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Abstract: Let B be the Bergman kernel on the domain of n × m con-
tractive complex matrices (m ≥ n ≥ 1). Let W = Wn,m be the associated
Wallach set consisting of those λ ≥ 0 for which Bλ/(m+n) is ( non - negative
definite and hence ) the reproducing kernel of a functional Hilbert space
H(λ) = H(λ)(Ωn,m). For λ ∈ W , we examine the mn-tuple M (λ) of opera-
tors on H(λ) whose components are multiplications by the mn co-ordinate
functions. This tuple is homogeneous with respect to the group action of
SU(n,m) on the matrix ball. Utilising this group action we are able to
determine the set of all λ ∈ W for which (i) M (λ) is bounded, and for
which (ii) M (λ) is (bounded and) jointly subnormal. Further, the joint
Taylor spectrum of M (λ) is determined for all λ as in (i). The subnormal-
ity of M (λ) turns out to be closely tied with the representation theory of
PSU(n,m). Namely, M (λ) is subnormal precisely when the natural (pro-
jective) representation of PSU(n,m) on the twisted Bergman space H(λ) is
a subrepresentation of an induced representation of multiplicity 1. Finally,
we examine the values of λ for which M (λ) admits its Taylor spectrum
as a k-spectral set, and obtain incomplete results on this question . This
question remains open and interesting on n − 1 gaps, that is, for λ be-
longing to the union of n− 1 pairwise disjoint open intervals. Most of the
techniques developed in this paper are applicable to all bounded Cartan
domains, though we stick to the matrix domains In,m for concreteness.
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1 Introduction and main results

1.1 The twisted Bergman Spaces

Let m ≥ n ≥ 1 be integers. Throughout this paper Ω = Ωn,m will denote the open
unit ball of the Banach space Cn×m of n×m complex matrices with operator norm. H
will denote the Bergman space on Ω ; it is the Hilbert space of analytic functions on
Ω which are absolutely square integrable with respect to Lebesgue measure. It is well
known that H is a functional Hilbert space with reproducing kernel B, the so-called
Bergman kernel, given by :

B(z, w) = det(In − zw∗)−(m+n), z, w ∈ Ωn,m. (1.1)

Here In is the identity in Cn×n, and ∗ is matrix adjoint.
The Wallach set W = Wn,m associated with the above set up is the set of all

complex numbers λ for which B(λ) def
= Bλ/(m+n) (pointwise power) is a non-negative

definite kernel on Ω. The set W has been determined by several authors (see [5] and
[10]). It is :

W = Wd ∪Wc, (1.2)

where Wd, the discrete part of the Wallach set, and Wc, its continuous part, are given
by :

Wd = {0, 1, ..., n− 1}, Wc = {λ : λ > n− 1}. (1.3)

The standard theory [2] of functional Hilbert spaces implies that for each λ ∈ W ,
there is a uniquely determined Hilbert space H(λ) = H(λ)(Ωn,m) of analytic functions
on Ω = Ωn,m whose reproducing kernel is B(λ). These spaces H(λ) are the twisted
Bergman spaces of the title. (Note that for λ = m + n this is the ordinary Bergman
space. Also, as is well known, for λ = m it is the usual Hardy space on Ω. )

For λ ∈ W , we define the mn-tuple M (λ) = (M
(λ)
ij ) of (a priori densely defined,

possibly unbounded) multiplication operators on H(λ) by :

(M
(λ)
ij f)(z) = zijf(z), z = (zij) ∈ Ω, f ∈ H(λ), 1 ≤ i ≤ n, 1 ≤ j ≤ m. (1.4)

This operator tuple M (λ) is the basic object of our study.

1.2 Main Results

Our main results are :

Theorem 1.1 M (λ) is bounded if and only if λ ∈ Wc.

Theorem 1.2 For λ ∈ Wc, the joint Taylor spectrum of M (λ) is Ω̄.
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Theorem 1.3 For λ ∈ Wc, the following are equivalent :

(i) M (λ) is jointly subnormal.

(ii) λ ∈ m+W.

(iii) There is a probability measure µλ supported on Ω̄ such that the inner product
〈·, ·〉λ on H(λ) is given by 〈f, g〉λ =

∫
fḡdµλ for polynomials f, g ∈ H(λ).

(iv) The natural projective representation of PSU(n,m) on H(λ) is a subrepresentation
of an induced representation of multiplicity 1.

Note that: (a) m +W ⊆ Wc ; (b) the polynomials belonging to H(λ) are dense in
H(λ) ( and for λ ∈ Wc, all analytic polynomials belong to H(λ) ), so that in (iii) above,
the probability µλ and the inner product 〈·, ·〉λ determine each other; (c) the natural
representation mentioned in Theorem 1.3 (iv) will be discussed in the next section. For
rest of the terminology in this statement, see [13].

Recall that a d-tuple T of commuting bounded operators on a Hilbert space is said
to admit a compact subset C of Cd as a k-spectral set if for all rational functions p
with poles off C, we have ‖p(T )‖ ≤ k supz∈C |p(z)|. The d-tuple T is said to admit
C as a complete k-spectral set if the same holds for matrix valued p, where |p(z)| is
to be interpreted as the operator norm of the matrix p(z). A famous conjecture due
to Halmos [6, Problem 6] says that : k-spectral implies complete k′-spectral for some
k′ ≥ k [9, Theorem 8.11]. This conjecture, originally stated for a single operator and
open even in that case, makes sense and is equally interesting for operator tuples as
well. This is the problem that originally motivated our study of the tuple M (λ). In
fact, we had hoped for a counterexample to this conjecture (for tuples) among the
tuples M (λ). Clearly a jointly subnormal operator tuple admits the joint spectrum of
its minimal normal extension as a complete spectral set (i.e., k = 1). Therefore, the
above results imply that M (λ) admits Ω̄ as a complete spectral set if λ ∈ m+W . On
the negative side, we find that for λ < m, M (λ) does not admit Ω̄ as a k-spectral set
for any k < ∞. Indeed, this is well known for n = 1 : in this case the monomials are
elements of sup norm 1 whose norm in H(λ), λ < m, goes to infinity as the exponent of
the monomial goes to infinity component-wise. The general case is an easy consequence
of this since Ω1,m sits inside Ωn,m as the set of all n×m contractive matrices all whose
rows, except possibly the first, are zero - and the kernel B(λ) on Ωn,m restricts to the
corresponding kernel on Ω1,m.

It turns out that though the tuple M (λ) appears to have a complicated structure,
the single operator det(M (λ)) has a simple and tractable structure at least in the case
m = n. Namely, we find :

Theorem 1.4 Let m = n. Then for λ ∈ Wc, det(M (λ)) is a direct sum of weighted
forward shifts with explicitly computed weights.

(i) If λ < n (resply if λ ≥ n) then det (M (λ)) does not (resply does) admit the closed
unit disc in C as k-spectral set (resply complete k-spectral set) for any k < ∞
(resply for k = 1).
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(ii) If λ ≥ n then det(M (λ)) is a subnormal contraction and hence admits the closed
unit disc as a complete spectral set.

In view of the results in this paper, the possibility of M (λ) being a counterexample
to the Halmos conjecture remains alive only for λ in one of the n− 1 “gaps” (m+ i−
1,m+ i), i = 1, ..., n− 1. This leads to

1.3 Open Question

(i) For λ in one of the above mentioned gaps, does M (λ) admit Ω̄ as a k-spectral (or
complete k-spectral) set? If yes, what is the best possible value of k = k(λ) ?

(ii) A second question is the extension of Theorem 1.4 to the case m > n. On Ω
there is a special polynomial (a spherical function) which generalises the usual
determinant in the square case m = n. This we call the (generalised) determinant
on Ω, and det(M (λ)) must be interpreted as multiplication by this generalised
determinant. It is not difficult to prove that this operator continues to be a direct
sum of weighted shifts in the case m > n, but explicit computation of the weights
presents unexpected new difficulties.

1.4 Concluding Remarks

Let us say that a functional Hilbert space H of analytic functions on a domain D ⊆ Cd

is a Hardy like space if the polynomials in H are dense in H, and there is a (uniquely
determined) probability measure µ supported in D̄ such that the inner product < f, g >
is given by < f, g >=

∫
fḡdµ, for analytic polynomials f, g ∈ H. Thus, Theorem 1.3

says in particular that Hardy likeness of H(λ) is equivalent to joint subnormality of
M (λ). Of course, when H(λ) is known to be Hardy-like, boundedness and subnormality
of M (λ) are trivial consequences. It is a measure of the success of the techniques evolved
in this paper that the main results outlined do go through even when H(λ) is not Hardy
like. Indeed, as far as we know, there is no prior instance in the literature where the
question of boundedness, subnormality and joint spectrum of a multiplication operator
tuple M on a functional Hilbert space H has been completely settled even though M
is not a joint weighted shift and H is not a Hardy like space. (Clearly M (λ) is not a
weighted shift for n ≥ 2.).

In this connection, it is perhaps worth pointing out that a d- tuple of multiplication
operators on a functional Hilbert space of analytic functions is a joint weighted shift
precisely when it is homogeneous in the sense of [8] with respect to the action of
the d-dimensional torus group, i.e.,the connected component of identity in the full
group of linear isometries of the Banach space l1(d). (Conversely, any joint weighted
shift is unitarily equivalent to such a tuple of multiplication operators.) These are
well understood classes of operator tuples. A natural generalisation of joint weighted
shifts would be the d-tuples of operators homogeneous with respect to the connected
component of identity in the full group of linear isometries of some ‘nice’ norm on
Cd. A natural choice of ‘nice’ norms are those having the Cartan domains as open
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unit balls. The tuples M (λ) belong to this class. Indeed, implicit in our discussion
of boundedness and subnormality of M (λ) are general criteria for boundedness and
subnormality of operator tuples in this general class. For instance, if an mn-tuple of
operators has Ω̄n,m as spectrum, and is homogeneous with respect to the natural action
of S(U(n)×U(m)) on this spectrum, then the arguments leading to Lemma 5.2 below
actually yield a subnormality criterion for this tuple, which is very similar to the usual
moment-sequence criterion [6, p. 895-896] for the subnormality of joint weighted shifts
- with the Schur polynomials taking up the role of monomials.

However, crucial to the techniques used in the determination of the Taylor spec-
trum, and of course in establishing the connection between subnormality and induced
representation, is the fact that M (λ) is homogeneous with respect to the natural action
of an even larger (non-linear, non-compact) group of biholomorphic automorphisms,
namely PSU(n,m), on its spectrum Ω̄n,m. This fact and other preliminaries are de-
scribed in section 2.1. In section 2.2 we derive an explicit formula for the elementary
spherical functions (esf’s) in terms of the Schur plynomials. We also obtain a recursion
formula (Proposition 2.4) for the Schur polynomials of n variables in terms of those
of fewer number of variables. This recursion is used to re-derive Faraut and Koranyi’s
norm formula for the esf’s as elements of the twisted Bergman spaces. While the Fa-
raut - Koranyi proof of their norm formula is computationally simpler, we believe that
ours is conceptually simpler. More over, the formula in [5] is not entirely explicit in as
much as it involves the dimensions of the S(U(n) × U(m))-irreducible spaces. These
dimensions were determined by Upmeier in [12]. On the other hand, we first obtain a
completely explicit norm formula and then use it to re-derive Upmeier’s dimension for-
mula in an elementary way. However, the results in [5] and [12] are for general Cartan
domains, while our proofs apply, as yet, only to domains of type In,m. Our justification
for including the rather lengthy subsection 2.2, devoted mostly to re-deriving known
results, (one exception seems to be the recursion formula for Schur polynomials, which
we could not locate in the literature) is three-fold : (i) we have tried to make this
paper as self-complete and widely accessible as we could, keeping the average operator
theorist reader in mind, (ii) the methods and results developed here will be later used
to prove the results on boundedness and subnormality, and (iii) we have framed the
proofs in such a way that the results here will painlessly generalise to arbitrary Cartan
domains as soon as an analogue of our recursion formula (Proposition 2.4) is available
for the Jack polynomials which play the role of the Schur polynomials in the context
of arbitrary Cartan domains. Precise conjectures generalising the results of this paper
were formulated in [3] where we also announced the results proved here.

The proof of Theorem 1.1, as presented in section 3, works by reducing the question
of boundedness of the tuple M (λ) to that of a single operator, viz. multiplication by
the linear spherical function on Ω. To settle the boundedness of this operator, we
reduce it to the question of positivity of an associated kernel and answer it by invoking
the explicit formulae for the elementary spherical functions. Theorem 1.2 follows fairly
easily from the nature of the action of PSU(n,m) on Ω. The proof given in section 4
does not involve any explicit calculation of Koszul complexes. For the proof of Theorem
1.3, presented in section 5, we first reduce it to the square case (even this reduction
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turns out to be an unexpectedly non-trivial business !). This, as well as the proof of
the part (ii) ⇒ (iii) in the square case depends on the techniques developed in Section
2. Our proof has the advantage of explicitly describing the measures µλ, whenever they
exist.

