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Abstract. This revised version of Abhyankar’s old lecture notes contains the original proof
of the Galois case of the n-variable Jacobian problem. They also contain proofs for some
cases of the 2-variable Jacobian, including the two characteristic pairs case. In addition,
proofs of some of the well-known formulas enunciated by Abhyankar are actually written
down. These include the Taylor Resultant Formula and the Semigroup Conductor formula
for plane curves. The notes are also meant to provide inspiration for applying the expansion
theoretic techniques to the Jacobian problem.
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Introduction

What follows may best be described by altering the famous phrase of Zariski and
Samuel — this paper is the unborn parent of its child. These notes, based on Abhyankar’s
lectures, were originally prepared by van der Put in 1972. Since he had to rush back
to the Netherlands in the middle of their preparation, they were worked on by William
Heinzer to some extent. But there were still unfinished parts and as a result, they
stayed buried in Abhyankar’s private papers for 21 years. Later, Abhyankar’s work
on the Jacobian problem was partly reported in the Tata Institute Notes by Balwant
Singh [A1]. Avinash Sathaye rearranged the old notes. and added some additional
topics based on further discourses by Abhyankar. Paul Eakin and David Shannon
have also contributed to the current form of these notes by their critical proof-
reading and suggestions. Special thanks are also given to the referee whose comments
have significantly improved the logical clarity of this exposition.

In the old tradition of Abhyankar’s lecture-notes, these notes are also unread by
Abhyankar in their final form. The responsibility for the exposition, therefore, rests
with the note-takers.

Much has been published about the J acobian problem in the meantime, but except
for the Balwant Singh Notes, the novel technique of using a combination of Newton—
Puiseux expansions at infinity and studying the resulting value-semigroups did not
get much exposure. Our aim in reviving these old notes is to renew interest in these
methods, which, to paraphrase Abhyankar’s own words, “never really got stuck, but
only got very tiring”. Perhaps, this time one of the methods will be carried through!
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516 Shreeram S Abhyankar

The notes’ main values are historical and motivational. We have tried to stay close
to the original notes and hence there are no brand new theorems. In fact, they do
not even give all the known results as found in [A1]. There are, however, proofs of
some theorems enunciated elsewhere without proofs as described below.

These notes have two major parts. ‘

In § 1 and § 2, we discuss the n-variable Jacobian problem. Thus, given n polynomials
(u) = (uy,...,u,) in n variables (x)=(xy,...,x,), we assume that their jacobian

du; . .
J,(u) = (d—u—'> is a nonzero-constant in the ground field k. The problem is to deduce
X,
that k[x,...,x,] = k[uy,...,u,].

Of course, if the field has positive characteristic, it is well known that the Jacobian
problem as stated has a negative answer. One standard example is

—— p —
Uy =x, +xy, uU,=Xx,

where p is the characteristic. Clearly, similar examples exist in all dimensions. So we
assume that k has characteristic 0.

In general, the problem is still unsolved.

We give a relatively simple proof under the additional assumption that the field
extension k(x) over k(u) is essentially Galois. Explicitly this means that either the
fields are equal or that there is a (nontrivial) Galois extension L of k(u) contained in
k(x). A topological proof of this fact was first published by Campbell [Ca]. Most of
the arguments presented below have already appeared in [A1]. However, in [A1],
only the two dimensional theorem was deduced.

The second part deals with the two dimensional problem.

In §3, we restrict to the two variables x, y and take two polynomials over a field
k (of characteristic 0, of course) satisfying the Jacobi condition that J.y(f,9)is a
nonzero constant. Temporarily, by “degree”, let us mean the total degree with respect
to (x, y). It is evident that the jacobian of the highest degree parts of f, g will either
be 0 or will give the highest degree terms of the jacobian J, ,(f, g). Moreover, in the
latter case, the degree of the jacobian is exactly equal to the sum of the degrees of
f,g minus the sum of the degrees of x,y. Much can be deduced by generalizing the
idea of a degree by assigning weight a to x and weight b to y so that a monomial
x’y’ has weight ai + bj. We illustrate the use by disposing of the case when the “usual
degrees” of f,g are either coprime or when their GCD is prime.

The last two sections were not part of the original notes.

