the normal atorW is related to the other normal atom
Bby N = B® C whereC is multiplication by the coordinate function d@rf([0, 1], rdr).
Clearly C is a positive contraction. Letf, : n > 0} be the orthonormal basis of
L?([0, 1], rdr) obtained by Gram—Schmidt orthogonalization of the sequgnce>
r" . n > 0}. (Except for scaling,f, is given in terms of classical Jacobi polynomi-
als byx — Pn(o’l)(Zx — 1), cf. [31].) Then the theory of orthogonal polynomials shows
that (with respect to this orthonormal basis)s a tri-diagonal operator. Thus we have

Theorem 6.8. Up to unitary equivalence, we havé = B ® C where the positive con-
traction C is given on a Hilbert space with orthonormal bagj§ : n > 0} by the formula

Cfh=anfu—1+bufu+ an+1fn+1a n=012,...

where(f_1 = 0) and the constants,, b, are given by

Jnn+ 1) 2(n + 1)?
byp=—F———+———, n>0
2n+1)(2n +3)

W= 2
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7. Open questions
7.1 Classification

The primary question in this area is, of course, the classification of homogeneous operators
up to unitary equivalence. Theorem 4.4 is a beginning in this direction. We expect that the
same methodology will permit us to classify all the homogeneous operators in the Cowen—
Douglas classes; (D), k = 1,2,.... Work on this project has already begun. More
generally, though there seem to be considerable difficulties involved, it is conceivable that
extension of the same techniques will eventually classify all irreducible homogeneous op-
erators. But, depending as it does on Theorem 4.1, this technique draws a blank when it
comes to classifying reducible homogeneous operators. In particular, we do not know how
to approach the following questions.

Questionl. Is every homogeneous operator a direct integral of atomic homogeneous
operators?

Questior?. Are B andN the only atomic homogeneous operators which are notirreducible?

We have seen that the homogeneous operdtoan be written a&v = B ® C. In this
connection, we can ask:

Question3. Find all homogeneous operators of the faBn® X. More generally, find all
homogeneous operators which have a homogeneous operator as a ‘tensor factor'.

Another possible approach towards the classification of irreducible homogeneous con-
tractions could be via Theorem 4.5. (Notice that any irreducible operator is automatically
cnu.) Namely, given any two projective representatianands of Mdb havinga common
multiplier, we can seek to determine the cléss, o) of all operatorsC : H, — H, such
that (i) C intertwineso | and |y and (ii) the functionz — m(¢;)*Co (¢;) is analytic
onD. ClearlyC(r, o) is a subspace df(H,, H,), and Theorem 4.5 says that any pure
contraction in this subspace yields a homogeneous operator. Further, this method yields
all irreducible homogeneous contractions as one runs over afido. This approach
is almost totally unexplored. We have only observed that, up to multiplication by scalars,
the homogeneous characteristic functions listed in Theorem 6.5 are the only ones in which
bothz ando are holomorphic discrete series representations. (But the trivial operation of
multiplying the characteristic function by scalars correspond to a highly non-trivial opera-
tion at the level of the operator. This operation was explored in [7].) So a natural question
is:

Questiond. Determin&(rr, o) at least for irreducible projective representatianando
(with a common multipliey.

Note that Theorem 6.5 gives the product formula for the characteristic function of
W,{(’\l’“) for A1 = 1. But for W,EM’)\Z) to be a contraction it is sufficient (though not
necessary) to have, > 1. So on a more modest vein, we may ask:



432 Bhaskar Bagchi and Gadadhar Misra

Question5. What is the(explicit) product formula for the characteristic functions of the
operators¥ " *? for i1 > 1?

Recall that a cnu contractidh is said to be in the clags;; if for every nonzero vector
x, lim;, o T"x # 0 and lim,—, o T*'x # 0. In [19], Kerchy asks:

Questior6. Does every homogeneous contraction in the dlagdhave a constant charac-
teristic function?

7.2 Mobius bounded and polynomially bounded operators

Recall from [30] that a Hilbert space operafois said to beModbius boundedf the family
{p(T) : ¢ € Mob} is uniformly bounded in norm. Clearly homogeneous operators are
Mobius bounded, but the converse is false. In [30], Shields proved:

Theorem 7.1.1f T is a Mdbius bounded operator theiT ™| = O (m) asm — oo.

