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ON THE LOCAL BEHAVIOUR

OF ORDINARY A-ADIC REPRESENTATIONS

by Eknath GHATE and Vinayak VATSAL

1. Introduction.

In this paper we study the local behaviour of the Galois representa-
tions attached to ordinary A-adic forms and ordinary classical cusp forms.
In both cases the splitting of the local representation is shown to be closely
related to whether or not the corresponding form has complex multiplica-
tion.

Let us state our main result in the classical setting. Let f -
a(n, f)qn be an elliptic modular cusp form of weight k ) 2, level

N &#x3E; 1 and nebentypus X : Assume that f is normalized to
have first coefficient 1, and that it is a common eigenform of all the Hecke
operators Tl for primes with (l, N) = 1. Fix an embedding loo of Q into
C and let K f denote the number field generated by the Fourier coefficients
a (n, f ) of f via the embedding If in addition f is a newform (or primi-
tive form) in the sense of Atkin-Lehner, then f is also an eigenform for the
operators U£ for primes f N.

Let p be a prime number. Fix an embedding tp of Q into Qp and let p
be the prime of Q induced by this embedding. We continue to write p for
the restriction of p to any subfield of Q. In particular p is a prime of Kf.
Let K¡,fJ denote the completion of Kf at p. Following Eichler, Shimura,
and Deligne, we can attach a Galois representation

Keywords: A-adic forms - p-adic families - Ordinary primes - Galois representations.
Math. classification: llF80 - llF33 - llR23.
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to f (and p) which has the property that for all primes £ outside Np
and

We say that f is ordinary at p (or p-ordinary) if a(p, f ) is a p-adic
unit. The notion of ordinariness depends on the embeddings oo and Lp. If f
is ordinary at p then results of Mazur-Wiles [MW86] (for conductor pn, and
p &#x3E; 2) and Wiles [Wi188] (in general) show that the restriction of p f to the
decomposition group Gp at p is ’upper triangular’. More precisely if V is
a two dimensional vector space over which affords the representation
p¡IGp then it is known that there is a basis of V in which Pf I Gp has the
following shape:

where E, 6 : Gp - k- ’ are characters with E unramified and u : Gp - 
is a continuous function.

The function u has a cohomological interpretation. Let c : Gp - 
be the map defined by

for all g E Gp. Write for K¡,tJ thought of as a GP-module via
the character 6e~ ~ . Then it is easy to check that is

a 1-cocycle. Thus c represents a cohomology class

Let us say that the representation splits, or that p f is split at
p, if V where each Vi is a line stable under Gp. It is easy to see
that the representation

splits if and only if I

Ralph Greenberg has asked the following question concerning the splitting
behaviour of the restriction of p f to Gp.

Question 1. - Let f be a primitive p-ordinary cusp form of weight
at least two. When is the representation p¡IGp split? Equivalently when is
the cocycle c that is defined in terms of the upper-shoulder map u in (1.1)
a coboundary?

Let us say that f has complex multiplication (or CM for short) if

there is a Dirichlet character 0 such that a(£, f ) = a (f , f) . for all but

finitely many primes .~. It is well-known that if f has CM then p f splits at
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p (see, for instance, [Gha04], Prop. 3 and 5J) . A natural guess for an answer
to Question 1 is therefore:

(1.2) (??) PI lop splits if and only if f has CM.
Almost all evidence in support of (1.2), if it is indeed true, seems to be
in weight two. Indeed, if p is prime to N., then it follows from a theorem
due to Serre and Tate (see [Ser89], Chapter IV) that if the modular form f
corresponds to an elliptic curve E defined over Q, then = PE,p splits
at p if and only if E, and therefore f, has CM. This result can be extended
partially to the cases where f corresponds to a modular abelian variety
A of higher dimension and p is not necessarily prime to N. For precise
statements and a general survey of what is known about (1.2) in weight
two, see [Gha04].

In this paper we shall give further evidence in support of (1.2) for
weights larger than two. To state our mairi result, we need some notation.
Let p f denote the reduction of p f at the maximal ideal of the ring of integers
of Kf,o. Say that f is p-distinguished if the reductions of the characters
6 and E in (1.1) are distinct. Let p f denote the mod p reduction of p f .
Finally let M = Q(N/(-I)(P-1)/2p) when p is odd. Then we prove (see
Theorem 18):

THEOREM 2. - Let p be an odd I)rime and let No be an integer
which is relatively prime to p. Let S denote the set of primitive p-ordinary

forms f of 2 and level N = Nopr, for 0, satisfying

(1) f is p-distinguished, and,

(2) p f is absolutely irreducible wilen restricted to Gal(Q/M).
Then the representation pf IGp is non-split for all but finitely many

forms f E S.