In §4, we discuss yet another viewpoint, also developed in [A1]. For thlS it is

convenient, though not quite necessary, to arrange that f,g are monic in, say y. By -

the basic “two points at infinity” Lemma (3.5), we get to assume that either the proof
is finished or we may assume the usual degree forms to be powers of y*(y + cx)' for
some s, t. Then, we may think of the pair (f,g) as giving a parametrized plane curve
over the ground field k(x), where y is thought of as the parameter of the curve. This
fits the mold of the Epimorphism Theorem calculations. One of the simplest
observations deducible from this is that the Jacobian problem is equivalent to proving
that this curve is nonsingular. We begin by giving the Taylor Resultant formula of
Abhyankar, developed for this purpose in 1972, which calculates the “conductor” of
‘this plane curve directly as a polynomial in x, f, g. This formula has since been stated
without proof in [A2, page 153] and we take this opportunity to write down the
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proof, in view of the interest in the formula. In the remaining part of §4, we write
another formula for the conductor in terms of the special generators of value-
semigroups developed by using the “Expansion Techniques” as in [A1]. This supplies
most of the details for the formula in [A2, page 169]. |

In § 5, we expand on the theme of §3 and give a solution of the Jacobian problem
for the case of “two characteristic pairs”. The results generalize the main results from
§3 and further illustrate the expansion techniques as applied to the problem.
~ Abhyankar has unpublished results disposing of cases when the plane curve (f,g)
has “a small number” of singularities, but the calculations are too messy to be included
in a paper of this nature.

1. The Jacobi condition

Notation. Let k be a field and let x;,...,x, be n indeterminates over k. Given
polynomials uy,...,u,€k[x;,...,x,], We consider the Jacobian of uy,...,u, with
respect t0 Xq,..., X! '

J (u)=det (%>
0x;

We say that the polynomials (u) satisfy the JACOBI-CONDITION, or briefly JC,
if we have that J (1) =6~ Here -6~ stands for “Abhyankar’s Nonzero”, namely, any
suitable nonzero element of the ground field k. Note that 6- may denote different
numbers depending on the context, perhaps, even in the same equation.

Sometimes, we may replace the field k by a suitable domain and we may need the
generalized JC which states that J(u) is a unit in k. '

Let Q denote the universal module of differentials of the polynomial ring
k[x,,...,X,] over k. Recall that Q is a vector space generated by dx,...,dx, over
k. By A"Q, as usual, we will denote the nth exterior power of Q, which is a
one-dimensional vector space generated by dx; A -+ A dx,. Thus, another way of
describing the Jacobian is by writing

du, A - Adu,=J @)dx; Ao A dx,e AN"Q.

We can conveniently abbreviate this as du = J (w)dx.
" We need some standard simple facts about the universal module of differentials
to reformulate JC'. ‘

Properties of Differentials

(1) Let A be a ring and B an A-algebra. Then there exists a B-module Qy , und an
A-derivation d:B— Qg , such that for every A-derivation D of B into a B-module M,

1This material was part of the original notes and is left intact for historical reasons. For readers familiar
with these concepts, it suffices to note that: for an A — algebra B let QB/ , denote, as usual, the universal
module of differentials and let d:B—Q, , be the universal derivation_. Such readers may safely proceed
to Lemma 1.1.
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there is an unique B-linear map a:Qp ,— M, such that D = aod. Indeed, this is the
deﬁning property of the universal module Q ,. ,
2) If B=A[xy,...,X,], then QB/A = Bdx, + -+ + Bdx,, where {dx ,...,dx,} is a free

basis and d is given by df = Z
(3) If So T are respectively multzphcatwe sets in B and A, then

_ Q-1
QS'*B/T“IA - QS'lﬂ/A =S QB/A'

4) If 1 is an ideal in B, then
Q

Q E— . E—
B4 (19, , + Bdl)

(5) If Bis essentially of finite type over A, i.e. B is a localization of a finitely generated
ring over A, then Qg is a finite B-module.

(6) For a finitely generated field extension L of a field K, the condition that Q
is equivalent to L being a finite separable algebraic extension of K.

L/K=0

Proof. We will briefly indicate the idea of the proof behind these. The first five
properties are deduced by formal algebraic manipulations by proving the existence
of Qy , constructively.

For the sixth property above, let us indicate more details. Write, using standard
field theory, K < K; = K, = L, where K, is a pure transcendental extension generated
by a transcendence basis of L over K, K, is separable algebraic over K, and L is
purely inseparable over K,.

Suppose, that Q; =0, or, in other words, every K-derivation of L into itself, is
trivial.