To establish the part (iii) ⇒ (ii) of Theorem 1.3 in the square case, we have to
pass via the Caley transform to the unbounded realization of Ωn,n as a generalized
Siegel half-plane, and decide the Hardy - likeness of the transformed function space on
the Siegel half-plane. This involves a bit of Fourier analysis on the euclidean space of
self-adjoint matrices.. The relationship with representation theory is obtained by an
appeal to Mackey’s theory of systems of imprimitivity. Finally in section 6, we prove
Theorem 1.4 on the determinant. This involves an examination of the representation
of the maximal compact subgroup of PSU(n, n) on H(λ).

Acknowledgement

We are thankful to V. Pati and V.S. Sunder for many helpful conversations on the
subject matter of this paper. We thank J. Arazy for having written the beautiful
survey article [1] on bounded symmetric domains. Much of what we know about this
subject, we have learnt from this survey. We have freely drawn on this survey through
out this paper, particularly in the next section.

2 Group action and spherical functions

2.1 Group action

Let G denote the connected component of identity in the full group of biholomorphic
automorphisms of Ω = Ωn,m. We have G = PSU(n,m); abstractly it is the group of
linear automorphisms of a non-degenerate unitary form of signature (n,m) on Cn+m,
modulo scalar matrices. Taking (In)⊕ (−Im) as the matrix of such a form, G consists

of the matrices (modulo scalars) g =

(
a b
c d

)
with a ∈ Cn×n, b ∈ Cn×m, c ∈ Cm×n,

d ∈ Cm×m satisfying

a∗a− c∗c = In, d
∗d− b∗b = Im, a

∗b = c∗d, det g = 1.

G acts on Ωn,m as Möbius transformations:

G 3 g =

(
a b
c d

)
: z → (az + b)(cz + d)−1, z ∈ Ωn,m. (2.1)

This action of G on Ω is transitive. Indeed for each w 6= 0 in Ω, there is a unique
involution φw ∈ G which interchanges 0 and w. It is given by:

φw(z) = (1− ww∗)−1/2(w − z)(1− w∗z)−1(1− w∗w)1/2, z ∈ Ω. (2.2)
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Thus as homogeneous spaces, we have the identification Ω = G/K, where K
is the stabiliser in G of 0 ∈ Ω. Explicitly, K = PS(U(n) × U(m)), consisting of
pairs (u, v) of unitaries with det(u) det(v) = 1, modulo scalars. The element (u, v) ∈
PS(U(n) × U(m)) is identified with the element u ⊕ v of G. Specialising (2.1), one
sees that k = (u, v) acts on Ω by

z → uzv∗. (2.3)

The Shilov boundary S of Ω consists of the maximal partial isometries. The action
of G mentioned above extends naturally to Ω̄, and under this action, K is transitive
on S. We fix a base point e ∈ S. For definiteness, we take e ∈ Cn×m given by
e = (In×n, 0n×m−n). Let L be the stabiliser of e in K. Thus we have S = K/L.
Explicitly, L consists of elements (u, v) ∈ PS(U(n)×U(m)), where v = u⊕w for some
w ∈ U(m− n). Thus, abstractly, we have L = PS(U(n)× U(m− n)).

Note that in the special case n = m, S is naturally identified with U(n) and the
action of L on S is that of PSU(n) acting on U(n) by conjugation.

For 1 ≤ j ≤ n, let ej ∈ Ωn,m denote the matrix with 1 in the (j, j) position and 0
elsewhere. Also, let ∆n denote the subset of the n-dimensional box given by

∆n = {(t1, . . . , tn) : 0 ≤ t1 ≤ . . . ≤ tn ≤ 1}. (2.4)

∆n is embedded in Ω̄n,m via the identification

∆n 3 (t1, . . . , tn) ↔
∑

1≤j≤n
tjej ∈ Ω̄n,m. (2.5)

Using polar decomposition, it is easy to see that each K-orbit in Ω meets ∆n in a
singleton. This gives an identification of the orbit space Ω/K with ∆n. Explicitly, the
projection π : Ω −→ ∆n = Ω/K is given by

π(z) = the n-tuple of singular values of z arranged in the increasing order. (2.6)

Note that under this identification, e =
∑

1≤j≤n ej corresponds to the point 1 =
(1, . . . , 1) ∈ ∆n.

For λ in the Wallach set W , g ∈ G acts on H(λ) as an unitary operator U (λ)(g) by
the formula (with J g = the complex Jacobian determinant of g as a function on Ω)

U (λ)(g)(f) = (J g)λ/(m+n)(f ◦ g), f ∈ H(λ). (2.7)

The unitarity of U (λ) on H(λ) is equivalent to the following transformation rule for the
reproducing kernel B(λ) (see [1]) :

Jλ/(m+n)(g, z)Jλ/(m+n)(g, w)B(λ)(g z, g w) = B(λ)(z, w) (2.8)

for g ∈ G, z, w ∈ Ωn,m.
Excepting when λ is an integer, g → U (λ)(g) is not a “genuine” representation, but

is only a projective representation. However for g ∈ K, J g = 1, so that the restriction
of this action to K is a genuine representation of K (acting by composition) on H(λ).
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The decomposition of H(λ) under K - action is described as follows. In the present
context, a signature is an n− tuple s = (s1, . . . , sn) of integers with s1 ≥ . . . ≥ sn ≥ 0.
When wishing to emphasise the parameter n, we shall call this a signature of rank

n. |s| def
=
∑n
j=1 sj will be called the weight of the signature. The group K acts by

composition on the vector space Hom(k) of analytic homogeneous polynomials of degree
k ≥ 0. Under K - action, Hom(k) breaks up into inequivalent irreducible components
indexed by the signatures of weight k. The component indexed by s will be denoted
by Ps. Thus,

Hom(k) = ⊕s:|s|=kPs. (2.9)

The space Ps may be constructed as follows. For z ∈ Ω, and 1 ≤ i ≤ n, let z(i)

denote (temporarily) the top left i× i submatrix of z. Then the conical polynomial Ns

associated with the signature s is defined by

Ns(z) = det(z(1))s1−s2 · · · det(z(n−1))sn−1−sn det(z(n))sn . (2.10)

Thus Ns is a homogeneous analytic polynomial of degree |s| on Ω. Now, Ps is defined
to be the minimal K - invariant vector space of polynomials containing Ns.

It is known thatH(λ) contains all analytic polynomials if and only if λ ∈ Wc. Indeed
for λ ∈ Wd, H(λ) contains precisely those spaces Ps for which λ < j ≤ n ⇒ sj = 0.
Further, the polynomials belonging to H(λ) are dense in H(λ), whence H(λ) is the direct
sum of its subspaces Ps. In particular we have :

H(λ) = ⊕sPs, for λ ∈ Wc, (2.11)

where the direct sum is over all signatures s.
Since the inner product on H(λ) is K - invariant and for distinct signatures s the

representations of K on Ps are inequivalent irreducible representations, Schur’s lemma
implies that the above direct sum is an orthogonal direct sum.

Recall from (2.7) the unitary U (λ)(g) on H(λ) representing g ∈ G. The operator
tuple M (λ) on H(λ) transforms nicely under the G - action. As g is an analytic function
on a neghbourhood of Ω̄, there is no ambiguity in the definition of g(M (λ)); it is just
multiplication by g : g(M (λ))(f)(z) = g(z) f(z), z ∈ Ω, where defined. And we have

g(M (λ)) = U (λ)(g)M (λ)U (λ)∗(g), g ∈ G. (2.12)

In the language of [8], M (λ) is a G - homogeneous tuple of operators.
For use in section 5, we recall that under G - action, the boundary ∂Ω of Ω breaks

up into n orbits

Sj = {u ∈ ∂Ω : rank(In − uu∗) = j}, j = 0, 1, 2, . . . , n− 1. (2.13)

In particular S0 = S is the Shilov boundary of Ω. We have

S̄j = S0 ∪ · · · ∪ Sj, 0 ≤ j ≤ n− 1. (2.14)

Note that the image of Sj under π : Ω̄n,m −→ ∆n is ∆j identified as a subset of ∆n by
∆j = {(t1, . . . , tj, 1, . . . , 1) : 0 ≤ t1 ≤ . . . tj ≤ 1}, 0 ≤ j ≤ n.
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2.2 Spherical functions

A spherical function on Ω is a bounded analytic function ϕ fixed by the group L (acting
by composition). An elementary spherical function (esf) is a spherical function ϕ such
that the minimal K - invariant linear space of functions containing ϕ is K−irreducible.

Each Ps contains, upto scalar multiplication, a unique esf ϕs, which we normalise
by the requirement ϕs(e) = 1. ( Recall that e is the L - fixed base point in the Shilov
boundary S of Ω. ) This indexes the esf’s by the signatures. Note that we have

ϕs =
∫
L
Ns ◦ ` d`,

where the integration is with respect to the Haar probability on L, and Ns is as in
formula (2.10). Also,

Ps =
∨
{ϕs ◦ k : k ∈ K}

where
∨

denotes linear span.
Since Ps is K - irreducible, by Schur’s Lemma it admits an essentially unique

K - invariant inner product 〈·, ·〉s. Being finite dimensional, (Ps, 〈·, ·〉s) is a functional
Hilbert space; say with reproducing kernel Ks. Since the inner product is K - invariant
so is the kernel :

Ks(gz, gw) = Ks(z, w), z, w ∈ Ω̄, g ∈ K. (2.15)

In particular,

Ks(z, e) = Ks(`z, `e) = Ks(`z, e), ` ∈ L.

Thus Ks(·, e) is an L - fixed element of Ps, and hence Ks(·, e) = ϕs after suitable nor-
malisation. Since Ks is K - invaraint and K acts transitively on the Shilov boundary
S, this determines Ks(z, w) for w ∈ S, and hence ( as Ks is coanalytic in w ) for all
w. Namely we get :

Proposition 2.1 Let s be a signature. Then, with suitable normalisation, the repro-
ducing kernel of a K - invariant inner product on Ps is Ks(z, w) = ϕs(zw

∗e).

(Note that this implies, in particular, that for any esf ϕs, the kernel (z, w) → ϕs(zw
∗e)

is non - negative definite.)
Proof: By the preceding discussion, upto scalar multiplication there is a unique K

- invariant kernel on Ps. So it suffices to verify that the kernel (z, w) → ϕs(zw
∗e) is K

- invariant in the sense of (2.15). In view of the action (2.3) of K, we need to show that
for x = zw∗ ∈ Ωn,n and for u ∈ U(n), we have ϕs(uxu

∗e) = ϕs(xe). Define v ∈ U(m)
by v = u⊕ 1. Since (u∗, v∗) ∈ L and ϕs is L - fixed, we have ϕs(uxu

∗e) = ϕs(xu
∗ev).

Since u∗ev = e, this completes the proof. 2

One interesting consequence of this proposition is :

Corollary 2.1 For any signature s, ‖ϕs‖∞ = 1.

( Here, of course, ‖ϕs‖∞ is the supremum over Ω of |ϕs|. )
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Proof: For z ∈ S,

|ϕs(z)|2 = |Ks(z, e)|2 ≤ Ks(z, z)Ks(e, e) = ϕs(zz
∗e)ϕs(ee

∗e) = ϕ2
s(e) = 1.

The inequality is Cauchy-Schwarz applied to the space Ps with reproducing kernel Ks.
Since ϕs is analytic, S is the Shilov boundary of Ω and ϕs(e) = 1, this completes the
proof. 2

Proposition 2.2 : For any signature s, let ϕs and ϕs
∗ denote the corresponding esf ’s

on Ωn,m and Ωn,n respectively. Then these two polynomials are related by

ϕs(z1, z2) = ϕ∗s(z1), z1 ∈ Cn×n, z2 ∈ Cn×(m−n).

Proof: In view of the comments preceding Proposition 2.1, the kernel in this propo-
sition is a scalar times ϕs(z) at w = e. Equating the value at z = e, the scalar must
be equal to 1. In other words, we have ϕs(ze

∗e) = ϕs(z) for z ∈ Cn×m. That is, ϕs(z)
depends only on the first n columns of z.