In other words if p is an odd prime and one fixes the prime-to-p part
of the level, then only at most finitely many primitive p-ordinary forms f
fail to satisfy (1.2), at least under the t,echnical conditions 1 and 2 above.
In particular, the theorem shows that non-CM forms satisfying (1.2) are
ubiquitous.

Theorem 2 follows from a similar result for A-adic forms. Since this

result is of independent interest, we give a brief exposition of it now, leaving
details to the main body of the paper.

Let p be an odd prime and let A = Zp[[X]] be the power series ring
in one variable over Zp. Let ,~’ be 3L primitive p-ordinary A-adic form and
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let PF be the associated Galois representation. As in the classical situation,
the representation turns out to be ’upper triangular’. Hence there
are analogous notions of what it means for the A-adic form o to be p-

distinguished, and for the representation to split. One may also
speak of the residual representation p~- of PF. Finally, A-adic forms, like
their classical counterparts, are of two types, CM and non-CM. We can
now state the following result (see Theorem 13 below):

THEOREM 3. - Let p be an odd prime and let T be a primitive
p-ordinary A-adic form. Assume that

(1) .~ is p-distinguished, airld,

(2) PF is absolutely irreducible when restricted to Gal(Q /M) .
Then PFIGp splits if and only has CM.

The proof of Theorem 3 forms the heart of this paper. The key issue is
whether there are infinitely many weight one specializations of 0 that are
classical weight one cusp forms, since as we show, under conditions 1 and
2 above, this is equivalent to both PTIG, being split and J’ being of CM
type. A recent result of Buzzard, which allows one to tell whether a p-adic
Galois representation arises from a classical weight one cusp form, plays an
important role here. In fact conditions 1 and 2 are needed in Theorem 3 in
order to apply the main result of [Buz03].

Theorem 2 follows naturally from Theorem 3. Details may be found
in Section 4, but the main point is that if p~ does not split at p then

p f does not split at p for all but finitely many specializations f of .~’ of
weight larger than two. The proof of this last statement is essentially an
elaboration of the Weierstrass preparation theorem which implies that once
a power series in A is non-zero, then it can specialize to zero only finitely
often. Note that conditions 1 and 2 are needed in Theorem 2 because of

the analogous conditions in Theorem 3.

Using deformation theory, it is possible to give examples of primitive
p-ordinary A-adic forms J’ which do not have CM and for which all

the classical weight 1~ &#x3E; 2 specializations have locally non-split Galois
representation. This is shown to hold in [Va05] for the 23-adic family J’
containing the Ramanujan A function. Interestingly, the members of this
family do not satisfy condition 2 in Theorem 2 above.

Finally, let us remark that Question 1 is related to work of Coleman
on the image of the p-adic derivation 8 on p-adic modular forms (see
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[Col96], especially p. 232, Remark 2) and to the work of Buzzard and
Taylor on the existence of pairs of characteristic zero companion forms
[BT99], Theorem 2. This is explained in [Gha05].

2. A--adic forms.

To begin, we recall some of the theory of A-adic forms due to Hida.
References for this material are the papers [Hid86a], [Hid86b] (for p &#x3E; 5),
and [Wi188] and Chapter 7 of [Hid93] (for general p). In the rest of this
paper we will assume that p &#x3E; 3.

Let A = Zp[[X]], let K denote a finite extension of the quotient field
of A and let L denote the integral closure of A in K. Let ( denote a p-power
root of unity in Qp and 1 be a positive integer. The assignment
J~’2013~((l+p)~2013 1 yields an algebra homomorphism

We shall say that a height one prime P E Spec(L) Qp) has weights k if the
corresponding A-algebra homomorphism P : L --+ Qp extends on A for

some k ) 1 and some (. In addition we say that P is arithmetic if P has
weight k ) 2. In the sequel we will need the notion of the specialization of
an L-valued object B at a height orie prime P : L --&#x3E; Qp. This object is Qp-
valued, and is obtained from B by composing B with the homomorphism
P. It is denoted by P(B).

Now fix an integer No which is prime to p. We will need the following
Dirichlet characters:

. A given character 0 modulo I Vo p.

. The Teichmfller character w ~of conductor p.