If L#K,, then there exists a nontrivial K,-derivation of L into L and this
contradicts the hypothesis. So, L= K, and thus L is separable algebraic over K.

If K # K, then, set one of the transcendence basis to be x. The K-derivation 9/0x
of K, extends to the separable algebraic extension field L and again we get a nontrivial

K-derivation of L, a contradiction. Thus K = K, and hence L is separable algebraic
over K.

The converse is obvious!

Lemma 1.1. Let B=k[x,,...,x,] be a polynomial ring over a field k and let u,,...,u,
be polynomials. Set A=k[u,,...,u,]. Let K = Qt(A) and L= Qt(B) be the respective
quotient fields of A, B.

(1) A= B implies J ()=, i.e., 0 # J (u)=c for some cink.

(2) L/K is a finite separable extension if and only if J_(u) #O.

() J.(w) #0 implies that u,,...,u, are algebraically independent over k and converse
holds if k has zero characteristic.

Proof. (1) Since A= B, both the n-differentials du = du, A --- A du, and dx = dx, A --
A dx, are generators of the one-dimensional vector space A"Qp,= A"Q, Hence

they differ from each other by a nonzero constant in k, i.e. du = cdx where 0 +#cek.
Clearly, J,(u) = c as stated.
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(2) Since L is a finitely generated extension of K, we know that L/K is finite
separable if and only if QL/K=0 if and only if QL/k=QK/k. The last condition is
evidently equivalent to u,,..., u, forming another free L-basis of Q;, or equivalently,
du,,...,du,, are independent over L. '

(3) Follows from (2).

Definition. Let R = S be local rings with the maximal ideals m(R) = m(S). We say that
S is unramified over R (or S/R is unramified) if

(1) S/m(S) is finite separable over R/m(R) and
(2) m(R)S + m(S)* = m(S).

Note that the second condition implies that m(R)S = m(S) in case m(S) is finitely
generated.

More generally, given an A-algebra B and a prime ideal p in B, we say that B is
locally unramified over A at p, if B,/A,n 4 18 unramified. We say that B is unramified
over A, if B is locally unramified over A at all primes p.

Lemma 1.2. Let R = S be local rings with m(R) < m(S). Assume that S is essentially of
finite type over R. Then S/R is unramified if and only if Qg =0.

Proof. Suppose that S/R is unramified. We know that QS/R is a finite S-module.
Consider the R-derivation

Q'S/R

—2= =M, say.
m(S)dg x

D:S 5 Qg p—
Now any xem(S) can be written as x = Z;x;m; + ¥;y;2;, where X;€S, Vi 2;€m(S) and
m;em(R). It is easy to check that D(x)=0. Thus D induces a R/m(R)-derivation
D:S/m(S)— M. Since S/m(S) is finite and separable over R/m(R) by hypothesis, we
get that D =0. It follows that D = 0 and M =0. Thus, by Nakayama’s lemma, we
get Qg p = 0. '

Now assume that Qg = 0. Setting S/m(S) = L and R/m(R)= K we can deduce that
Q, ,=0.Thus L/K is a finite and separable extension. Now the complete local ring
T = S/(m(R)S + m(S)*) has a coefficient field containing K. If T# K, then T has a
residue ring of type K [x]/(x?). This last ring has a nontrivial K-derivation (and hence
an A-derivation) x(6/0x). This contradicts Qgp= 0, so T=K or equivalently
m(S) =m(R)S + m(S)*. ‘

COROLLARY 1.3. Let B be an A-algebra of essentially finite type. Then Qp =0
if and only if B is locally unramified at every prime ideal p.
More generally,Qy , =0 if and only if Bislocally unramified at every maximal ideal p.

Proof. Since Qg , is finitely generated, we have that Qpu= 0if and only if (g, ,), =0
for all primes p in B if and only if (Qp,4),= 0 for all maximal ideals p in B. Now we
use (Qp4), =5, 14,04 together with the above lemma.

PROPOSITION 1.4

Let A=k[uy,...,u,] with polynomials u,, ..., u,in B= k[Xy,-..>X,], a polynomial ring
in n-variables over a field k. Then the following are equivalent:
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(1) The polynomials u,,...,u, satisfy the Jacobi-condition J ,(u) = ©-.
() Qp,=0.

(3) B is locally unramified over A at every prime ideal p of B.

(4) B is locally unramified over A at every maximal ideal p of B.