Embed Ω∗ = Ωn,n in Ω = Ωn,m by z1 7→ (z1, 0). To complete the proof, it suffices to
show that the restriction of ϕs to Ω∗ equals ϕ∗s. The group actions discussed in section
2.1 behave nicely with respect to this embedding; also, clearly, the conical polynomial
Ns restricts to the corresponding conical polynomial N∗

s . It follows that the image
of the space Ps under restriction contains P∗

s . Hence there is a ϕ ∈ Ps, such that
ϕ |Ω∗ = ϕ∗s. Now, for ` ∈ L, ϕ and ϕ ◦ ` have the same restriction to Ω∗. Therefore,
replacing ϕ by its L - invariantisation

∫
ϕ ◦ `d` (integration with respect to the Haar

probability on L) does not change its restriction ϕ∗s. So we may assume that ϕ is
spherical. Since ϕ ∈ Ps, and (as e ∈ Ω∗) ϕ(e) = 1, it follows that ϕ = ϕs. Hence
ϕs|Ω∗ = ϕ∗s. 2

Remark (i): The fact that ϕs(z) depends only on the first n columns of z may
sound incredible until one notices that in the description of the subgroup L of K, we
have singled out the first n columns by the arbitrary choice of e as base point. A more
direct way to establish the same fact is as follows. Put z = (z1, z2), with z1 ∈ Cn×n,
z2 ∈ Cn×(m−n). For v ∈ U(m − n), (1n, 1n ⊕ v) ∈ L, so that L - invariance of ϕs
implies ϕs(z1, z2) = ϕs(z1, z2 · v) for all v ∈ U(m−n). For each fixed z, the polynomial
z2 → ϕs(z1, z2), being an U(m−n) - invariant analytic polynomial, is a constant. Thus
ϕs(z) depends only on z1.

Remark (ii): Let Ω and Ω∗ be as above, and, for any signature s, let Ps and P∗
s be

the spaces of polynomials, on these two domains, indexed by s. Then, by Proposition
2.1 and Proposition 2.2, the reproducing kernel of P∗

s is obtained from that of Ps by
restricting the latter to Ω∗ × Ω∗. Therefore, the theorem in Aronszajn [2, p. 351]
implies that P∗

s is the image of Ps under the restriction map.
Recall from the representation theory of symmetric groups that the Schur poly-

nomial Qn(·|s) corresponding to the signature s is the polynomial in n variables
X = (X1, . . . , Xn) given by :

Qn(X | s) =

 ∑
σ∈Sym(n)

sgn(σ)
n∏
k=1

Xsk−k+1
σ(k)

 ∏
1≤i<j≤n

(Xi −Xj)

−1

(2.16)
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( Clearly this is a homogeneous polynomial of degree |s|. Though named after Schur,
these poynomials were first studied by Jacobi and his student Trudi. In the theory of
symmetric groups the polynomial Qn(· | s) is often denoted simply by {s}. Be warned
that, at any rate, ours is not the usual notation for Schur polynomials. The standard
theory of these polynomials may be found in [7]. )

Now we have the following explicit formula for the esf’s :

Proposition 2.3 For complex numbers t1, . . . , tn, and for any signature s, we have

ϕs(
n∑
j=1

tjej) =
Qn(t1, . . . , tn | s)
Qn(1, . . . , 1 | s)

.

( Here ej ∈ Ω̄ are as in our discussion of Ω̄/K in section 2.1. Since each L-orbit
inside the Shilov boundary S of Ω intersects the torus {∑n

j=1 tjej : |tj| = 1}, the
L - invariant function ϕs is determined on S, and hence by analytic continuation on
the whole of Ω, by its restriction to this torus. Thus the formula in Proposition 2.3
determines the esf’s uniquely, subject only to L - invariance and analyticity. )

Proof: In view of Proposition 2.2, we may (and do) assume n = m.
In this case, the Shilov boundary S of Ω is naturally identified with U(n), and the

action of L = PSU(n) on S = U(n) is by conjugation. Being analytic polynomials, the
esf’s may be identified with their restriction to S = U(n). Thus viewed, they are class
functions on U(n). We claim that upto scaling, the esf’s are irreducible characters of
U(n).

Let ϕ be a spherical function on Ω with ϕ(e) = 1. Then ϕ is an esf if and only if the
minimal K - invariant vector space V of polynomials containing ϕ is K - irreducible.
Since V is spanned by ϕ ◦ k, k ∈ K, this happens if and only if upto a multiplicative
constant ϕ is the only spherical function in V , i.e., if and only if the L - invariantisation
of ϕ ◦ k is a constant times ϕ for every k ∈ K. In view of the specific action of
K = PS(U(n) × U(n)) and L = PSU(n), this shows that an analytic polynomial ϕ
on Ω with ϕ(e) = 1 is an esf if and only if∫

U(n)
ϕ(uvwv∗)dv = ϕ(u)ϕ(w) for all u,w ∈ U(n). (2.17)

( This is, of course, the usual functional equation for spherical functions as defined in
the context of representation theory. )

On the other hand, we claim that a class function χ on U(n) with χ(1) 6= 0 is a
scalar times an irreducible character if and only if∫

U(n)
χ(uvwv−1)dv = χ(u)χ(w)/χ(1) for all u,w ∈ U(n) (2.18)

( More generally, this characterisation is valid for any compact group. )
Indeed, if χ is any irreducible character and π is the matrix representation affording

χ, then putting T =
∫
π(vwv−1)dv for a fixed w ∈ U(n), we find that T commutes

with every π(u), u ∈ U(n), whence T = cI by Schur lemma. Comparing traces, we get
c = χ(w)/χ(1). Now, trace (π(u)T ) = cχ(u), which is (2.18).
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Conversely, if χ is a class function with χ(1) 6= 0 satisfying (2.18), then we take an
irreducible character ψ such that 〈χ, ψ〉 6= 0, multiply both sides of 2.18 by ψ(u) and
integrate with respect to u. Using the fact that ψ also satisfies (2.18), and ψ(w−1) =
ψ(w), we get 〈χ, ψ〉(χ/χ(1)− ψ/ψ(1)) ≡ 0. Hence χ = c · ψ, proving the converse.

Comparing the characterisations of esf’s and of irreducible characters, we find that
esf’s are precisely the functions χ/χ(1) as χ ranges over the analytic irreducible char-
acters of U(n). Since the irreducible character χs with highest weight s = (s1, . . . , sn)
is analytic if and only if sn ≥ 0, this proves ϕs = χs/χs(1) for a signature s. ( To be
precise, a little more work is needed to establish the exact correspondence. We omit
this. For our purpose this formula may be taken to define the esf corresponding to the
signature s, in case n = m. )

The proposition now follows from Weyl’s character formula for U(n) (see [14]) : on
the torus {∑n

j=1 tjej : |tj| = 1} ⊆ U(n), the irreducible character χs of highest weight
s is given by

χs(
n∑
j=1

tjej) = Qn(t1, · · · , tn | s).

2

Corollary 2.2 Let ψ and ϕ be the esfs corresponding to the signatures (1, . . . , 1) and
(1, 0, . . . , 0) respectively. Then for any signature s, we have

(a) ϕϕs =
1

n

n∑
k=1

′

 n∏
i=1

i6=k

(
1 +

εi,k
|i− k|+ |si − sk|

)ϕs+δk ,
(b) ψ ϕs = ϕs+1.

Here δk is the n - vector with 1 in the kth slot and 0 elsewhere, 1 is the n-vector with
1 in all the slots, εi,k = +1 if i > k and = −1 if i < k, and the sum

∑′ in (a) is over
those k’s (1 ≤ k ≤ n) for which s+ δk is a signature.

Proof: By the parenthetical remark following the statement of Proposition 2.3, it
suffices to verify these these two identities for the variable z ranging over z =

∑n
j=1 tjej

with tj ∈ C. In view of Propositions 2.3 and 2.5, these identities follow from

(c) Qn(· | s0)Qn(· | s) =
∑ ′Qn(· | s+ δk),

(d) Qn(· | s1)Qn(· | s) = Qn(· | s+ 1),

where s0 = (1, 0, . . . , 0), and s1 = (1, 1, . . . , 1).
From the defining equation (2.16) one sees thatQn(X | s0) =

∏n
j=1Xj andQn(X | s1) =∑n

j=1Xj. One verifies the identities (c) and (d) by substituting these expressions, mul-
tiplying both sides by

∏
1≤j<k≤n(Xj − Xk) and equating coefficients of like powers.

2

Remark : The identities (c) and (d) above are special cases of the Littlewood
Richardson rule which expresses the product of any two Schur polynomials as a linear
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combination of Schur polynomials. (See [7].) In principle, this rule can be used to
write the product of any two esf’s as a linear combination of esf’s. In [16], Zhang has
generalised the formulae in Corollary 2.2 to all tube like Cartan domains.

For n = 1 the formula (2.16) reduces to Q1(X | s) = Xs. This, together with
the recursion formula in our next proposition, also determines the Schur polynomials
uniquely. To state this formula succinctly, we need some notations.

Notations : For any two finite sets A, B of natural numbers, we put

ε(A,B) = (−1)ν(A,B), where ν(A,B) = #{(x, y) ∈ A× B : x > y}.

If k, ` are natural numbers, A, B are two (disjoint) sets of size k and ` respectively,
such that A∪B = {1, 2, · · · , k+`}, then to any signature s of rank k+` we associate two
signatures sA, sB of rank k and ` respectively, as follows. Say A = {a1, · · · , ak}, B =
{b1, · · · , b`}, where a1 < · · · < ak, b1 < · · · < b`. Then,

sAi = sai
− ai + i+ `, 1 ≤ i ≤ k, (2.19)

sBj = sbj − bj + j + k, 1 ≤ j ≤ `. (2.20)

Note that we then have |sA|+ |sB| = |s|+ k`.
In terms of these notations, we have :

Proposition 2.4 Let k, ` be natural numbers. Then for any signature s of rank k+`,
we have

Qk+`(X1, . . . , Xk, Y1, . . . Y` |s)

=

( ∏
1≤i≤k

1≤j≤`

(Xi − Yj)
−1

)
·
∑
A,B

ε(A,B)Qk(X1, . . . , Xk | sA)Q`(Y1, . . . , Y` | sB),

where the sum is over all partitions of {1, . . . , k + `} into two sets A, B of size k and
` respectively.

Proof: Let Pn(· , s) denote (for the duration of this proof) the numerator of
the formula (2.16) : Pn(Z1, · · ·Zn | s) =

∑
π∈Sym(n)

∏n
i=1 Z

si+n−i
π(i) . Then, with Zi =

Xi for 1 ≤ i ≤ k,Zj+k = Yj for 1 ≤ j ≤ `, n = k + `, we have to show that

Pn(Z1, · · · , Zn | s) =
∑
A,B

ε(A,B)Pk(X1, · · · , Xk | sA)P`(Y1, · · · , Y` | sB).

To see this, write the sum over π ∈ Sym(k+ `) in the definition of Pk+` as a double
sum

∑
A,B

∑ · where the outer sum is over all partitions (A,B) as in the statement of this
proposition and the inner sum is over all permutations π in Sym(k+`) mapping A and B
onto {1, . . . , k} and {k+1, . . . , k+`} respectively. For a fixed (A,B), any such π may be
written as π = (σ, η)◦τ for uniquely determined permutations σ ∈ Sym(k), η ∈ Sym(`).
Here τ is the element of Sym(k+`) (uniquely determined by (A,B)) mapping A and B
onto {1, . . . , k} and {k+1, . . . , k+`} respectively such that the restrictions of τ to A and
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B preserve the natural order. Also, for σ ∈ Sym(k), η ∈ Sym(`), (σ, η) ∈ Sym(k + `)
is defined by (σ, η)(i) = σ(i) for 1 ≤ i ≤ k, and (σ, η)(j + k) = η(j) for 1 ≤ j ≤ `. Now,
the inner sum over π may be rewritten as a double sum over σ ∈ Sym(k), η ∈ Sym(`).
This completes the proof since the notations have been so arranged that (for π, σ, η
related as above) we have sgn(π) = sgn(τ)sgn(σ)sgn(η) = ε(A,B)sgn(σ)sgn(η) and∏n
i=1 Z

si+n−i
π(i) =

∏k
i=1X

sA
i +k−i
σ(i)

∏`
j=1 Y

sB
j +`−j

η(j) . 2

The next proposition is essentially Weyl’s dimension formula for U(n). Apart from
the fact that our derivation of the formula is much more elementary than the usual one
, the identities we come across in the course of this proof will also be useful later on.

Proposition 2.5 For any signature s, of rank n we have

Qn(1, . . . , 1|s) =
∏

1≤i<j≤n

(
1 +

si − sj
j − i

)
.

Proof: Induction on n. It is trivial for n = 1. So assume n ≥ 2 and the formula
holds for smaller rank. By the case k = n − 1, ` = 1 of Proposition 2.4 and the
induction hypothesis, we get, for any x 6= 0,

Qn(1, . . . , 1, 1− x | s)

= x−(n−1)
n∑
k=1

(−1)n−k(1− x)sk+n−k ∏
1≤i<j≤n−1

1 +
s
(k)
i − s

(k)
j

j − i

 ,
where, for 1 ≤ k ≤ n, the signature s(k) is defined by

s
(k)
i =

{
si + 1 if 1 ≤ i < k,
si+1 if k ≤ i ≤ n− 1.