. The character XC mod par for each root of unity ( of order pr-l with
r &#x3E; 1, defined by first decomposing

where the second factor is generated by 1 + p, and then by setting

on and

Note that X = is a Dirichlet character modulo N = Nopr for
each integer k ) 1 and each root of unity ( of exact order r &#x3E; 1.
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Now consider a point Spec(L) (Qp) as above, so that P extends
the homomorphism ~Ok,( : X ~-4 ((I +p)k _ 1 of A. If ( has exact order 
r &#x3E; 1, we put and We call N and

X the level and character of P respectively. Note that the level N is always
divisible by p, even if the p-component is trivial. Finally let Sk (N, x)
be the space of classical cusp forms of weight k, level N and character x.

DEFINITION 4. - Let denote a formal

q-expansion with coefficients E L. Then .~’ is said to be a A-

adic cusp form of level No and characte~r ~ if for each arithmetic point
~’ E Spec(L)((Qp) lying over ~~,~, with 1~ &#x3E; 2 and C of order pr-l, r ~ 1,
the specialization

is the q-expansion of a classical cusp form f E Sk (N, x) of level
N = Nop’~ and character X = 

We say that F is normalized if = 1. We say that .~’ is a A-

adic eigenform of level No if every arithmetic specialization f = is

an eigenvector for the classical Hecke operators T~ for all primes with
i t No p, and for U£ if flNop. In particular, we require that each f = P(0)
is an eigenvector for Up.

Let f E be any eigenvector for all the operators TE with
i { N. Atkin-Lehner theory implies that one can associate to f a unique
primitive form f * of minimal level dividing N which has the same eigen-
values as f for almost all primes l. We say that a A-adic eigenform F
of level No is a newform of level No if for every arithmetic specialization
f = P(J’) E Sk (N, X), the associated primitive form f * has level divisible
by No. Finally, let us say that F is primitive of level No if it is normalized
and is a newform of level No.

There is an extensive theory of forms due to Hida [Hid86a],
[Hid86b] under the additional assumptions of ordinariness, which we de-
scribe now. Let f be a normalized eigemform for all the Hecke operators of
level N = with (No, p) = 1 and r ~ 1, and weight k ) 2. Assume
that f * has level divisible by No. We say that f is p-stabilized if either f
is p-new and is p-ordinary, or f is p-oJ.d, and is obtained from a primitive
p-ordinary form f o of level No by th,e formula f ( z ) - f o ( z ) - ~3 f o ( pz ) ,
where B is the non p-adic-unit root of
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One checks that f is actually an eigenform of all the Hecke operators of
level No p, with UP eigenvalue equal to a, the unique p-adic unit root of
Ep (x) . We say that a primitive A-adic form of level No is 0-ordinary if each
arithmetic specialization P(F) is a p-stabilized form in Sk (N, X), where
k, are the weight, level, and character of P respectively.

THEOREM 5 ([Hid86b], Cor. 1.3). - Let p ~ 3 denote a prime
number. Let No denote a fixed integer with (No, p) = l, and let 0 denote
a character modulo Nop. Then the following statements hold.

(1) There are only finitely many primitive p-ordinary A-adic forms of
level No and character 0.

(2) Any p-stabilized cusp form f of weight I~ ~ 2 and level N = Nopr
for r &#x3E; 1 occurs as the arithmetic specialization of some primitive p-
ordinary A-adic form F of level No, for suitable 0.

(3) The form F in part (2) is unique up to Galois conjugacy.

As we have already remarked, Hida states his theorems in [Hid86a],
[Hid86b] for p ~ 5; the extension to p = 3 is sketched in [Hid93], via the
method of [Wil88]. Let us also make a remark about terminology: since the
primitive A-adic forms occurring in this paper are all p-ordinary, we will
from this point on use the adjective ’primitive’ to describe those A-adic
forms that are primitive and p-ordinary.

3. Local Splitting of A-adic Representations.

Let F E be a primitive A-adic form of level No. Write K = KT-
for the quotient field of L. Then Hida attaches a Galois representation

to F such that for each arithmetic point P of L, P(pT), the specialization
of p~ at P, is isomorphic to the representation p f attached to ,f = P(J’)
by Deligne.

One has to be a little careful about considering specializations of the

GL2(KF )-valued representation PF, since the entries of a matrix realization
of PF will in general have non-trivial denominators and the corresponding
rational functions will have poles. Note however that if £ is a prime number
such that £ { Nop, then the trace is given by
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It can be shown that for any arithmetic point P, there exists a realization of
PF that is well-defined at P, and that the specialization of p~- at P is well-
defined (because the traces are in L, and are independent of the particular
realization by matrices). Under the hypotheses 1 and 2 of Theorem 3, it

can be shown that PF may even be realized by matrices in GL2 (L), but we
will not need this in our arguments.