Proof. Obvious from the above discussion.

COROLLARY 1.5. Let A, B be as in (1.4) and assume that the Jacobi-condition is
satisfied for the polynomials u,,...,u,. Let A denote the integral closure of A in B.
Then we have the following:

(1) For every prime p in B, ht(p) = ht(q), where q = pnA and B is locally unramified
over A at p. Moreover, B is a finite free A gsmodule.?

(2) If pis a height 1 prime of B, then AI,h i=B,. B

(3) If k is algebraically closed and m is a maxzmal ideal of B, then B,,= A~ 1.

(4) Let V be any dor (rank 1 discrete valuation ring) of Qt(B) which contains B.
Then V is unramified over W=V N Qt(A).

Proof. (1) We already know that B, is unramified over A,. This implies that B isa
finite A -module. This, in turn, 1mphes that g and p have the same heights. Moreover
both B and A are regular local rings, so by [Na, (25.16)] we get that B is a free
A -module

(2) pnaisadvr contained in B,, so by maximality of a dvr, it coincides with B,,.

(3) Using (1), we see that A,,m 4=B,. Let C=A4,, 7 Then C is normal hence
analytically normal and hence contained in B,,. Since both C and B,, have the same
quotient field, they are equal.

(4) Consider R =WT[x,,...,x,] = Vandset p = R m(V), where m(V)is the maximal
ideal of V. Since Qp =0, we get that Q. , =0and Qp , =0. By Lemma 1.2, R, is
unramlﬁed over W In particular R, is a dvr and hence V R,.

2. The Galois case
In this section, we will use the following hypothesis, unless otherwise declared.

Hypothesis. Let k be a field, B=k[x,,...,x,] the polynomial ring in » variables over
k and let u,,...,u, be polynomials in B. Set 4 = k[u,,..., u,,]. As before, we say that
u=(uy,...,u,) satisfies JC (the Jacobi-condition), if J (1) =

Some of our results can be stated and proved under the followmg more general
hypothesis.

Generalized Hypothesis. Let k be normal domain. Assume that k is prefactorlal ie.

assume that every height 1 prime of k is the radical of a principal ideal.

Let B=k[x,,...,x,] the polynom1a1 ring in n variables over k and let u,,...,u,
be polynomials in B. Set 4 =k[u,,...,u,].

?Here ht denotes the usual height of a prime ideal and ~ denotes the usual completion.

-
d
i
&




~u

S
i

Some remarks on the Jacobian question , 521

PROPOSITION 2.1 (Birational Case).

Suppose that Qt(A) = Qt(B) and u satisfies JC. Then A= B, i.e., the Jacobian Theorem
holds.

Proof. Let g be any height 1 prime of A. Then g =a4 for a nonunit aeA. Now, a is
a nonunit in B. Write a factorization a = p, --p,, where p, ---p, are irreducible in B.
Any one of them, say p; generates a height 1 prime ideal p=p,B and pnA>gq. By
Corollary 1.5, we get that pn A4 has height 1 and hence pnA=gq. Hence, A, = B,
and since both are dvr with the same quotient field, they are equal. Consequently,
A, B.

Now we have

A= n{A,lq is a height one prime} > B> A.
COROLLARY 2.2.

Let R c S be noetherian domains such that:

(1) Qg =0. :

(2) Qt(R)= Qt(S) and S/R is essentially of finite type.
(3) Any nonunit in R is a nonunit in S.

(4) R is normal and prefactorial.

Then R=S.

Proof. The only place where the JC was used in the proof of the Proposition 2.1,
was in the application of Corollary 1.5 to deduce that the contraction of a height 1
prime has height 1. This can be alternatively proved by the first two conditions of
our Corollary; for details see the proof of part 1 of Corollary 1.5.

Remarks. (1) Proposition 2.1 remains valid under the generalized hypothesis,
provided we assume that u satisfies the generalized JC also. This follows from
Corollary 2.2 after noting that since k is prefactorial, 4 =k[uy,...,%,]1s prefactorial.
Such an example where k is the ring of integers was already discussed by O. Keller
[Ke].