(2.21)

( Thus s(i) is nothing but the signature sA defined previously for the special set A =
{1, . . . , i − 1, i + 1, . . . , n}. ) The limit as x → 0 of the left side of this identity is
Qn(1, . . . , 1 | s), while that on the right is the coefficient of xn−1 in this polynomial in
x. Therefore,the induction hypothesis implies

Qn(1, . . . , 1 | s) =
n∑
k=1

(−1)k−1

(
sk + n− k

n− 1

) ∏
1≤i<j≤n−1

1 +
s
(k)
i − s

(k)
j

j − i

 .
Now, putting xi = si − i+ 1, 1 ≤ i ≤ n, an elementary calculation yields :

∏
1≤i<j≤n−1

1 +
s
(k)
i − s

(k)
j

j − i


= (−1)k−1(n− 1)!

n∏
l=1

l 6=k

(xk − xl)
−1

∏
1≤i<j≤n

(
1 +

si − sj
j − i

)
. (2.22)



14 B. Bagchi and G. Misra

Letting p denote the polynomial p(x) =
∏n−1
l=1 (x + l), and substituting the above ex-

pression in the previous one, we find that to complete the proof, it suffices to verify
the following identity :

n∑
k=1

p(xk)
n∏

i=1

i6=k

(xk − xi)
−1 = 1

for distinct x1, . . . , xn and for any monic polynomial p of degree n− 1.
But this is equivalent to Corollary 2.3 below. 2

Lemma 2.1 Let k, ` be positive integers and let I be an index set of size k + `. Then,
for any k + ` distinct real numbers xi, i ∈ I, we have

∑
A,B

∏
h∈B

xh
p

 ∏
i∈A, j∈B

(xi − xj)
−1

 =
{

0 if p = 0, 1, . . . , k − 1
(−1)k` if p = k;

where the sum is over all ordered partitions (A,B) of I into two sets A,B of size k, `
respectively.

Proof: Thought of as a rational function in the complex variable xi, the left side
is everywhere analytic except possibly for simple poles at the points xj, j 6= i. The
residue at xj is a sum over partitions (A,B) as above. Under the involution on the
set of these partitions induced by the transposition (i, j), the fixed points contribute
0 to this sum, while the contributions due to the pair of partitions in any non-trivial
orbit cancel each other. Thus all the residues are 0, so that the left side is an analytic
polynomial in each xi. But as xi → ∞, this polynomial clearly goes to a finite limit,
and hence it is bounded. By Lieuville, it is independent of each xi and hence is a
constant. Clearly the limit, and hence the constant value, is 0 when p < k. The
limiting value for p = k may be obtained by induction on ` as follows. Clearly it is = 1
for ` = 0. So let ` > 0. Then the limit is (−1)k times a sum as in the Lemma with `
replaced by `− 1 and I replaced by I − {i}. Hence induction completes the proof. 2

We shall use the case ` = 1 of this identity more often than the general result, so
we record it as

Corollary 2.3 For distinct real numbers x1, . . . , xn, we have

n∑
i=1

xpi
∏

1≤j≤n

j 6=i

(xi − xj)
−1 =

{
0 if p = 0, . . . , n− 2,
1 if p = n− 1.

Remark : The identity in Corollary 2.3 is nothing new. For a purely algebraic proof,
and for references to other proofs, see [15].

Proposition 2.6 For λ ∈ W ,

B(λ)(z, w) =
∑
s

ϕs(zw
∗e)/‖ϕs‖2

λ, z, w ∈ Ω.

where the series converges uniformly for (z, w) in compact subsets of Ω× Ω.
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Here, ‖ϕs‖λ is the norm of ϕs as an element ofH(λ) and the sum is over all signatures
s, provided we take ‖ϕs‖λ = ∞ when Ps 6⊆ H(λ).

Proof: Since Ps is K-irreducible and H(λ) is K - invariant, for any signature s
for which ϕs ∈ H(λ), i.e. ‖ϕs‖ < ∞, we have Ps ⊆ H(λ). For these signatures, let
K(λ)
s (·, w) denote the orthogonal projection of B(λ)(· , w) to Ps, and set this = 0 for

the remaining signatures. Then we have B(λ)(· , w) =
∑
sK

(λ)
s (· , w) for each fixed

w ∈ Ω, where the convergence is in norm and hence also point-wise. It follows that∑ ‖K(λ)
s (· , w)‖2 = B(λ)(w,w) and hence∑

|K(λ)
s (z, w)| =

∑
|〈K(λ)

s (· , z), K(λ)
s (· , w)〉|

≤
√
B(λ)(z, z)B(λ)(w,w).

Since z 7→ B(λ)(z, z) is (continuous and hence) bounded on compact subsets of Ω, this
shows that the series

∑
K(λ)
s (z, w) converges uniformly on compact subsets of Ω × Ω.

We have already seen that the pointwise limit is B(λ).
To complete the proof, note that K(λ)

s is the reproducing kernel for the space Ps
with the inner product inherited from H(λ). Hence by Proposition 2.1 K(λ)

s (z, w) =
cϕs(zw

∗e) for some constant c ≥ 0. Now we have

c2‖ϕs‖2
λ = ‖K(λ)

s (· , e)‖2 = K(λ)
s (e, e) = cϕs(e) = c,

so that c = ‖ϕs‖−2
λ and hence K(λ)

s (z, w) = ϕs(zw
∗e)/‖ϕs‖2

λ. 2

In [5], Faraut and Koranyi showed that actually the series in the above Proposition
converge uniformly on Ω × Ω̄. We shall not need this stronger result. These authors
explicitly determine the constants ‖ϕs‖λ. Their formula is for general Cartan domains
and involves the dimension of the space Ps. In view of Upmeier’s formula (Lemma 2.6
and 2.7 in [12]) for this dimension, it reduces to the following Proposition in the case of
the matrix domains Ωn,m. We include an independent derivation of this formula since
it is very crucial to what is to follow.

Proposition 2.7

‖ϕs‖2
λ =

∏
1≤i<j≤n

(
1 +

si − sj
j − i

)−2

·
n∏
k=1

Γ(n+ sk − k + 1)Γ(λ− k + 1)

Γ(λ+ sk − k + 1) Γ(n− k + 1)
.

Note that this formula is independent of m.
Proof: Apply Proposition 2.6 to ‘diagonal’ elements z, w of Ωn,m (i.e. elements of

the form
∑n
j=1 ajej). In view of the formula in Proposition 2.3 for the value of esf’s on

diagonals, this yields

∑
s

‖ϕs‖−2
λ Qn(z1, . . . , zn | s)/Qn(1, . . . , 1 | s) =

n∏
j=1

(1− zj)
−λ

where the sum converges uniformly on compact subsets of the polydisc {(z1, . . . , zn) :
|zj| < 1}. Expand the right side in a power series and for k = 0, 1, . . ., equate the
homogeneous components of degree k of the two sides. This yields :
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∑
s:|s|=k

‖ϕs‖−2
λ Qn(· | s)/Qn(1, . . . , 1 | s) =

∑
s:|s|=k

 n∏
j=1

∣∣∣∣∣
(
−λ
sj

)∣∣∣∣∣
Rn(· | s) (2.23)

where Rn(z1, . . . , zn |s) denotes the sum of all the distinct monomials of the form∏n
j=1 z

sj

π(j), as π varies over Sym(n). That is, letting ω(s) denote the order of the
isotropy group {π ∈ Sym(n) : sπ(j) = sj for 1 ≤ j ≤ n} of the signature s, we have :

Rn(z1, . . . , zn | s) =
1

ω(s)
·

∑
π∈Sym(n)

n∏
j=1

z
sj

π(j).

Since both sides are polynomials, the identity (2.23) holds throughout Cn, and in
particular on the torus T n = {(z1, . . . , zn) : |zj| = 1}. Let µ be the measure on T n

defined by

dµ(z1, . . . , zn) =
1

n!

∏
1≤i<j≤n

|zi − zj|2 dz1 . . . dzn,

where dz = dz1 . . . dzn denotes the Haar probability on T n. From the defining equa-
tion (2.16) it is clear that the Schur polynomials form an orthonormal set in L2(µ).
Therefore, equating the inner products of the two sides of (2.23) with Qn(· | s) for a
fixed signature s of weight k, we get

1

‖ϕs‖2
λ

= Qn(1, . . . , 1 | s)
∑

s′:|s′|=|s|

 n∏
j=1

∣∣∣∣∣
(
−λ
s′j

)∣∣∣∣∣
 〈Rn(· | s′), Qn(· | s)〉. (2.24)

Here, of course, 〈· , · 〉 is the inner product on L2(µ). So, to complete the proof we
only need to compute the inner product between Rn(· | s′) and Qn(· | s) for any two
signatures s and s′ of the same weight k. But this is easy. Substituting the defining
formula (2.16) for Qn in the integral representing this inner product, we get

〈Rn(· | s′), Qn(·, | s)〉

=
1

n!

∑
π∈Sym(n)

∫
sgn(π)

∏
1≤i<j≤n

(zi − zj)
n∏

i=1

z−si−n+i
π(i) Rn(z1, . . . , zn | s)dz1 . . . dzn

=
1

n!

∑
π∈Sym(n)

∫ ∏
1≤i<j≤n

(zπ(i) − zπ(j))
n∏
i=1

z−si−n+i
π(i) Rn(zπ(1), . . . , zπ(n) | s′)dz1 . . . dzn

=
∫ ∏

1≤i<j≤n
(zi − zj)

n∏
i=1

z−si−n+i
i Rn(z1, . . . , zn | s′)dz1 . . . dzn.

Now, substituting the defining formula for Rn and the Vandermonde formula

∏
1≤i<j≤n

(zi − zj) =
∑

π∈Sym(n)

sgn(π)
n∏
i=1

z
n−π(i)
i
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in the last integral and noting that the monomials are orthonormal in L2(dz), we get :

〈Rn(· | s′), Qn(· | s)〉 =
1

ω(s′)

∑
π , σ∈Sym(n)

: sπ=(s′)σ

sgn(π).

Here sπ denotes the sequence (si + π(i) − i : 1 ≤ i ≤ n), and (s′)σ denotes the
rearrangement of s′ by the permutation σ. Now, given any π for which the non-
increasing rearrangement (sπ)↓ of sπ equals s′, the permutations σ satisfying sπ =
(s′)σ constitute a coset of the isotropy of s′ and hence there are ω(s′) permutations σ
corresponding to each such π. Hence we get

〈Rn(· | s′), Qn(· | s)〉 =
∑

π∈Sym(n)

:(sπ)↓=s′

sgn(π).

Substitute this formula in (2.24), to find the Laplace expansion of a determinant.
Thus,

1

‖ϕs‖2
λ

= Qn(1, . . . , 1 | s) det(a)

where the n× n matrix a = (aij) is given by

aij =

∣∣∣∣∣
(

−λ
si − i+ j

)∣∣∣∣∣ = Γ(λ+ si − i+ j)

Γ(λ)Γ(si − i+ j + 1)
.

( Here the entry is to be interpreted as 0 when si − i + j < 0, which is a natural
convention since Gamma has poles at non-positive integers. Notice that in view of the
functional equation Γ(z + 1) = zΓ(z), the matrix elements are actually polynomials in
λ. )

This proves the Proposition for n = 1. To compute the determinant for n > 1, note
that the submatrix of a obtained by deleting its first column and ith row (1 ≤ i ≤ n)
has the same form as a with n replaced by n − 1, s replaced by the signature s(i) of
rank n − 1 defined in (2.21). Therefore, expanding det(a) along the first column we
inductively obtain a formula for this determinant and hence for ‖ϕs‖2

λ. to show that
this formula agrees with the one in the statement of this Proposition, we need to prove
an identity which simplifies to :

1

(n− 1)!

n∑
i=1

(−1)i−1Qn−1(1|s(i))

Qn(1|s)
Γ(si + n− i+ 1)

Γ(si − i+ 2)

×
( ∏

1≤k≤n

k 6=i

(λ+ sk − k + 1)
)(n−1∏

`=1

(λ− `)−1
)

= 1.

Now, the left hand side is a rational function of λ, so that to prove this identity it
suffices to show that its value at λ = ∞ is equal to 1 and its apparent poles at the
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points λ ∈ {1, 2, . . . , n − 1} are not really poles, i.e., the corresponding residues are
= 0. But, substituting xi = si − i + 1, and using Proposition 2.5 and the formula
in (2.22), we find that the residue at λ ∈ {1, . . . , n − 1} and the value at infinity are
given by ( except for a finite multiplicative constant in the first case, but this is safely
ignored since we only wish to show that these residues are zero ) :

n∑
i=1

p(xi)
∏

1≤`≤n

` 6=i

(xi − x`)
−1,

where p(x) =
∏

1≤h≤n−1

h 6=λ
(x + h) in the case of the residue and p(x) =

∏
1≤h≤n−1(x + h)

in the case of the value at infinity. Therefore the result follows from Corollary 2.3. 2

We also have the following formula from Lemma 2.6 and Lemma 2.7 in Upmeier
[12].

Proposition 2.8 For any signature s, the dimension ds of the space Ps is

ds =
∏

1≤i<j≤n

(
1 +

si − sj
j − i

)2

·
n∏
k=1

Γ(m+ sk − k + 1)Γ(n− k + 1)

Γ(n+ sk − k + 1)Γ(m− k + 1)
.