The restriction of p~- to Gp also turns out to be ’upper triangular’.
More precisely the representation has the following shape:

where EF,8F : Gp -~ are characters with 6jF unramified, and 

Gyp - K, is a map that again is not necessarily a homomorphism. As in
the classical case there is an obvious notion of what it means for PF to be

split at p. Similarly, let

be the associated cocycle (in this context see also the work of Mazur-
Tilouine [MT90]). Then the representation

splits if and only if in

The following question is the natural analogue of Greenberg’s question
in the A-adic setting.

Question 6. - Say .~’ is a primitive A-adic form. When is the repre-
sentation split? Equivalently when is the cocycle a coboundary?

To answer this question, we introduce the notion of complex multi-
plication in this setting.

DEFINITION 7. - A A-adic form 0 is said to have complex mul-
tiplication (or CM) if some arithmetic specialization f = P(0) has

complex multiplication.

PROPOSITION 8. - primitive A-adic form with CM then

every arithmetic specialization of F has CM.

Proof. Let ,f be an arithmetic specialization of 0 of CM type.
Since f is p-ordinary 2, an easy check using Galois representations
shows that p must split in K. When p is split, Theorem 7.1 in [Hid86a]
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implies that the CM form f is the specialization of an explicit primitive A-
adic all of whose specializations have CM. The proposition results
now from the uniqueness assertion in part (3) of Theorem 5. D

Remark 9. - It follows from the proposition that if a primitive A-
adic form .~’ does not have CM then no arithmetic specialization of 0 has
CM. In particular if f is a classical p-stabilized primitive form of weight
1~ &#x3E; 2 then the A-adic form .~’ containing it is of CM type if and only if f
has complex multiplication.

Remark 10. - The construction i of ordinary A-adic CM forms in

[Hid86a] is based on the construction of a certain A-adic Hecke character

~ : We will give a variant of this construction in the
course of proving proposition 14. See also the discussion in [Hid93], pp. 235-
236. Now, if P is an arithmetic point of weight k in Spec(L) (Qp) , then the
specialization ~= 03A6(P) is a Qp-valued character of Gal(Q/K) with infinity
type (k - 1, 0) and f = is the C’M theta series associated by Hecke
to 0. This holds also when P has weig;ht one, but if 0 is stable under the
action of Gal(K/Q), then the form f degenerates to an Eisenstein series.
On the other hand, there are A-adic fo rms without CM which have weight
one specializations of CM type (see [Hid93], p. 237). However, we shall
prove (see Proposition 14) that if a primitive A-adic form ,~’ has infinitely
many weight one specializations that are classical weight one forms with
CM thenF0 is necessarily of CM type.

Remark 11. - There is an analogue of part (3) of Theorem 5 for p-
stabilized forms of weight one. Namely, it can be shown (under a hypothesis
similar to condition 1 in Theorem 2)~ that any such weight one form is
contained in a unique A-adic form, ul) to conjugacy. This does not follow
from Hida’s theory. Rather, it follows from an analysis of deformations of
weight one forms. For a detailed study of this kind of deformation theory,
the reader is referred to forthcoming work of the second-named author and
Ralph Greenberg [GV03].

PROPOSITION 12. - Let ,~’ be a primitive A-adic form with CM.
Then pjF splits on Gp.

Proof. - It follows from the fact that J’ admits an arithmetic

specialization f that is ordinary and of CM type that the prime p is

split in K. Following Hida’s constriiction of CM forms in Theorem 7.1
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of [Hid86a], one checks that pop is given explicitly
by Indo (~) where D is the A-adic Hecke character mentioned in
Remark 10. It follows that the restriction of PF to Gal(K/Q) decomposes
as 4) 0 ~ where (D is the conjugate of (D under Gal(K/Q). Since p is split,
we have Gp C Gal((Q/K), and PF splits on Gp as well. D

To state the next theorem fix: a primitive A-adic form 7. Let

denote the reduction of p, corresponding to the maximal ideal mL of
L. Here = is a finite field of characteristic p. Equivalently PF
is the reduced representation p f associated to one (hence all) of the

Deligne representations pf as f varies through the classical arithmetic
specializations of T. We say that ,F is p-distinguished if the characters b,~
and E~ appearing in (3.1) have distinct reductions modulo It follows

that ,~’ is p-distinguished if and onl: y if f is p-distinguished for one (therefore
every) arithmetic specialization f of ,~’.