(2) The condition that R be prefactorial is essential. Indeed, take

R=k[x,xy,y(1 +xy)] =S =k[x,y]

Note that R is isomorphic to k[u, v, w]/(uw — v(v + 1)) and hence R is easily seen to
be regular. To see that Qg z =0, note that dx,d(xy) and d(y(1 + xy)) generate Q.
Clearly Qt(R) = Qt(S) and obviously, R #S. Indeed, R is not prefactorial. To see this,

~ consider the ideal I = (u, 1+ v)R. Suppose that it is the radical of a principal ideal

in R. In S it extends to the ideal (x, 1+ xy)S = (1)S. Since only units in S are constants,
radical of I and hence I itself would be the unit ideal in R. But the residue class ring
R/I is isomorphic to k[w], a contradiction! '

PROPOSITION 2.3 (Galois Case)

Suppose that u satisfies JC and either Qt(A) = Qt(B) or that there is a nontrivial tame .
Galois extension L of Qt(A) contained in Qt(B), then A = B.
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Quick Proof. By Proposition 2.1, we may assume that Qt(A4) # Qt(B). Using the fact
that the affine n-space is simply connected (i.e. there are no unramified proper tame
extensions of k(u,,...,u,)) and the purity of the branch locus, we deduce that there
exists a height 1 prime g in A and a dvr V with quotient field L, such that m(V)n4 =¢
(where m(V) is the maximal ideal of V') and V is ramified over 4,. Since L is a Galois
extension of Qt(4), all extensions of A, to L are ramified over A4,. Hence, every
extension of 4, to Qt(B) is also ramified over 4,. Now, since 4 and B have the same
units (nonzero elements of k), we must have at least one prime ideal p in B such that
p = gq. Choosing a minimal prime p with this property, we get that ht(p)= 1. Now
by Corollary 1.5 pn4 =q and B, is unramified over 4,. Since B, is evidently an
extension of 4, to Qt(B), we get a contradiction!

COROLLARY 24

Proposition 2.3 remains valid under the generalized hypothesis, provided we use the
generalized JC also.

Proof. Set Qt(k)=K and let B, =K[x,,...,x,] and A, = K[u,,...,u,]. Then by
Proposition 2.3, we get that 4, = B, and hence Qt(B)= Qt(4). Now, we are done
by Corollary 2.2.

Simpler Proof. We needed some celebrated theorems above to deduce that unless
Qt(B) = Qt(4), we must have a height 1 prime p in B, such that B, is ramified over
A, 4. We give a simpler proof of this by reducing the proof to some rather well |
known theory of functions of one variable.

Bertini Lemma 2.5. Let F be an infinite field and let K be the quotient field of
F[zy,...,2,], where z,,...,z, are indeterminates over F. Assume that n>2. Let E be
a finite separable algebraic extension of K, such that F is algebraically closed in E.
Then for “almost all” linear combinations y= A,z + .-+ + 4,2,, we get that F(y) is
algebraically closed in E and E is a separable extension of F(y).

Proof. The separability of E over F(y) is well known and we only demonstrate the
algebraic closedness. For AeF consider fields K, = F(y,)(z,,...,z,), where the bar
——— denotes algebraic closure in_E and y, =z, + Az,.

Now we claim that if K, = K, for some 4 # p, then F(y,) is algebraically closed
in E. Assuming the claim for a moment, we note that, since F is infinite and since
there are only finitely many fields in between K and E, we have the result for almost
all combinations z, + Az,. The result can then be deduced with a suitable technical
interpretation of “almost all”.

To prove the claim, set w, =z, + Az, w, =z, + puz, and w,=z for i>3. By
assumption

F(Wl)(W2,W3,l...,W”) = F(Wz)(wpws,- . .,W,,).

Denote this field by L. Since F is algebraically closed in F(w,), we get that
F(wy,ws,...,w,) is algebraically closed in F(w,)(W;,ws,...,w,)= L. In particular,
F(w,)is algebraically closed in the field L. It follows that F(w,) = F(w, ) as claimed.
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COROLLARY 2.6

With the notation and assumptions of the Bertini Lemma (2.5), there exist y1,..>Vns
linear combinations of Zy,...,Zy, such that F[yy,... Vul=F[z1,.:2] and F(yg,.-.s¥s)
is algebraically closed in E. ' '

Proof. Apply (2.5) a number of times.

Lemma2.7. Let K denote the quotient field of F[y]. Let Ebea finite separable algebraic
extension of K such that F is algebraically closed in E. Suppose that E/K is tamely
ramified. If no height one prime of F[y] is ramified in E then E=K.