Proof: In view of Proposition 2.7, it suffices to show that 1
ds

is the squared norm

‖ϕs‖2
m

of the esf ϕs in the Hardy space H(m).

Recall that the inner product on the Hardy space H(m) is given by

〈f, g〉m =
∫
K

(f ◦ k−1)(e)(g ◦ k−1)(e)dk.

Also, if the space Ps is equipped with the inner product it inherits as a subspace of
H(m), then its reproducing kernel is

K(z, w) =
ϕs(zw

∗e)

‖ϕs‖2
m

.

On the other hand, if {fj : 1 ≤ j ≤ ds} is any orthonormal basis for Ps, then from the
general theory of reproducing kernels we get

K(z, w) =

ds∑
j=1

fj(z)fj(w).

Now we have

1

‖ϕs‖2
m

= K(e, e) = K(k−1e, k−1e) =
∑

1≤j≤ds

fj(k
−1e)fj(k−1e).

Integrating both sides with respect to dk, we get

1

‖ϕs‖2
m

=
∑

1≤j≤ds

〈fj, fj〉m =
∑

1≤j≤ds

1 = ds. 2
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We shall also need the following formula for the invariantisation of |ϕs|2 by the
group K. It is Lemma 3.3 in Faraut and Koranyi [5]. Though in the same spirit, our
proof is technically simpler than the one in [5] in as much as it appeals to the general
theory of reproducing kernels instead of using Schur’s orthogonality relations.

Proposition 2.9 For any signature s, we have

∫
K

∣∣∣(ϕs ◦ k)(z)∣∣∣2 dk =
1

ds
ϕs(zz

∗e), z ∈ Ω.

Proof: Continuing with the notations in the previous proof, one obtains

(ϕs ◦ k)(z) = ‖ϕs‖2
mK(kz, e)

= ‖ϕs‖2
mK(z, k−1e)

= ‖ϕs‖2
m

ds∑
j=1

fj(z)fj(k−1e).

Hence,

|(ϕs ◦ k)(z)|2 = ‖ϕs‖4
m

∑
1≤j, l≤ds

fj(z)fj(k−1e)f`(z)f`(k
−1e).

Integrating both sides with respect to dk, it follows that∫
K
|(ϕs ◦ k)(z)|2dk = ‖ϕs‖4

m

∑
1≤j ,l≤ds

fj(z)fl(z)〈fl, fj〉m

= ‖ϕs‖4
m

∑
1≤j≤ds

fj(z)fj(z)

= ‖ϕs‖4
mK(z, z)

= ‖ϕs‖2
mϕs(zz

∗e).

Therefore, an appeal to the previous Proposition completes the proof. 2

Remark : From the above, it is easy to deduce a formula for the K - invariantisation
(fḡ)K of fḡ for any two elements f, g of H(λ). Namely, if f =

∑
s fs, g =

∑
s gs are the

break-ups of f, g along the orthogonal decomposition (2.11) then

(fḡ)K(w) =
∑
s

〈fs, gs〉λ
ds

ϕs(ww
∗e)

‖ϕs‖2
λ

.

To prove this, note that for any fixed w in Ω, 〈f, g〉 def
= (fḡ)K(w) defines a K -

invariant inner product on H(λ) which is continuous with respect to the norm on the
latter. Since the same is true of the right hand side of the above formula, to prove it, it
suffices to verify it for f = g = ϕs; but in this case the formula reduces to Proposition
2.9.
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3 Boundedness

3.1 Some general facts

We begin with some generalities on reproducing kernels. Recall that if K : X ×
X → C is non - negative definite (nnd) in the sense that for any x1, . . . , xn ∈ X the
matrix ((K(xi, xj) )) is nnd, then there is a uniquely determined Hilbert space H(K)
of functions on X such that K is the reproducing kernel of H(K), in the sense that
K(·, x) ∈ H(K) for all x ∈ X, and we have 〈f,K(·, x)〉 = f(x) for all f ∈ H(K). The
usual construction ofH(K) is as follows. Take F to be the linear span ofK(·, x), x ∈ X,
and define a sesqui - linear form 〈·, ·〉 on F by 〈K(·, y), K(·, x)〉 = K(x, y). Non -
negative definiteness of K implies this form is nnd, whence Cauchy - Schwarz yields
|f(x)| = |〈f,K(·, x)〉| ≤ 〈f, f〉K(x, x), x ∈ X. Hence 〈f, f〉 = 0 implies f(x) = 0
for all x, that is, f = 0. Thus, 〈·, ·〉 is an inner product on F . ( Thus, the usual
requirement that K be positive definite is unnecessary. It is enough to have K nnd. )
This inequality also implies that 〈·, ·〉 - Cauchy sequences are pointwise Cauchy, and the
completion H(K) of (F , 〈·, ·〉) is naturally identified with a Hilbert space of functions
on X, with K as its reproducing kernel.

An alternative and more direct description of H(K) is as follows. For two kernels
K1, K2 on X, let’s write K1 ≤ K2 to mean K2 −K1 is nnd. For any complex valued
function f on X, define ‖f‖ by

‖f‖ = inf{c > 0 : ff̄ ≤ c2K}. (3.1)

( Explicitly, the condition within braces means that the kernel on X given by (x, y) →
(c2K(x, y)− f(x)f(y)) is nnd. ) Then

H(K) = {f : ‖f‖ <∞} (3.2)

To see the equivalence of the two definitions, let ‖ · ‖̂ denote the norm on the Hilbert
space H(K) in the first construction. For any orthonormal basis {fn} of H(K), K
is recovered by the formula K =

∑
n≥1 fnf̄n. Taking an orthonormal basis with f1 =

f
c
, c = ‖f ‖̂, we find K− 1

c2
ff̄ =

∑
n≥2 fnf̄n ≥ 0, whence ff̄ ≤ c2K, so that ‖f‖ ≤ ‖f ‖̂.

On the other hand, if ‖f‖ = c, define the kernel K1 on X by K1 = ff̄
c2

. Then both K
and K1 are nnd kernels and K1 ≤ K. By Theorem [2, Theorem I, p.354], this implies
that the Hilbert space H(K1) is a subset of the Hilbert space H(K), and the norm on
H(K1) is point - wise greater than or equal to the norm on H(K). Since H(K1) is
clearly the one dimensional space spanned by f and the norm of f in H(K1) equals

c = ‖f‖, this means that ‖f‖ ≥ ‖f ‖̂. Thus we have ‖f‖ = ‖f ‖̂ for all f , proving
equivalence of the two definitions of H(K). This also shows that for any nnd kernel
K, (3.1) and (3.2) define a functional Hilbert space. It should be amusing to construct
an ab initio proof of this fact.

Now, let K be an nnd kernel on X, H(K) the associated Hilbert space, and f any
function on X. Let Mf denote multiplication by f . When is Mf a bounded operator on
H(K) ? By closed graph theorem, for this it is necessary and sufficient that ‖g‖ <∞
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implies ‖f g‖ <∞ for all g, where ‖ · ‖ is defined by (3.1), i.e, that gḡ ≤ c20K for some
c0 implies ff̄gḡ ≤ c21K for some c1. If there is a finite c such that (c2 − ff̄)K ≥ 0
then ff̄K ≤ c2K and gḡ ≤ c20K imply that ff̄gḡ ≤ c20ff̄K ≤ (c0c)

2K, so that Mf is
bounded and ‖Mf‖ ≤ c for any such c. ( Here we have used the wellknown fact that
the pointwise product of two nnd kernels is nnd. ) Thus we have shown

Lemma 3.1 Suppose there is a c ∈ [0,∞) such that (c2 − ff̄)K ≥ 0. Then Mf is
bounded on H(K).

( In fact, it can be shown that ‖Mf‖ is the infimum of all c ≥ 0 for which (c2−ff̄)K ≥ 0,
and the condition in the Lemma is necessary and sufficient. )

3.2 A reduction

Now we come to the proof of Theorem 1.1. If λ ∈ Wd, then there is a polynomial ψ such
that ψ 6∈ H(λ). ( For instance, ψ can be taken to be the generalised determinant on Ω,
i.e, the esf corresponding to the signature (1, 1, . . . , 1). ) But the constant function 1
is in H(λ). Since 1 ∈ H(λ), ψ 6∈ H(λ), ψ(M (λ)) = multiplication by ψ is not bounded.
A fortiori, M (λ) is not bounded. So, from now on, we assume λ ∈ Wc, i.e, λ > n− 1.

Till the end of this section, let ϕ be the generalised trace on Ω, i.e, the unique
esf of degree 1 corresponding to the signature (1, 0, . . . , 0). Suppose we can show that

M (λ)
ϕ

def
= ϕ(M (λ)) is bounded on H(λ), λ > n− 1. Since the action of K by composition

is unitary on H(λ), it will folow that multiplication by ϕ ◦ k is bounded on H(λ) for all
k ∈ K. But ϕ◦k, k ∈ K spans the space Ps for s = (1, 0, . . . , 0), so that multiplication
by each f ∈ Ps is bounded. But as s is the only signature of weight 1, Ps = Hom (1),
the space of all linear homogeneous polynomials; in particular, all the mn co - ordinate
functions belong here. Hence the components of M (λ) are bounded. Thus, it suffices
to show that M (λ)

ϕ is bounded on H(λ) for λ > n− 1.

3.3 Multiplication by trace

Fix λ > n − 1. In view of Lemma 3.1, we only have to show that there is a finite
constant c such that (c2 − ϕ ϕ̄)B(λ) ≥ 0. Recall that Hom(1) is a functional Hilbert
space with reproducing kernel K(z, w) = ϕ(zw∗e). Since ϕ = K(·, e), ϕ has norm
K(e, e) = ϕ(e) = 1 as an element of this space. Hence by (3.1), ϕ ϕ̄ ≤ K. Hence,
writing

(c2 − ϕ(z)ϕ(w))B(λ)(z, w) =

(c2 − ϕ(zw∗e))B(λ)(z, w) + (ϕ(zw∗e)− ϕ(z)ϕ(w))B(λ)(z, w), (3.3)

we see that the second term is an nnd kernel. Hence, for our purpose, it suffices to
exhibit a finite c for which (c2 − ϕ(zw∗e))B(λ)(z, w) is an nnd kernel. Now using the
expansion in Proposition 2.6, we get

(c2 − ϕ(zw∗e))B(λ)(z, w) =
∑
s

c2

‖ϕs‖2
λ

ϕs(zw
∗e)−

∑
s

1

‖ϕs‖2
λ

(ϕϕs)(zw
∗e).
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Now use the formula (a) from Corollary 2.2 to get

(c2 − ϕ(zw∗e))B(λ)(z, w) =
∑
s

( c2

‖ϕs‖2
λ

− βs(λ)
)
ϕs(zw

∗e),

where

βs(λ) =
∑
s̃

′′a(s̃, s)

‖ϕs̃‖2
λ

,

the sum
∑ ′′ is over all signatures s̃ such that |s̃| = |s| − 1, and s̃ ≤ s componentwise;

the coefficients a(s̃, s) is given, for such pairs s, s̃ of signatures, by the formula

a(s̃, s) =
1

n

n∏
i=1

i6=k

(
1 +

εi,k
|i− k|+ |si − sk + 1|

)
,

where k is the unique co-ordinate position for which s̃k < sk, and εi,k = 1 if i >
k and = −1 if i < k.

Recall from Proposition 2.1 that (z, w) → ϕs(zw
∗e) is an nnd kernel for each

signature s. Hence the nonnegative definiteness of (c2 − ϕ(zw∗e))B(λ)(z, w) follows if
c can be chosen so that each coefficient c2

‖ϕs‖2λ
− βs(λ) is non - negative. Note that, as

λ > n− 1, each ‖ϕs‖λ <∞. Therefore, this argument gives the estimate

‖M (λ)
ϕ ‖2 ≤ sup

s
βs(λ)‖ϕs‖2

λ,

where the supremum is over all signatures. Thus to conclude the proof of Theorem 1.1,
we need only show that this supremum is finite for λ > n− 1. But, using the explicit
norm formula from Proposition 2.7, we get :

βs(λ)‖ϕs‖2
λ =

1

n

∑
1≤k≤n

: sk+1<sk

(n+ sk − k)

(λ+ sk − k)

∏
1≤i≤n

i6=k

(
1 +

εik
|i− k|+ |si − sk + 1|

)−1

,

with εik as above. (We adopt the convention that sn+1 = 0.) For 1 ≤ k ≤ n the kth
term in the above formula is clearly a bounded function of s, so that this supremum is
finite. This completes the proof of Theorem 1.1.

4 Joint spectrum

Through out the rest of this paper, we assume M (λ) is bounded, i.e, λ > n − 1.
In this section, we will prove Theorem 1.2 : the joint Taylor spectrum of M (λ) is Ω̄.
Actually our proof goes through for any notion of joint spectrum of a commuting d -
tuple T of bounded operators provided this notion satisfies
(i) it is a unitary invariant,

(ii) the joint spectrum contains the eigenvalues of T ,
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(iii) the associated functional calculus has the correct mapping property : if f : U → V
is an analytic or co-analytic function between complex domains such that U
contains the spectrum of T then f maps the spectrum of T into the spectrum
of f(T ), and

(iv) if further, f is componentwise rational then f(T ) is obtained by “plugging in”
T into this rational expression.