The following theorem (which is a restatement of Theorem 3 above)
is the A-adic analogue of Theorem 2 in the introduction. It says that

the answer to the A-adic analogu e of Greenberg’s question (Question 6)
is what one expects, at least under certain technical conditions on the

representation 

THEOREM 13. - Let p be .an odd prime. Let F be a primitive A-
adic form such that

(1) F is p-distinguished, and,

(2) p,~- is absolutely irreducible when restricted to Gal(Q/M).
Then split if and has CM.

We will in fact prove a more informative result:

PROPOSITION 14. - Let p b-e an odd prime and be a primitive
A-adic form satisfying the conditio11S 1 and 2 of the theorem above. Then
the following statements are equivalent.

(i) sPlits.

(ii) T has infinitely many weigfi,t one specializations that are classical.

(iii) F has infinitely many weight one specializations that are classical
CM forms.
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(iv) is of CM type.

The theorem simply states that (i) ~ (iv). Observe that (iv) ~
(i) is just Proposition 12 above. We will show (i) ~ (ii) ~ (iii) ~ (iv)
under conditions 1 and 2 above. In fact these conditions are only needed
to show that (i) ~ (ii), although condition 2 is used in a weak way in the
proof of (ii) ~ (iii).

Proof of (i) ~ (ii). - We want to study the weight one specializa-
tions of 7. So say .~ has q-expansion in L ~ ~q~ ~ . Let P be a weight one point
of L. It is known (see, for instance, [MW86]) that the specialization of F at
P may not be a classical form of weight one; equivalently the specialization
of PF at P may not be the representation attached by Deligne and Serre to
a classical weight one form. However, we claim that under the hypothesis
that is split, and conditions 1 and 2 above, infinitely many weight
one specializations of .~’ are classical weight one forms. To prove this we
use a result of Buzzard [Buz03], to be stated shortly, which gives conditions
under which a p-adic Galois representation arises from a classical weight
one cusp form. The main result of [Buz03] extends earlier work of Buzzard
and Taylor [BT99], but it is really the new result of Buzzard that we need
here since this result allows the p-adic Galois representation to be ramified
at p.

Let No denote the level of ~’ and let ~p be the character
modulo No p which is the character of 0. Let x : GQ - A~ be the character
obtained by composing the projection

where is the cyclotomic Zp-extension of Q, with the character

which takes (1 +p)~ for s E ~p to (1 + X)~ E Finally let v : Go - 
denote the p-adic cyclotomic character. Then it is known that

Since the specialization of x at for k ) 1 is easily checked to be

W-kVkX( we see that the specialization of det(p~-) at is XVk-1 with
x = This is of course compatible with the well known formula
for the determinant of a Galois representation attached to a classical cusp
form of weight k ) 1 and nebentypus x.

By assumption PF is split on Gp. In view of (3.1) we have
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since,E,-x- is trivial on Ip and therefore 6 , = on Ip. Let P be a weight
one point of L extending (pl,( : A --~ Qp. It follows that P(PF) = pp(j,) has
the following shape on Ip :

Note that the character ’ljJw-lX( has finite order.
We now state the above mentioned result of Buzzard. To do this we

need some notation. Let C~ denote the ring of integers in a finite extension
of Qp. Let p : Gal(Q/Q) ----* GL2 (O) be a continuous representation. Let A
denote the maximal ideal of C~ and let p denote the mod A reduction of p.

THEOREM 15 (Buzzard [Buz03]). - Assume that

o p is ramified at fini tely many primes,

. p is modular,

. p is absolutely irreducible when restricted to Gal(Q /M) ,

. is the direct sum of two distinct character c~ and 0~

such that the reductions of a mod A are distinct characters,
and cx(Ip) and j3(Ip) are finite.

Then p is modular, in the sense that there is a primitive cusp form f
of weight one and an embedding t : C~ ~ C such that t o p is isomorphic to
the classical representation attached to f by Deligne and Serre.