Proof. The algebraic closure F of F and E are linearly disjoint over F. Hence after
replacing F by F, K by F(y) and E by E(F) we are reduced to the case where F is
algebraically closed. The canonical divisor for both E and K is given by dy and
according to [Ch, p. 106, Corollary 2] we have the formula

degg(dy) = degy(dy)[E:K] + deg(Dgx)

where Dy denotes the different of E/K. The only ramified discrete valuation of K/F
is F[y"l](yﬂ). Since E/K is tamely ramified it follows that

deg(Dpyx) < [E:K]—1.
Let g be the genus of E/F. Then the above formula yields
—2<29—-2=—2[EXK]+ deg(Dy) < — [E:K]—1.
Hence [E:K] =1 and E=K.

PROPOSITION 2.8

Let K denote the quotient field of the polynomial ring k[z,,...,2,) and E a finite
separable algebraic extension of K suchthat E/K is tamely ramified and k is algebraically
closed in E. If E # K, then some height one prime of k[zy,..-,2,) ramifies in E.

Proof. Using (2.6) we consider F[y] where F =k(y3,.--» y,) and y =Y. According to
(2.7) some height one prime p of Fy] ramifies in E. Then alsog=pn k[Vis- s Pnl=
pnk[zy,...,z,] has height one and ramifies in E.

Remark. (2.8) can replace the use of “purity of branch locus” and “simple
connectedness” in the proof of (2.3). '

3. Some results in two variables

Notation. In this section we suppose that k is an algebraically closed field of
characteristic 0 and we study polynomials f, gek[x, y] satisfying the Jacobi-condition
c.

df A dg=-6-dxAdy

\
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where, as already explained, -6- is the “Abhyankar’s Nonzero”, i.e. some nonzero
element of k.

For f =X, ;x'y’ we consider supp(f) = {(n,m)eR?|f,,, # O}.

The boundary polygon of the smallest convex set in R? containing supp(f) will
be called N(f)=the Newton polygon of f. (This concept is somewhat similar to
ordinary Newton polygon, but certainly not the same.) Let E(f) denote the set of
vertices of N(f), or equivalently, E(f) is the set of extreme points of N(f).

In order to show that the Jacobi-condition for f and g implies a similarity of N(f)
and N(g) we introduce degree functions and gradings of k[x, y].

Given coprime integers a,beZ (ie. integers satisfying aZ + bZ = Z), we form a
grading k[x, y] X _oH,, where Hj, is the k-vector space generated by all
monomials x'y’ such that ai + bj = n. Every nonzero fek[x,y] is written as Z f;, where
fi€H,, ,. The corresponding (a, b)-degree A,, is defined by A, ,(f) = max{i|f, # 0}.
The degree form of f with respect to (a, b) is by definition equal to f, withn=A, ,(f).
We use the notation f, to denote it. If f =0 then usually its degree is taken to be
undefined or sometimes cqual to any desired number. The degree form is similarly,
undefined or 0.

The reference to the weight a, b may be dropped, if the weights are clear from the
context.

It is not hard to see that (n, m)e E(f) is equivalent to the existence of an (a, b)-degree
such that f7, =-8-x"y™. Moreover, every side of N(f) corresponds to an (a, b)-degree
for which f, is not a constant multiple of a monomial.

On A Zﬂk[x,y‘]/k we introduce a similar grading associated with (a, b) by means of

A ZQk[x,y],k = Z'Hﬁ,bdx A dy.

The correspondmg degree-function is again denoted by A,,. Further, for any
we A2 Q1 5y We let w; denote its homogeneous part (with respect to (a, b)) of order i.

The definitions concerning weights can easily be generalized to arbitrary real
numbers (g, b). For analyzing Newton diagrams, however, we only need integer weights
or sometimes, for clarity, we may use rational weights.

Lemma 3.1. Let a,b be coprime integers. We write H" for H? . and A for A, ,. We will
also drop reference to a,b from the various degree-form notatzons Then we have

(1) dH" ANdH™ <« H* ™~ 2"bdx A dy.
(2) For any f,gek[x,y] one has

(df AN dg)uisy+ s -aon =4 " Ndg™.

In farttcular A(f) + Alg) — A(xy) = A(df A dg). Strict inequality holds if and only if
df * ANdg* =0.

(3) If f.geklx,y] are nonzero polynomials, homogeneous with respect to (a,b), then
df A dg =0 implies flA@ =-g-gla

() If f,gek[x, y]satisfy d(xf) Ad(g) =6-dx A dy,then0 # fek andg =6y + p(x) for
some polynomial p. In particular, k[ f,g] = k[x,g] = k[x,y].