Note that the Taylor spectrum has all these properties (cf. [4] and [11, Theorem 1.5]).
We have stated Theorem 1.2 for the Taylor spectrum because there is an agreement
among experts that Taylor’s notion is the minimal ( and hence best ) among all rea-
sonable notions of joint spectrum.

Lemma 4.1 Let z0 ∈ Cn×m with ‖z0‖ = t > 1. Then there is a g ∈ G such that
(i) g is analytic in a neghbourhood of tΩ̄, and
(ii) ‖g(z0)‖ > ‖z0‖.

( Here ‖ · ‖ is the usual operator norm on Cn×m. Recall that Ω is the open unit ball
with respect to this norm. )

Proof: Let ε be a small positive number and put a = z0
t2+ε

∈ Ω. We claim that
g = ϕa ∈ G works provided ε is sufficiently small. Recall from (2.2) that ϕa is the
unique involution in G interchanging 0 and a.

ϕa(z0) = (1− aa∗)−1/2(a− z0)(1− a∗z0)
−1(1− a∗a)1/2.

Since z∗0z0 is nnd, t2 = ‖z∗0z0‖ is an eigenvalue of z∗0z0. Let u ∈ Cm be a correspond-
ing eigenvector of norm 1. Put v = z0u ∈ Cn. Since u is an eigenvector of z∗0z0

corresponding to a nonzero eigenvalue, we have v 6= 0. An easy computation shows

(1− aa∗)1/2ϕa(z0)u = (1− t2

(t2 + ε)2
)1/2(1− t2

t2 + ε
)−1(

1

t2 + ε
− 1)v.

Hence ‖(1−aa∗)1/2ϕa(z0)u‖ ∼ c1
ε

as ε→ 0, where c1 > 0 is independent of ε. Therefore,

‖ϕa(z0)u‖ ≥ ‖(1− aa∗)1/2‖−1 ‖(1− aa∗)1/2ϕa(z0)u‖ ∼
c2
ε

as ε→ 0,

where c2 > 0 is independent of ε.
Hence ‖ϕa(z0)‖ ≥ ‖ϕa(z0)u‖ → ∞ as ε→ 0. This completes the proof. 2

Now the proof of Theorem 1.2 is surprisingly easy. Suppose, if possible, the spec-
trum is not contained in Ω̄. Choose a z0 in the spectrum which maximises ‖z0‖, say
‖z0‖ = t > 1. Then the spectrum is contained in tΩ̄, and if g is as guranteed in Lemma
4.1, then g(z0) is in the spectrum of g(M (λ)). But by homogenity, g(M (λ)) is unitarily
eqivalent to M (λ). Hence g(z0) is in the spectrum of M (λ). But this contradicts the
maximality of z0 since ‖g(z0)‖ > ‖z0‖. Thus the spectrum is contained in Ω̄. Next,
take any z ∈ Ω. A straight forward computation shows that z̄ is a joint eigenvalue for
the adjoint of M (λ) with eigenvector B(λ)(·, z) ∈ H(λ). Therefore, z is in the spectrum
of M (λ), whence the spectrum contains Ω and therefore Ω̄. This completes the proof
of Theorem 1.2.
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5 Joint subnormality

Recall that a commuting tuple of bounded operators on a Hilbert space is called
jointly subnormal if it is the restriction of a commuting tuple of normal operators to a
common invariant subspace. In this section, we prove Theorem 1.3 and, in particular,
determine the range of λ for which M (λ) is jointly subnormal.

5.1 A question of measure

We begin by proving a general theorem which implies, in particular, the equivalence of
(i) and (iii) in the statement of Theorem 1.3.

Theorem 5.1 Let X ⊆ Cd be a bounded domain and let H be a Hilbert space of
analytic functions on X such that the set of analytic polynomials is densely contained
in H. Let M be the (densely defined) d - tuple of multiplication by coordinate functions
on H. Suppose the Taylor spectrum of M is X̄. Then the following are equivalent :

(i) M is a subnormal tuple of bounded operators,

(ii) There is a uniquely determined finite measure µ supported inside X̄ such that the
inner product 〈·, ·〉 on H is given by 〈f, g〉 =

∫
fḡdµ for all analytic polynomials

f, g.

Proof: (ii) clearly implies (i), since, under (ii), H is naturally embedded as a
closed subspace in L2(µ) and the natural extension of M to L2(µ) is normal.

So, assume (i). If T is any commuting tuple of bounded subnormal operators on H,
then letting S denote a normal extension of T and letting E be the spectral measure
of S, we have for all x ∈ H and all multi - indices I, J ,

〈T Ix,T Jx〉 = 〈SIx,SJx〉 =
∫
zI z̄Jd〈Ex, x〉.

Taking x to be the constant function 1 ∈ H, T = M , and µ = d〈E1, 1〉, where E is
the spectral measure of the minimal normal extension of M , this formula specialises
to

〈zI , zJ〉 =
∫
zI z̄Jdµ(z),

for all analytic monomials zI , zJ . Hence the integral representation in (ii) follows. The
support of µ is contained in the spectrum of the minimal normal extension, which in
turn is contained in X̄. Also, since the linear span of {fḡ : f, g analytic polynomials }
is dense in C(X), by Stone-Weirstrass µ is uniquely determined by the integrals

∫
fḡdµ.

This completes the proof. 2

Lemma 5.1 Let λ ∈ W. Then M (λ) is subnormal if and only if there is a probability
measure µλ supported inside Ω such that µλ is quasi-invariant under G-action, with(

dµλ ◦ g
dµλ

)
(z) = |Jg(z)|

2λ
m+n , ∀g ∈ G, ∀z ∈ Ω. (5.1)
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( Here Si is the ith boundary component as defined in (2.13). )
In this case, µλ is uniquely determined by this condition. Moreover, either µλ(Ω) =

1 or µλ(Si) = 1 for a uniquely determined value of i, 0 ≤ i ≤ n− 1.

Proof: Let M (λ) be jointly subnormal. By Theorems 1.2 and 5.1, there is a finite
measure µλ supported in Ω such that 〈f1, f2〉λ =

∫
f1f̄2dµλ for analytic polynomials

f1, f2. Since the constant function 1 = B(λ)(·, 0) ∈ H(λ) has norm B(λ)(0, 0) = 1, taking
f1 = f2 = 1 we find µλ(Ω) =

∫
1dµλ = ‖1‖2 = 1, so that µλ is a probability measure.

Fix g ∈ G. Since the operator U (λ)(g−1) defined by (2.7) is unitary on H(λ), it follows
that for any two analytic polynomials f1, f2, we have∫

f1f 2dµλ = 〈f1, f2〉λ

= 〈U (λ)(g−1)(f1), U
(λ)(g−1)(f2)〉λ

=
∫
U (λ)(g−1)(f1)U (λ)(g−1)(f2)dµλ

=
∫
|Jg−1(z)|2λ/(m+n)(f1 ◦ g−1(z))(f2 ◦ g−1(z))dµλ(z)

=
∫
|Jg(w)|−2λ/(m+n)f1(w)f2(w)dµλ ◦ g(w).

Since the finite linear combinations of the functions f1f2 form a dense set in C(Ω), it
follows that µλ is quasi-invariant (i.e., µλ ◦ g and µλ are equivalent measures for all
g ∈ G) and the density dµλ◦g

dµλ
is given by (5.1).

Now assume the probability µλ satisfies (5.1). In particular, µλ is K - invariant.
Thus, µλ is invariant under z → eiθz, for each θ ∈ [−π, π]. Also, if f is analytic in a

neighbourhood of Ω then for each fixed z ∈ Ω, we have f(0) = 1
2π

∫ π

−π
f(eiθz)dθ.

Hence, for any such f ,

|f(0)|2 =
∫
Ω
|f(0)|2dµλ(z)

=
∫
Ω
| 1

2π

∫ π

−π
f(eiθz)dθ|2dµλ(z).

≤
∫
Ω

1

2π

∫ π

−π
|f(eiθz)|2dθdµλ(z).

=
1

2π

∫ π

−π

∫
Ω
|f(eiθz)|2dµλ(z)dθ

=
1

2π

∫ π

−π

∫
Ω
|f(z)|2dµλ(z)dθ

=
∫
Ω
|f(z)|2dµλ(z)

= ‖f‖2.

Thus, if f ∈ L2(µλ) is analytic in a neighbourhood of Ω, then we have |f(0)| ≤ ‖f‖.
That is f → f(0) is bounded on the subspace P of L2(µλ) consisting of such functions.
Since G is transitive on Ω and µλ is quasi-invariant with respect to G-action, it follows
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that for each fixed z ∈ Ω, z → f(z) is bounded on P , the bound being uniform for
z in compact subsets of Ω. Putting H = P , we see that H is a closed subspace of
L2(µλ), and indeed, it is a functional Hilbert space of analytic functions on Ω. Let
K be the reproducing kernal of H. Retracing the computations in the beginning of
this proof, with fj = K(·, wj), j = 1, 2, wj ∈ Ω, we find that K transforms under
G action exactly like B(λ). Also, K(·, 0), being K-invariant, is a constant function.
Hence K = cB(λ) for this constant c. But, c = K(0, 0) =

∫
1 dµλ = 1. Thus, K = B(λ),

and hence H = H(λ). Thus, the inner product on H(λ) is “given by” the probability
measure µλ, so that M (λ) is subnormal on H(λ).

The uniqueness of µλ now follows from the uniqueness statement in Theorem 5.1.
Since Ω is the union of the n + 1 G-orbits Ω and Si, 0 ≤ i ≤ n − 1, there is at
least one of these orbits, say Θ, for which µλ(Θ) > 0. Define the probability µ by
µ(A) = µλ(A ∩ Θ)/µλ(Θ). Then µ also satisfies (5.1), so that by the uniqueness,
µ = µλ. Hence µλ(Θ) = µ(Θ) = 1, which proves the last statement in the Lemma. 2

5.2 Subnormality versus induced representations.

Given Lemma 5.1, the equivalence of (i) and (iv) of Theorem 1.3 is very easy. Namely,
if M (λ) is subnormal on H(λ), then let µλ be the probability measure guaranteed by
this Lemma. Define the ∗-algebra homomorphism ψλ : C(Ω) → L(L2(µλ)) by ψλ(p)
equal to multiplication by p. The projective representation U (λ) of G = PSU(n,m)
on H(λ) extends naturally to a representation Ũ (λ) on L2(µλ) having the property :

Ũ (λ)
g ψλ(p)Ũ

(λ)∗
p = ψλ(g.p), p ∈ C(Ω̄), g ∈ G, (g.p

def
= p ◦ g−1).

Thus (Ω, ψλ, U
(λ)) is a system of imprimitivity of multiplicity one, which is transitive

since by Lemma 5.1, µλ sits on a single G-orbit in Ω. Hence by Mackey’s imprimitivity
theorem [13, Theorem 6.12, p.223], the projective representation Ũ (λ) of G on L2(µλ) is
induced from a one dimensional representation (of the isotropy subgroup of any point
in the orbit on which µλ sits), and U (λ) on H(λ) is a subrepresentation of this induced
representation. Clearly this argument goes backwards to prove the converse as well.

5.3 Measure for measure

In this subsection, we prove the implication (ii) ⇒ (iii) of Theorem 1.3. That is, M (λ)

is subnormal if λ ∈ m +W . We begin by stating our final criterion for subnormality
of M (λ) :

Lemma 5.2 M (λ) is subnormal if and only if there is a probability measure mλ =
mn×m

λ on ∆n satisfying

∫
∆n

Qn(x | s)dmλ(x) =
∏

1≤i<j≤n

(
1 +

si − sj
j − i

)
n∏
k=1

Γ(m+ sk − k + 1)Γ(λ− k + 1)

Γ(λ+ sk − k + 1)Γ(m− k + 1)

for all signatures s of rank n.
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( Note that, since Qn(· |0) is the constant function 1, the measure mn×m
λ , when it

exists, is necessarily a probability measure. )
Proof: By Theorem 5.1, M (λ) is subnormal if and only if there is a probability

measure µ on Ω such that ‖f‖2
λ =

∫
|f |2 dµ for all f ∈ H(λ). Since the norm on H(λ) is

K - invariant, such a probability µ, when it exists, satisfies :

µ ◦ k = µ for all k ∈ K, ‖ϕs‖2
λ =

∫
|ϕs|2 dµ for all signatures s. (5.2)

Conversely, if a probability µ satisfies the conditions in (5.2), then it defines a K -
invariant inner product on the space of polynomials on Ω. By Schur Lemma, the K-
irreducible subspaces Ps are mutually orthogonal with respect to this inner product.
Now, by assumption the norm defined by µ agrees with ‖ · ‖λ on at least one element
(viz., the esf) in each of these subspaces. Since by Schur Lemma the K - invariant
inner product on each irreducible subspace is unique upto a scalar multiple, and since
H(λ) is the orthogonal direct sum of these subspaces, it follows that the norm defined by
µ is precisely ‖ · ‖λ under the hypotheses in (5.2). This shows that M (λ) is subnormal
if and only if there is a probability measure µ on Ω satisfying (5.2).