We have already verified all the hypotheses of the theorem for the
representation p = p p(~) . Indeed, the first two hypotheses are automati-
cally satisfied in our situation. The latter two hypotheses follow from the
conditions 1 and 2 imposed on and from (3.3) which shows p = pp(~)
acts on Ip by the finite order character X - and the trivial char-

acter. Thus we deduce that p = PP(F) is isomorphic to the Deligne-Serre
representation p f where f is a primitive weight 1 cusp form, necessarily of
level N = No pr and character where ( has exact order for

r &#x3E; 1. Here we have suppressed mentioning the embedding t in the dis-
cussion. As we vary the point P, and therefore r &#x3E; 1, we obtain infinitely
many classical weight 1 specializations of F as required.

(ii) F (iii). - We now show that if a primitive A-adic .~ form
has infinitely many classical weight one specializations then it must have
infinitely many weight one specializations of CM type. Once and for all we



2155

pick an embedding of Qp ~ C so that all the weight one specializations p f
of pop take values in GL2 ((C) . Let

denote the projectivization of pf. It is well known that the image of

p f is a finite subgroup of PGL2(C) which, according to a now standard
classification, is either

~ cyclic,

~ dihedral, or,

~ A4, A5 or 34.

Since there are infinitely many classical weight one specializations f
of o, one of the three possibilities has to occur infinitely often.

The first possibility is automatically excluded since f is a cusp form
and p f is irreducible (by condition 1 even the reduction is

absolutely irreducible on Gal(Q/M)) whereas if the image of fig for a

weight one modular form g is cyclic then g is an Eisenstein series and

p9 is reducible.

On the other hand by (3.3) the image of h in GL2 ((C) has trivial
intersection with the scalar matrices, so that the image of Ip injects into
PGL2(C). Since the order of is at least the order of ( which is
pr-1 say, for r ~ 1, the order of the image of inertia in PGL2(C) increases
without bound as r increases. But the groups A4, A5 and 64 have bounded
order. It follows that only finitely many weight one specializations f of .~
are of the third kind.

Thus, the only possibility is that the image of p f is dihedral for

infinitely many weight one specializations f of 0. In this case each pf
is induced from a finite order Hecke character 0 of some quadratic field K
of Q. Since the conductor of p f is Nope and the discriminant of K must
divide the conductor we see that there are only finitely many choices for
the field K. So one of these quadratic fields K has to occur infinitely often.
We fix one such and call it I~ again. Now let a be a generator of Gal(K/Q)
and let H = Gal(Q/ K). Then P¡IH (D ~~, and the nontrivial element
a of Gal(K/Q) interchanges ~ and ~03C3.

Since f is p-ordinary clearly p cannot be inert in K, since in this case

p f is irreducible on the decomposition group at p. If p = p 2 is ramified in

K then the p-ordinariness of f forces 0 to be unramified at p. It follows
that in this case at most one power of p can divide the level of f. But the
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forms f have level Nop’’ for r arbitrarily large. So p does not ramify in K
either. It follows that p = must split in K.

The p-ordinariness of f then shows that 0 must be ramified at exactly
one of the two primes p and ~~ for r sufficiently large. Indeed (3.3) shows
that exactly one of the two characters through which inertia acts is non-
trivial when r &#x3E; 2. On the other hand since Ip = Ip C H we see that p f
acts by the two characters ~ and 0’ on H. So exactly one of 0 and 0’
is ramified at p, or equivalently, 0 is ramified at exactly one of p and ~a .
Without loss of generality we may assume that infinitely many of the 0 are
ramified at p (and not art 1’0").

We now claim that K must be an imaginary quadratic field. To see
this we need the following lemma.

LEMMA 16. - Let F be a real quadratic field. Let p be a split prime
of F, let no be any ideal of F prime to p and let v be the formal product
of a subset of the tuTo infinite places of F. Then the ray class field modulo

has bounded order as r tends to oo.

Proof. This follows from class field theory. Assume no = 1 and

v = 1. Let denote the ray class group of F modulo .p’’, and let CIF
denote the class group of F. Then the exact sequence

shows that the ray class field modulo ~’’ has order hF where hF is
the class number of F and is the index in of the subgroup
generated by the image of C7F under the natural map C~F -~ 
So it is enough to show that the index is bounded independently of
r. Let 0’ denote the subgroup of C7F consisting of those global units that
map to the principal units under the natural inclusion C7F ~ 
Then it is an immediate consequence of Leopoldt’s conjecture (which is
trivial in this case since F/Q is quadratic, and the unit group has rank 1)
that the closure of O% in has finite index in 0’, It follows that the
closure of 0 ~ in is also of finite index in 0 ~,p’ say this index is M.
Since O) , = one see that M, for all r, proving theF p -

lemma in the case no = 1 and v = 1. The proof of the general case is no
more difficult. 0

Suppose, towards a contradiction, that the quadratic field K = F
above is real. Then by the lemma there are only finitely many characters ~
of conductor dividing NopOOy where v is the formal product of the infinite
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places of K. But we have just produced infinitely many characters ~ of
this type. So K is an imaginary quadratic field, as claimed. In particular
infinitely many of the classical weight one specializations f of T are of CM
type, as desired.