Sketch of proofSay||¢(T)| < c for ¢ € Mob. For anyy € Mob, we have an expansion
(@) = > o _yamz™, valid in the closed unit disc. Hence,

anT" = A_go(aT)oFm do,

where the integral is with respect to the normalized Haar measufe orherefore we
get the estimatéu,, || T™| < c for all m. Choosingy = ¢1 4, we see that fom > 1,

lam| = (1 — r2)r™~—1 wherer = |B|. The optimal choice = /(m — 1)/(m + 1) gives
lam| = O(1/m) and hencd|T™ | = O (m).

On the basis of this Theorem and some examples, we may pose:

Conjecture For any Mdbius bounded operatdt, we have| 7" | = O (mY/?) asm — .

In [30], Shields already asked if this is true. This question has remained unanswered
for more than twenty years. One possible reason for its intractability may be the dif-
ficulty involved in finding non-trivial examples of tbius bounded operators. (Con-
tractions are Ndbius bounded by von Neumann’s inequality, but these trivially satisfy
Shield’s conjecture.) As already mentioned, non-contractive homogeneous operators pro-
vide non-trivial examples. For the homogeneous operstee M with 1 < 1, we

have||T™| = ,/% and hence (by Sterling’s formuldl"™|| ~ cm~1/2 with

¢ = I'(M)Y2. Thus the above conjecture, if true, is close to best possible (in the sense that
the exponent A2 in this conjecture cannot be replaced by a smaller constant). Ananalogous
calculation with the complementary series examglés, b) (with 0 < a # b < 1) leads

to a similar conclusion. This leads us to ask:

Question?. Is the conjecture made above true at least for homogeneous opérators

(Itis conceivable that the operatdfs ; introduced below contain counter examples to
Shield’s conjecture in its full generality.)
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Recall that an operatdt, whose spectrum is containediiy is said to bepolynomially
boundedif there is a constant > 0 such that||p(T)|| < ¢ for all polynomial maps
p . D — D. (von Neumann’s inequality says that this holds with= 1 iff T is a
contraction.) Clearly, ifT" is similar to a contraction thefi is polynomially bounded.
Halmos asked if the converse is true, i.e., whether every polynomially bounded operator is
similar to a contraction. In [28], Pisier constructed a counter-example to this conjecture.
(Also see [13] for a streamlined version of this counter-example.) However, one may
still hope that the Halmos conjecture is still true of some ‘nice’ classes of operators. In
particular, we ask

QuestiorB. Is every polynomially bounded homogeneous operator similar to a contraction?
For that matter, is there any polynomially bounded (even power bounded) homogeneous op-
erator which is not a contraction?

Notice that the discrete series examples show that homogeneous operators (though
Mobius bounded) need not even be power bounded. So certainly they need not be polyno-
mially bounded.

7.3 Invariant subspaces

If T is a homogeneous operator with associated representatitdren for each invariant
subspaceM of T and eachp € Mob, 7 (p)(M) is againT-invariant. Thus Mb acts
on the lattice ofr -invariant subspaces via. We wonder if this fact can be exploited to
explore the structure of this lattice. Further7ifis a cnu contraction, then the Sz-Nagy—
Foias theory gives a natural correspondence between the invariant subspAcasiahe
‘regular factorizations’ of its characteristic function (cf. [25]). Since we have nice explicit
formulae for the characteristic functions of the homogeneous contracdghy A > 1,
may be these formulae can be exploited to shed light on the structure of the corresponding
lattices.

Recall that Beurling’s theorem describes the lattice of invariant subspadg$tbin
terms of inner functions. Recently, it was found ([18] and [1]) that certain partial analogues
of this theorem are valid for the Bergman shift® as well. We may ask:

Question9. Do the theorems of Hedenmalm and Alensdral generalize to the family
M® | % > 1 of homogeneous unilateral shifts?

7.4 Generalizations of homogeneity

In the definition of homogeneous operators, one may replace unitary equivalence by simi-
larity. Formally, we define aveakly homogeneous operatorbe an operator such that

(i) the spectrum of” is contained irD and (i) ¢(7') is similar toT for everyy in Mob. Of
course, every operator which is similar to a homogeneous operator is weakly homogeneous.
In [11] it was asked if the converse is true. It is not — as one can see from the following
examples:

Examplel. TakeH = L?(T) and, for any real number in the rangd < A < 1 and any
complex numbes with Im(s) > 0, definep; ; : Mob — B(H) by
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P O f =2 | TN o feH.