Now, there is a natural bijection between the set of K - invariant measures µ on Ω
and the set of all measures ν on ∆n, given by ν = µ ◦ π−1. Here π : Ω → ∆n = Ω/K
is the quotient map given by (2.6). For µ and ν thus related, we have∫

Ω
f dµ =

∫
∆n

fK dν for all f ∈ L1(µ),

where fK is the K - invariantisation of f : fK =
∫
K f ◦ k dk. In particular, by

Propositions 2.3 and 2.9, the K - invariantisation of |ϕs|2 at z =
∑n
k=1 xkek, is

d−1
s Qn(x

2
1, . . . , x

2
n | s)/Qn(1 | s). Therefore, a measure µ on Ω satisfies the two condi-

tions in (5.2) iff the corresponding measure ν = µ ◦ π−1 satisfies∫
∆n

Qn(x
2
1, . . . , x

2
n | s) dν = dsQn(1 | s)‖ϕs‖2

λ. (5.3)

Now, letting σ : ∆n → ∆n denote the squaring map (x1, . . . , xn) 7→ (x2
1, . . . , x

2
n), and

taking m to be the measure on ∆n given by m = ν ◦ σ−1, we see that the above
holds iff

∫
∆n
Qn(· | s) dm equals the righthand side of (5.3). Since by the formulae in

Propositions 2.3, 2.7 and 2.8, the right hand side of (5.3) equals that of the equation
in the statement of Lemma 5.2, this completes the proof. 2

Next we prove a Lemma which shows that for the proof of the equivalence (ii) ⇔
(iii) in Theorem 1.3, one loses no generality in assuming m = n.

Lemma 5.3 For any λ, M (λ) is subnormal on H(λ)(Ωn,n) if and only if M (λ+m−n) is
subnormal on H(λ+m−n)(Ωn,m) for all m ≥ n.

Proof: First suppose that λ is such that M (λ) is subnormal on H(λ)(Ωn,n). Then
by Lemma 5.2, there is a measure m on ∆n for which∫

∆n

Qn(x | s)dm(x) =
n∏
k=1

Γ(n+ sk − k + 1)Γ(λ− k + 1)

Γ(λ+ sk − k + 1)Γ(n− k + 1)
.
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By repeated application of the formula (d) in the proof of Corollary 2.2, we have

n∏
i=1

xm−n
i ·Qn(x1, . . . , xn | s) = Qn(x1, . . . , xn | s+ (m− n)1).

Therefore, letting m̃ denote the measure on ∆n defined by

dm̃(x) = c ·
n∏
i=1

xm−n
i dm(x), (5.4)

( where c is a suitable constant to make this a probability ) we get∫
∆n

Qn(x | s)dm̃(x) =
∫
∆n

Qn(x | s+ (m− n)1)dm(x).

From the assumption on the measure on the right, we find that this integral is

c ·
n∏
k=1

Γ(m+ sk − k + 1)Γ(λ− k + 1)

Γ(λ+m− n+ sk − k + 1)Γ(n− k + 1)

=
n∏
k=1

Γ(m+ sk − k + 1)Γ(λ+m− n− k + 1)

Γ(λ+m− n+ sk − k + 1)Γ(m− k + 1)
,

so that m̃ satisfies the requirement of Lemma 5.2 with λ replaced by λ+m−n. Hence
M (λ+m−n) is subnormal on H(λ+m−n)(Ωn,m).

For the converse, assume that the measure m̃ satisfies the requirement of Lemma
5.2 with λ replaced by λ+m−n. By the note following this Lemma, m̃ is a probability
measure; also, Propositions 2.1, 2.3 and Corollary 2.1 imply that

0 ≤ Qn(x | s)
Qn(1)

≤ 1 for all x ∈ ∆n.

Therefore, we get

0 ≤
∫
∆n

Qn(· | s)
Qn(1)

dm̃ ≤ 1.

But if λ < n, then the assumption on m̃ implies that the integral goes to infinity as
the signature s goes to infinity co-ordinate wise. Thus we must have λ ≥ n. The Dirac
delta measure at 1 ∈ ∆n satisfies the requirement of Lemma 5.2 with λ = n, m = n.
Therefore there is nothing to prove in case λ = n, and we may assume λ > n.

As above, repeated application of the formula (d) in the proof of Corollary 2.2 shows
that for each non-negative integer h, m̃ satisfies∫

∆n

n∏
k=1

xhk ·Qn(x | s)dm̃(x) =
n∏
k=1

Γ(h+m+ sk − k + 1)Γ(λ+m− n− k + 1)

Γ(h+ λ+m− n+ sk − k + 1)Γ(m− k + 1)
. (5.5)

That is, if f : ∆n → [0, 1] denotes the function f(x) =
∏n
k=1 xk, then the hth moment

of the probability ((Qn(x | s)d m̃(x)) ◦ f−1 on [0, 1] is given by the right hand side of
(5.5). But, Euler’s identity relating the Beta and the Gamma integral shows that this
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is also the hth moment of the probability n ◦ f−1 on [0, 1], where the measure n on
∆n is defined by

dn(x) =
n∏
k=1

xm+sk−k
k (1− xk)

λ−n−1

β(m− k + 1, λ− n)
d xk.

Therefore, by Weirstrass’ approximation theorem, these two probabilities on [0, 1] are
equal, and hence have the same hth moment not only for h ≥ 0, but for all h for which
the second probability has finite hth moment, viz., for h ≥ n − m. (Here we have
made use of the assumption λ > n. ) Hence, in particular, the equation (5.5) holds
for h = n − m. That is, the measure m defined by the equation (5.4) satisfies the
requirement of Lemma 5.2 with m = n. 2

In view of this Lemma, we assume m = n and break up the proof of the implication
(ii) ⇒ (iii) (in Theorem 1.3) in this case into two parts :

Claim 1: If m = n, and λ > 2n− 1, then the measure mn×n
λ on ∆n given by

dmn×n
λ (x1, . . . , xn) = cλ(n)

∏
1≤i<j≤n

(xi − xj)
2 ·

n∏
k=1

(1− xk)
λ−2n dx (5.6)

with

cλ(n) =
n∏
h=1

Γ(λ− n+ h)

Γ(h)2Γ(λ− 2n+ h)
(5.7)

satisfies the requirement of Lemma 5.2.
Claim 2: If m = n and λ = n + k for some k ∈ {0, 1, . . . , n − 1}, then the measure

mn×n
λ given on ∆n by

mn×n
λ = mk×k

λ ◦ π−1
k,n (5.8)

satisfies the requirement of Lemma 5.2. Here, of course, mk×k
λ is the measure given

in Claim 1 ( with the same λ and with n replaced by k ) and πk,n : ∆k → ∆n is the
embedding (x1, . . . , xk) 7→ (x1, . . . , xk, 1, . . . , 1).

(In particular, for λ = n, i.e., k = 0, the measure mn×n
λ given above is to be

interpreted as the Dirac delta measure (what else ?) on the singleton set ∆0 = {1}.)
Proof: In case λ > 2n− 1, we have,∫

∆n

Qn(x | s)
∏

1≤i<j≤n
(xi − xj)

2
n∏
k=1

(1− xk)
λ−2ndx

=
1

n!

∑
π∈Sym(n)

∫
[0,1]n

sgn(π)
∏

1≤i<j≤n

(xi − xj) ·
n∏

k=1

xsk+n−k
π(k) ·

n∏
k=1

(1− xk)
λ−2nd x

=
1

n!

∑
π∈Sym(n)

∫
[0,1]n

∏
1≤i<j≤n

(xπ(i) − xπ(j)) ·
n∏
k=1

(
xsk+n−k
π(k) (1− xπ(k))

λ−2n)
)
dx

=
∫
[0,1]n

∏
1≤i<j≤n

(yi − yj) ·
n∏
k=1

ysk+n−k
k (1− yk)

λ−2n dy

=
∑

σ∈Sym(n)

sgn(σ)
∫
[0,1]n

n∏
k=1

y
sk+2n−k−σ(k)
k (1− yk)

λ−2n d y
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=
∑

σ∈Sym(n)

sgn(σ)
n∏

k=1

∫
[0,1]

ysk+2n−k−σ(k)(1− y)λ−2n dy

=
∑

σ∈Sym(n)

sgn(σ)
n∏

k=1

Γ(sk + 2n− k− σ(k) + 1)Γ(λ− 2n + 1)

Γ(sk + λ− k− σ(k) + 2)
.

Here we have used the symmetry of the integrand in the variables xk and the fact
that ∆n is a fundamental domain for the action of Sym(n) on [0, 1]n and the latter
is the union of n! essentially disjoint copies of the fundamental domain. Also, at one
point we have used the expression for

∏
1≤i<j≤n(yi − yj) as the Laplace expansion of a

Vandermonde determinant. But the last expression obtained is the Laplace expansion
of yet another determinant. Thus we have :∫

∆n

Qn(x | s)dmn×n
λ (x) =

n∏
h=1

Γ(λ− n+ h)

Γ(h)2Γ(λ− 2n+ h)
· det(b),

where the n× n matrix b = (bij), 1 ≤ i, j ≤ n, is given by

bij =
Γ(λ− 2n+ 1)Γ(2n+ 1 + si − i− j)

Γ(λ+ 2 + si − i− j)
.

Therefore, to establish Claim 1, we have to show that

det(b) =
∏

1≤i<j≤n
(1 +

si − sj
j − i

) ·
n∏
k=1

Γ(k)Γ(λ− 2n+ k)Γ(sk + n− k + 1)

Γ(sk + λ− k + 1)
.

This is trivial for n = 1. To do a proof by induction, note that the submatrix of b
obtained by deleting the first column and ith row has the same form as b with n, λ, s
replaced by n−1, λ−2, s(i), respectively. ( Here the signature s(i) is as in the formula
(2.21). ) Therefore to complete the inductive calculation of det(b), we need to prove
an identity which simplifies (with xi = si − i+ 1) to

n∑
i=1

( n∏
k=1

k 6=i

λ+ xk − 1

xi − xk

)(n−1∏
`=1

xi + `+ n− 1

λ− `− n

)
= 1.

But this may be proved exactly as we proved the analogous identity which came up in
the proof of Proposition 2.7.

Next, let λ = n+k, k = 0, 1, . . . , n−1. With mn×n
λ defined as in Claim 2, we have,

with ` = n− k,∫
∆n

Qn(x1, . . . , xn | s)dmn×n
λ (x)

=
∫
∆k

Qn(x1, . . . , xk, 1, . . . , 1 | s)dmk×k
λ (x)

= (−1)k`ck(n+ k)
∑

(A,B)

ε(A,B)Q`(1 | sB)
∫
∆k

Qk(x1, . . . , xk | sA)
∏

1≤i<j≤k
(xi − xj)

2dx
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= (−1)k`
ck(n+ k)

ck(2k)

∑
(A,B)

ε(A,B)Q`(1 | sB)
∫
∆k

Qk(x1, . . . , xk | sA)dmk×k
2k (x)

= (−1)k`
∑

(A,B)

ε(A,B) Qk(1 | sA)Q`(1 | sB)

 k∏
p=1

(k + sAp − p)!(2k − p)!

(2k + sAp − p)!(k − p)!

 .
Here the sum

∑
(A,B) is over all partitions of {1, . . . , k + `} into two sets of size k and

` respectively. In this computation, we have applied Proposition 2.4 once and Claim
1 above twice ( with n replaced by k and λ replaced once by k + n and once by 2k ).
Now, to prove Claim 2, we have to show that the last expression above equals

∏
1≤i<j≤k+`

(1 +
si − sj
j − i

) ·
k+∏̀
p=1

(k + `+ sp − p)!(2k + `− p)!

(2k + `+ sp − p)!(k + `− p)!
.

Substituting xi = si − i+ 1, 1 ≤ i ≤ k + `, and using the definition of sA and sB from
(2.19) and (2.20), this reduces to∑

(A,B)

∏
i∈A
j∈B

(xi − xj)
−1
∏
h∈B

f(xh) = (−1)k`

where f is the monic polynomial of degree k given by f(x) =
∏k
p=1(x+ k + `+ p− 1).

But this is immediate from Lemma 2.1. This proves Claim 2.
With both claims thus established, the subnormality of M (λ) for λ ∈ m+W follows

from Lemma 5.2 and Lemma 5.3.

5.4 On the Siegel half-plane.

Next we shall prove the implication (iii) ⇒ (ii) in Theorem 1.3. In view of Lemma
5.3, we may (and do) assume n = m.

Let Σn be the generalized half plane :

Σn = {z ∈ Cn×n : Im(z) > 0}.