(iii) F (iv). - Now consider a primitive A-adic form .~’ of level No
which admits infinitely many weight one specializations f = E 0(a)q N(a)
of CM type, coming from finite order characters ~ on the fixed imaginary
quadratic field K. By ordinariness, each 0 can be taken to be ramified at
p and unramified at .p~ . We now show that there is a form F’ of CM type
which simultaneously interpolates infinitely many of these CM forms.

To do this note that for each 0 above there is a decomposition
0 - ot - Øw where r~t has order prime to p and Øw has p-power order. Since
the reductions of the 0 must all be the same (the forms f are specializations
of the same A-adic form) the Ot must in fact all be equal. On the other
hand if q is a prime of ~ with q I No then the restriction, say of 4Jw to

Iq is tamely ramified and of p-power order, so there are only finitely many
possibilities for øq. In what follows we may assume that the infinite set of
characters 0 above all have the the same Ot and the same øq for each q I No.
Fix any one such 0 and call it 4Jo.

Set /3~ == ~~01. Then ,C3~ has p-power order and is unramified outside
p for each 0. In particular ,~~ is a character of the ray class

group modulo for some m sufficiently large depending on 0. The
exact sequence (3.4) above, for .F~ instead of F, shows that 
lim CIK has the following structure as an abelian group:
~

where T is finite and r  Zp. Each 00 may be viewed as a character of
C1K(P~).

Since the character group of T is finite, there is a character J3T of T
such that ~30 = J3T on T for infinitely many 0. We restrict our discussion
below to such 0.

Now let Lo be the completed group algebra Zp[[r]]. Then the projec-
tion

gives a character ~o : I Let
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Then factors through and identifies with

a finite index subgroup h~ of r C L~. In fact, rQ is the image under

(Do of the inertia group Thus we may view Lo as a Ao-algebra, where
Ao = zp []P(Q]. If we fix generators w and u of 

r and respectively, with
for p’~ = [r : then Lo ~ with w H 1 + Y and

with and

Now, any character 00 _ satisfying {34&#x3E; = #T on T is uniquely
determined by the number ( = 00(w) C= Thus the specialization of (Do
under Y - ( - 1 is the character ,~~/,~T, and 4to interpolates the characters

Thus to get a A-adic interpolation of the characters 0, we have to
twist by the fixed character and normalize correctly.

Recall that the character 00 is such that the CM form f o associated
to 00 occurs as the specialization of the A-adic form 0 at some prime ideal
of weight one. According to our normalizations, the character of f o has the
form for some qo e Let (o be such that (a pr = ?7o’

Now let L = 0[[F]], where (1 + Y ) P~ - (1 + X) and C~ is the ring of
integers in a finite extension of Qp containing the values of oo, flT , together
with (o and t = (1 Let T denote the automorphism of L defined by
the change of variables We think of ~o as taking
values in L~. Consider the character V : L’ defined by

Then one checks readily that if 0 is one of the infinitely many Hecke
characters as above, corresponding to a CM specialization f of 0 with
character given by then the specialization of 03A6 under Y - (t - 1
coincides with 0. Here ( is determined by the requirement that (P’~ = q.
Since clearly the point Y - ~t -1 lies above the point X - r~(1 ~- p) -1, we
find that the formal q-expansion is a A-adic CM form

interpolating infinitely many CM specializations of .~’. One may further
check that ,~’’ is a primitive form of level No.

Let GA denote the absolute Galois group of the quotient field of A.
We now show .~’ and are Galois conjugates, that is .~’ = (~)~ for some
T E GA.

LEMMA 17. - Let F and F’ be two primitive A-adic forms of level
No vrrhich have infinitely many specializations in common. Then T and ,~’’
are Galois conjugates.