For purely imaginary, these are just the principal series unitary projective representa-
tions discussed earlier. Feroutside the imaginary axig; s is not unitary valued. But,
formally, it still satisfies the condition (3.1) with = m,,, « = €™*. In consequence,
P, s is an invertible operator valued function ordl

For i ands as above, leT; ; denote the bilateral shift oh?(T) with weight sequence

n+QA+1)/24+s .
n+@A+1/2—5’

Whens is purely imaginary, these weights are unimodular and hdngeis unitarily
equivalent to the unweighted bilateral shit In [9] it is shown that, in this case the
principal series representatidh ; is associated witlf; ; as well as taB. Thatis, we have

@(Ts5) = Pos(@) 1T 5 Prs(9) (7.1)

for purely imaginarys. By analytic continuation, it follows that eq. (7.1) holds for all
complex numbers. ThusT,  is weakly homogeneous for Ifn) > 0. It is easy to see
that | 7,7 || = 17", foll = W wherea = (1+2)/2+s,b = (1+1)/2~ s and
fo is the constant function 1. Hence by Sterling’s formula, we get

T || > em®Re)

for all largem (and some constant> 0). If 7, ; were similar to a homogeneous operator,
it would be Mbbius bounded and hence by Theorem 7.1 we would|gﬁ§‘j§|| = 0O(m)
which contradicts the above estimate wherisRe- 1/2. Therefore we have

Theorem 7.2.The operatord; , is weakly homogeneous for al] s as above. However,
for Re(s) > 1/2, this operator is not Mbius bounded and hence is not similar to any
homogeneous operator.

Example 2 (due to Ordower). For any homogeneous oper&tmay on the Hilbert space

H, let T denote the operatc(rg ;) For anyg in a sufficiently small neighbourhood

o(T) ¢'(T) ;
0 o(T) ) If Uis
a unitary orfH such thatp(T) = U*T U then an easy computation shows that the operator
L=Ug (Y2 Uy (T) Y2 satisfies. TL~1 = ¢(T). Thuse(T) is similar toT for all

¢ in a small neighbourhood. Therefore an obvious extension of Theorem 1.1 shows that
T is weakly homogeneous. Singe(T)| > |¢/(T)| and since the family’, ¢ € Mdb

is not uniformly bounded on the spectrum™®fit follows that7 is not Mobius bounded.
Therefore we have

of the identity,¢(7T) makes sense and one verifies théf) = (

Theorem 7.3. For any homogeneous operatdt, the operator? is weakly homoge-
neous but not Mbius bounded. Therefore this operator is not similar to any homoge-
neous operator.

These two classes of examples indicate that the right question to ask is
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Questionl 0. Is it true that every Kbius bounded weakly homogeneous operator is similar
to a homogeneous operator?

For purely imaginary, the homogeneous operatdis, and B share the common as-
sociated representatidf ;; hence one may apply the construction in Theorem 5.3 to this
pair. We now ask

Question1l. Is the resulting homogeneous operator atomic? Is it irreducible? More
generally, are there instances where Theorem 5.3 lead to atomic homogeneous operators?

Another direction of generalization is to replace the groufibNby some subgroug.

For any suchG, one might say that an operatBris G-homogeneous ip(T) is unitarily
equivalent toT for all ‘sufficiently small’ ¢ in G. (If G is connected, the analogue of
Theorem 1.1 holds.) The cage= K has been studied under the name of ‘circularly sym-
metric operators’. See, for instance, [17] and [3]. Notice th&ti#a circularly symmetric
operator then so i§ ® T for any operatoil’ — showing that this is a rather weak notion
and no satisfactory classification can be expected when the grasgo small. A more
interesting possibility is to tak&é to be a Fuchsian group. (Recall that a closed subgroup
of Mob is said to be Fuchsian if it acts discontinuouslyop Fuchsian homogeneity was
briefly studied by Wilkins in [33]. He examines the nature of the representations (if any)
associated with such an operator.