Here, for z ∈ Cn×n, Re(z) = z+z∗

2
, Im(z) = z−z∗

2 i
. We shall also use the standard inner

product 〈·, ·〉 on Cn×n given by 〈z, w〉 = tr(zw∗) as well as its restriction to the real
vector space

S(n) = {z ∈ Cn×n : z = z∗}.
Note that (S(n), 〈·, ·〉) is a real inner product space.

Let ψ : Σn → Ωn,n be the Caley transform : ψ(z) = (z − i1)(z + i1)−1.
For λ ≥ 0, let C(λ) be the kernel on Σn defined by C(λ) = (JψJψ)λ/2nB(λ) ◦ (ψ, ψ),

i.e.,
C(λ)(z, w) = (Jψ(z)Jψ(w))λ/2nB(λ)(ψ(z), ψ(w)); z, w ∈ Σn.

Clearly C(λ) is nnd iff B(λ) is, i.e. iff λ ∈ W . An explicit computation yields

C(λ)(z, w) = det
(
z − w∗

2i

)−λ
, z, w ∈ Σn.
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For λ ∈ W , let H(λ)
+ denote the functional Hilbert space with reproducing kernel C(λ).

Clearly U : H(λ) → H(λ)
+ defined by

(Uf)(z) = (Jψ(z))λ/2n f ◦ ψ(z), z ∈ Σn, f ∈ H(λ)

is a unitary. It happens to intertwine the corresponding tuples of multiplication by
co-ordinate functions as well as the group actions, but we shall not make direct use of
this fact.

Lemma 5.4 Let λ ∈ Wc. Then,

(det y)−λ = κ
∫
t>0

e−2〈y,t〉(det t)λ−ndt, y > 0.

(Here and later, dt stands for Lebesgue measure on S(n), and κ > 0 is a suitable
constant which may not be the same in all occurances. )

Proof: Write y > 0 in S(n) as y = u2, u > 0, and do the change of variable
s = utu, so that dt = (det y)−nds. This yields∫

t>0
e−2〈y,t〉(det t)λ−ndt = κ−1(det y)−λ,

where κ =
∫
s>0 e

−2 tr(s)(det s)λ−nds, which proves the lemma. Here the condition
λ > n− 1 is needed to ensure the convergence of the integral. 2

Lemma 5.5 For λ ∈ Wc, x+ iy in Σn, and v > 0 in S(n), we have∫
S(n)

| det (x− u+ i(y + v))|−2λdu = κ
∫
t>0

e−〈y+v,t〉(det t)2λ−2ndt.

Proof: The identity in Lemma 5.4 asserts the equality of two analytic - coanalytic
kernels on the diagonal z = w. By an analytic continuation argument, this equality
persists for all z, w ∈ Σn. That is, we have(

det (
z − w∗

2i
)
)−λ

= κ
∫
t>0

ei〈z−w
∗,t〉(det t)λ−ndt.

Putting z = x + iy, w = u + iv, we find that this says, for any fixed x ∈ S(n) and

y, v > 0, the function u→ (det (x−u+i(y+v)
2i

))−λ on S(n) is the Fourier transform of the
function

t→
{
κ ei〈x,t〉−〈y+v,t〉(det t)λ−n if t > 0
0 otherwise

on S(n). Hence by Perseval’s identity the proof is completed. 2

Now suppose λ ∈ W is such that M (λ) is subnormal. By Theorem 5.1, there is a
probability µλ giving the inner product on H(λ). Because of the unitary U , it follows
that the measure νλ defined by

dνλ(w) = |Jψ(w)|−λ/n dµλ ◦ ψ(w)
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gives the inner product onH(λ)
+ . In particular, since C(λ)(z, z) = det(y)−λ is the squared

norm of w 7→ C(λ)(w, z), it follows that

(det y)−λ =
∫
Σ̄n

| det(x− u+ i(y + ν))|−2λdνλ(u+ iν) ∀ x, y ∈ S(n). (5.9)

Since the left hand side of the identity in (5.9) does not depend on x ∈ S(n), uniqueness

of the measure νλ giving the inner product on H(λ)
+ implies that νλ is invariant under

translation under all such x. Since clearly νλ must be regular, it follows that νλ factors
as

dνλ(u+ iv) = du dω(v)

for some measure ω supported in {v ≥ 0 : v ∈ S(n)}. Substituting this in (5.9) and
using Lemma 5.5 above, we get

(det y)−λ = κ
∫

t≥0

v≥0
e−〈y+v,t〉(det t)2λ−2ndt dω(v).

(Since M (λ) is assumed jointly subnormal, by Theorem 1.1 we must have λ ∈ Wc, so
that Lemma 5.5 applies.)

That is, by Lemma 5.4, we have

∫
t>0

e−〈y,t〉(det t)2λ−2n
∫
v≥0

e−〈v,t〉dω(v) dt = κ
∫
t>0

e−〈y,t〉(det t)λ−ndt ∀ y ≥ 0.

Hence by the injectivity of the Laplace transform, we get

∫
v≥0

e−〈v,t〉dω(v) = κ(det t)n−λ ∀ t ≥ 0.

This implies

C(λ−n)(z, w) = κ
∫
v≥0

ei〈z−w
∗,v〉 dω(v) (5.10)

since both sides are analytic in z, co-analytic in w, and the previous equation asserts
equality on the diagonal z = w. Now, the integrand in (5.10), and hence also the
integral, is clearly non-negative definite. Hence λ − n is in W , i.e., λ is in n +W , as
was to be shown.

Using an old result of Nussbaum, it can be shown that whenever λ − n is in W ,
there is a measure ω supported inside Σn such that (5.10) holds. Beginning here and
going backwards along the steps of the above proof, it ought to be possible to get
another proof of the implication (iii) ⇒ (ii) in Theorem 1.3. However, as far as we can
see, this approach comes up against a serious technical snag. In any case, such a proof
would be purely existential, while the proof actually presented here has the advantage
of explicitly describing the measures µλ when they exist.
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6 Multiplication by determinant

Throughout this section, we assume m = n. The esf ϕs corresponding to the
signature 1 = (1, . . . , 1) will be denoted simply by ψ. It is the determinant function on
Ωn,n. We shall now investigate the operator

M
(λ)
ψ

def
= ψ(M (λ))

of multiplication by ψ on H(λ). Since there is nothing to prove for λ ≤ n−1, we assume
λ > n− 1.

Note that ψ is almost K - invariant. More precisely, there is a one dimensional
character χ on K, given by χ(k) = det(uv∗) for k = (u, v) ∈ K, for which

ψ ◦ k = χ(k)ψ, k ∈ K. (6.1)

By part (b) of Corollary 2.2 we get

M
(λ)
ψ (ϕs) = ψ ϕs = ϕs+1, (6.2)

where addition of signatures is componentwise. From (6.1) and (6.2) we get M
(λ)
ψ (ϕs ◦

k) = χ(k)ϕs+1 ◦ k. Since ϕs ◦ k (respectively ϕs+1 ◦ k), k ∈ K, span Ps (respectively

Ps+1), this shows that M
(λ)
ψ maps Ps onto Ps+1. Also, M

(λ)
ψ is clearly one - one. Hence

M
(λ)
ψ pushes the inner product on Ps (inherited from H(λ)) down to a K−invariant

inner product on Ps+1, and the latter must be a positive scalar times the inner product

Ps+1 inherits from H(λ). Comparing the norms of ϕs and ϕs+1 = M
(λ)
ψ (ϕs), one sees

that the scalar must be
‖ϕs+1‖λ

‖ϕs‖λ
. But by Proposition 2.7, we get

‖ϕs+1‖λ
‖ϕs‖λ

=
n∏
j=1

(
n+ sj − j + 1

λ+ sj − j + 1

)1/2

.

Thus we have proved :
Lemma 6.1 Let f ∈ H(λ) and let s be any signature. Then f ∈ Ps if and only if

M
(λ)
ψ (f) ∈ Ps+1. Also, if this holds then

‖M (λ)
ψ f‖λ
‖f‖λ

=
n∏
j=1

(
n+ sj − j + 1

λ+ sj − j + 1

)1/2

.

Let’s temporarily put T = M
(λ)
ψ . Then Lemma 6.1 implies the estimate, for h =

0, 1, 2, . . .,

‖T h‖ ≥
‖T hϕs‖
‖ϕs‖λ

=
n∏
j=1

sj+h−1∏
`=sj

(
n+ `− j + 1

λ+ `− j + 1

)1/2

.

But if λ < n, then Sterling’s approximation for the factorial shows that the right hand
side above goes to infinity with h, so that the powers of M

(λ)
ψ go to infinity in norm.
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Hence for λ < n, M
(λ)
ψ does not admit its spectrum (which, by Theorem 1.2 and the

mapping property of the spectrum, is the closed unit disc) as a spectral set for any k.

A fortiori, M
(λ)
ψ is not subnormal in this case.

Let S0 be the set of all signatures s with sn = 0. For any s ∈ S0, let H(λ)
s be the

closed subspace of H(λ) defined by

H(λ)
s = ⊕∞

h=0Ps+h·1.

Then by (2.11) we have
H(λ) = ⊕s∈S0H(λ)

s .

Also Lemma 6.1 implies that

Lemma 6.2 For each s ∈ S0, H(λ)
s is a reducing subspace for M

(λ)
ψ , and the restriction

of M
(λ)
ψ to H(λ)

s is the direct sum of ds copies of a weighted shift operator T (λ)
s with

weight sequence {ah = ah(s, λ) : h = 0, 1, 2, . . .} given by

ah =
n∏
j=1

(
h+ n+ sj − j + 1

h+ λ+ sj − j + 1

)1/2

. (6.3)

( Recall that this means that T (λ)
s is an operator on a Hilbert space with an or-

thonormal basis {xh : h = 0, 1, 2, . . .} such that T (λ)
s xh = ahxh+1 for h ≥ 0. )

Note that for λ ≥ n (6.3) implies suph≥0 ah = 1, so that ‖T (λ)
s ‖ = 1∀s ∈ S0, whence

‖M (λ)
ψ ‖ = 1 for λ ≥ n. This is in sharp contrast with the case λ < n, where M

(λ)
ψ is

not power bounded.
From Lemma 6.2 it is clear that M

(λ)
ψ is subnormal if and only if T (λ)

s is subnormal
for all s ∈ S0. Now, there is a necessary and sufficient condition in [6, p. 895 - 896]
for the subnormality of the weighted shift operators of norm 1 with weight sequence
{ah : h ≥ 0}. Namely, the sequence {bk} of partial products bk =

∏k
h=0 a

2
h must be

the moment sequence of a probability on [0, 1] with 1 in its support. For T (λ)
s , this

sequence is given by

bk =
n∏
j=1

Γ(λ+ sj − j + 1)Γ(k + n+ sj − j + 1)

Γ(n+ sj − j + 1)Γ(k + λ+ sj − j + 1)
. (6.4)

Hence we have :

Lemma 6.3 M
(λ)
ψ is subnormal if and only if for each s in S0 there is a probability σs

supported in [0, 1] such that 1 is in the support of σs and such that for k = 0, 1, 2, . . .∫ 1

0
xkdσs(x) = bk.

( Here bk is as in (6.4). )
Now note that the moment sequence of the product of finitely many stochastically

independent random variables is the term wise product of the moment sequence of
the factors. Further the support of the product is the element - wise product of the
supports of the factors. Therefore, Lemma 6.3 implies :
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Lemma 6.4 For M
(λ)
ψ to be subnormal it is sufficient to have, for each j with 1 ≤ j ≤ n

and for each signature s in S0, a probability σj,s supported in [0, 1] such that 1 belongs
to the support of σj,s, and such that for k = 0, 1, 2, . . .∫ 1

0
xkdσj,s(x) =

Γ(λ+ sj − j + 1) Γ(k + n+ sj − j + 1)

Γ(n+ sj − j + 1) Γ(k + λ+ sj − j + 1)
.

Finally we observe:

Lemma 6.5 For b > a > 0 there is a probability σ such that the support of σ is [0, 1]
and for k = 0, 1, 2, . . . , ∫ 1

0
xkdσ(x) =

Γ(b) Γ(a+ k)

Γ(a) Γ(b+ k)

Proof: By Euler’s identity connecting his Beta and Gamma integrals, the measure

dσ(x) =
1

β(a, b− a)
xa−1(1− x)b−a−1 dx , 0 ≤ x ≤ 1,

satisfies the requirement. 2

Now taking a = n+sj− j+1, b = λ+sj− j+1 in Lemma 6.5, we get a probability
σj,s satisfying the requirement of Lemma 6.4, provided λ > n. If λ = n then this
argument fails since the beta integral β(x, y) diverges for x = 0 or y = 0. However,
in case λ = n, (6.4) reduces to bk = 1 for all k, so that the Dirac delta measure at 1

works as σ in this case. Thus for λ ≥ n, M
(λ)
ψ is subnormal. This completes the proof

of Theorem 1.4.
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