Proof. Say and
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Let H be the A-adic Hecke algebra of Hida of level No. Then F
and F’ define algebra homomorphisms A, : H ~ L and AT, : H - L’

respectively. Let Q and Q’ denote the minimal prime ideals of H which
are the respective kernels of these homomorphisms. Since .~’ and ,~’’ have

infinitely many specializations in common there are infinitely many pairs
of algebra homomorphisms anc such that

P o ÀF = P’ o ~~~ _ ~ p~ p~ , say. Then the kernel of Ap,p, is a height one
prime of H containing both Q and Q’ and there are infinitely many such
primes by hypothesis. We claim that this forces Q = Q’. Indeed if Q # Q’
then H/I , for I = Q + Q’, has only finitely many minimal prime ideals
(it is Noetherian). This set of prime ideals is in bijection with the height 1
prime ideals of H containing both Q and Q’. It follows that Q = Q’. We
conclude that T and F’ are Galois conjugates. 0

Returning to our situation, the infinite set of CM forms corresponding
to the characters ~ are specializations of both F and F’. After the lemma
we have .~’ _ (0’)~ for some T C GA. Since F’ is a CM form, so is (0’)~.
We conclude that ,~’ is of CM type, completing the proof that (iii) - (iv).
This also completes the proof of Theorem 13.

4. Descending to the Classical Situation.

In this section we deduce our main result, Theorem 2, from its A-adic

analogue, Theorem 13. Let p be an odd prime and No an integer that is

relatively prime to p. The following theorem is a restatement of Theorem 2.

THEOREM 18. - Let S denote the set of primitive p-ordinary forms
f of weight k ) 2 and level N = Nopr, for r &#x3E; 0, satisfying

(1) f is p-distinguished, and,

(2) p f is absolutely irreducible when restricted to Gal(Q/M).
Then for all but finitely many f C S, the representation splits

if and only if f has CM.

Proof. By part (3) of Theorem 5, each of the forms f E ,S’ is

the arithmetic specialization of a primitive A-adic form of level No, which
is unique up to conjugacy. By part (1) of the same theorem, there are
only finitely many such A-adic forms. So it suffices to prove the theorem
for the subset S~- C .~’ consisting of those f E ,S’ which are arithmetic
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specializations of the same primitive A-adic form ~’ of level No. The
conditions 1 and 2 above then imply the analogous conditions namely
T is p-distinguished and pz is absolutely irreducible when restricted to
Gal(Q/M).

As always if f E 5~ has CM then p¡lcp splits. So we may as well
assume that no specialization of .~’ is of CM type, in other words that ~’
does not have CM. It follows from Theorem 13 that PFlcp is not split. We
now show that this forces to be non-split for all but finitely many
f E ST. To see this suppose that .~’ E L[[q]]. Then

where q denotes the order of the residue field of L. Since both 6j, and EF are
L~ valued we may decompose these characters as 6T = 6t6w and 6jF = etew
according to the decomposition of L above. Let Et denote the union of the

finitely many tamely ramified abelian extensions of Qp of order dividing
q - 1, let Ew denote the maximal abelian pro-p extension of Qp, and let
E = Et . E~, denote the compositum. Set H = Gal(Qp/E). Then 6t and Et
are trivial on whereas 6w and Ew are trivial on Gal(Qp /Ew).
It follows that 6, and 6jF are trivial on H and hence:

for some homomorphism A : H - L.

We first show that the homomorphism A is non-zero. Let Cjp denote
the cocycle defined in (3.2). Since is non-split, the corresponding
cohomology class 0.

LEMMA 19. - The restriction map

is injective.

Proof. It suffices to show that

since the above group is the kernel of the restriction map by the inflation-
restriction sequence. But A = Gal(Et/Qp) is a finite group and r =

Gal(Ew/Qp) is well known to be isomorphic to r1 x r2 where each ri = Zp.
Hence
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The first cohomology group on the right vanishes since A is a finite group.
On the other hand if A acts non-trivially on then the second

group also vanishes. So we may assume that -

But

One may check that is a non-trivial character of r 1 x r2. Without
loss of generality assume that is non-trivial on r2. Then again the
first cohomology group on the right vanishes. As for the second we may
assume that acts trivially on r1 in which case this group is

where q2 is a topological generator of 1,2. This proves the lemma. 0

By the lemma the restriction to H of the cohomology class [cT] is

still non-zero. It follows is non-split, and that the homomorphism
A : H --~ L is non-zero.

Let I denote the non-zero ideal of L generated by the image of A.
Since the intersection of infinitely many height one primes of L is the zero
ideal, I is contained in only finitely many height one primes of L. Let
f = P(,T7) E S’~ be an arithmetic specialization of ~. Then splits if
and only if I C P. If follows that does not split for all but finitely
many specializations f E In particular is non-split for all but
finitely many f E This proves the theorem. 0
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