Another interesting generalization is to introduce a notion of homogeneity for commuting
tuples of operators. Recall thata bounded dorfiimC is said to be #ounded symmetric
domainif, for eachw € Q, there is a bi-holomorphic involution & which hasw as
an isolated fixed point. Such a domain is called irreducible if it cannot be written as the
cartesian product of two bounded symmetric domains. The irreducible bounded symmetric
domains are completely classified modulo biholomorphic equivalence (see [2] or [16] for
instance) — they include the unit bdl, , in the Banach space of alt x n matrices
(with operator norm). LetGg denote the connected component of the identity in the
group of all bi-holomorphic automorphisms of an irreducible bounded symmetric domain
Q. IfT = (T, ..., Ty) is a commutingl-tuple of operators then one may say tfiais
homogeneous if, for all ‘sufficiently smalp € Gg, ¢(T) is (jointly) unitarily equivalent
to T. (Of course, this notion depends on the choic&of for most values ofl there are
several choices — so, to be precise, one ought to spe@khmfimogeneity). Theorem 1.1
generalizes to show that, in this setting, the Taylor spectrufigtontained i2 (and is a
G q-invariant closed subset thereof). AlsoTifs an irreducible homogeneous tuple (in the
sense that its components have no common non-trivial reducing subspace), then Theorem
4.1 generalizes to yield a projective representatiorG gfassociated with it. Therefore,
many of the techniques employed in the single variable case have their several variable
counterparts. But these are yet to be systematically investigated. One difficulty is that for
d > 2, the (projective) representation theory®@§, (which is a semi-simple Lie group)
is not as well understood as in the c@se= D. But this also has the potential advantage
that when (and if) this theory of homogeneous operator tuples is investigated in depth, the
operator theory is likely to have significant impact on the representation theory.

With each domaim2 as above is associated a kermg] (called the Bergman kernel)
which is the reproducing kernel of the Hilbert space of all square integrable (with respect
to Lebesgue measure) analytic functionssanThe Wallach seW = Wq, of Q is the set
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of all A > 0 such thang/g is (a non-negative definite kernel and hence) the reproducing
kernel of a Hilbert spacg*) (). (Hereg is an invariant of the domaif2 called its genus,
cf. [2].) Itis well-known that the Wallach s&¥ can be written as a disjoint unid#i; U W,
where the ‘discrete’ pail/, is a finite set (consisting of points, where the ‘rank’ of Q
is the number of orbits into which the topological boundangis broken by the action
of Gg) and the ‘continuous’ pait/, is a semi-infinite interval.

The constant functions are alwaysH#¥" (Q2) but, fora € W, H*® () does not contain
all the analytic polynomial functions of2. It follows that forx € W, multiplication by
the co-ordinate functions do not define bounded operatofg‘6h(2). However, it was
conjectured in [4] that fok € W,, thed-tupleM ® of multiplication by thed co-ordinates
is bounded. (In [5], this conjecture was proved in the c&3es I, ,. In general, it is
known that for sufficiently large. the norm onH»)(Q) is defined by a finite measure
on ©, so that this tuple is certainly bounded in these cases.) Assuming this conjecture,
the operator tuple® ™, 1 € W,, constitute examples of homogeneous tuples — this is in
consequence of the obvious extension of Theorem 5.1 to tuples. In [4] it was shown that
the Taylor spectrum of this tuple 3 and

Theorem 7.4.Up to unitary equivalence, the adjoints of the tuplé§”, » € W,, are the
only homogeneous tuples in the Cowen—Douglas dase).

For what values of € W, is the tupleM * sub-normal? This is equivalent to asking for
the values of. for which the norm or{*) () is defined by a measure. In[4] we conjecture
a precise answer. Again, the special c@se I, , of this conjecture was proved in [5].

Regarding homogeneous tuples, an obvious meta-question to be asked is

Questionl2. Formulate appropriate generalizations to tuples of all the questions we asked
before of single homogeneous operators — and answer them!

A d-tuple T on the Hilbert spac@{ is said to becompletely contractive with respect to
Q if for every polynomial mapP : Q@ — I, ,, P(T) is contractive when viewed as an
operator from{ ® C" to H ® C". T is calledcontractive with respect t if this holds
in the casen = n = 1. In general one may ask whether contractivity implies complete
contractivity. In general the answer is ‘no’ for @ll> 5 [27]. However one has a positive
answer in the cas@ = D. But an affirmative answer (for special classes of tuples) would
be interesting because complete contractivity is tantamount to existence of nice dilations
which make the tuple in question tractable. For instance, we have an affirmative answer
for subnormal tuples. We ask

Questionl3. Is every contractive homogeneous tuple completely contractive?
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