() If f,geklx,y] satisfy df Adg=-6-dx Ady and f is homogeneous with respect to

(a,b), then k[ f,g] = k[x,y] and either deg(f)=1 or f=-6-x+ p(y) or f Oy + p(x)
Jor some polynomial p.

£
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Proof.
(1) For monomials x" y/ and x” yi2 we have
d(xit ) A d(x2y2) = (iyjy = gy x0TI A A dy.

The statement in (1) follows easily from that.
(2) Let n=A(f) and m = A(g). Write

f=Zfiandg= Zgj-

i<n j<m
Clearly
df Ndg=Y, Y, dfiNdg;

d i+j=d

and the term X, ;_,df; Adg; is "homogeneous (with respect to (4, b)) of order
d—a—b=d— A(xy). This makes statement (2) obvious. ~
(3) Consider the l-form w= — (by)dx +(ax)dy. It has the property that for
homogeneous hy,h,ek[x,y] (homogeneous with respect to (a,b)) and hy #0 the
following formula holds:

d (h) Aw=(A(hy) — A(h3)) (h) dx A dy.
h, ha
Apply this to v = f2@g~4). Then it gives dv Aw=0.

We want to show that vek. If not, then dv #0 and is linearly dependent with w

(over the field k(x, y)). So dv = hw with 0 s hek(x, y). Also dv A df =dv A dg =0, hence
df Aw=dg Aw=0. This implies A(f) =A(g) = 0 and v= 1. Contradiction! Hence
pek and we have 2@ =-6-g*!"). Since f and g are actually polynomials, A(f)A(g) =0
and (3) follows. We remark that the statement of (3) becomes uninteresting for
A(f)=A(g)=0. -
(4) Assume first that f is nonconstant. Without loss of generality we may assume
that g(0,0) = 0. Then neither f nor g is divisible by x since in either case df Adg
would be divisible by x. Write g = xp(x,y) + q(y) where g #0, ¢(0)=0. Take (a,b)
such that a < 0 and b = 1. As usual, by a «0, we mean a is assumed to be sufficiently
negative. Thus, for a « 0, we have A(xp(x,y)) <0 and A(g(y)) = deg,q = s > 0. Hence
g : , =0-y*. A similar argument shows that f 7, =6 y(t>0)foraxOandb=1. Hence
(Xf)F, =0xy". From (2) it follows that

d(xf);, Nd(gy) =vdx N dy with vek.

This is a contradiction. Hence fek, f #0. The rest of (4) follows easily.

(5) Write g = Zg;. It follows from (1) that for some j, df A dg;= ©O-dx A dy. Puth=g;.
From (2) it follows that A(fh)= A(xy), hence fh=ZXA,x" y# and supp(fh) = {(o, B
(@—Da+(f-1b= 0}. We suppose (as we may) that £(0,0)=0 and h(0,0)=0.If x
or y divides fh, then (4) yields k[ f,h] = k[x,y]. It follows that g = h+ p(f) for some
polynomial p and consequently k[ f,g]=k[x, y].

If neither x nor y divides fh, then there exists n> 0 and m > 0 with (n,0), (0,m)e
supp(fh). Hence (n— 1)a= b and a = (m — 1)b. So eithera=b = lora=b=—11In
both cases f and h are linear expressions in x and y. Clearly k[f,h]=k[x,y] and
k[ f.g] = k[x,y]. The rest of the statement is easily checked.
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Remark.

Part (2) above leads to the following natural.

Definition. We say that two polynomials f,g are (a,b)-related if
AN+ A, (@) — A, (xy)> A, ,(df A dg)

and they are said to be (a,b)-unrelated otherwise.
We set the (a, b)-deficiency of (f,g) to be

6,09 =4, ,(N)+ A, ,(9) — A, ,(xy) — B, ,(df A dg).

Thus part (3) says that (a,b)-relatedness is equivalent to the (a, b)-degree-forms
being powers of each other, or equivalently, to the (a, b)-deficiency being positive.

Part (4) of the above lemma can also be stated as: If f,gek[x,y] satisfy the
Jacobi-condition and if there exists a factor p of fg and a g with k[p,q] =k[x,y],
then k[ f,g] =k[x,y]

PROPOSITION 3.2.

(Similarity of Newton polygons) Let f, gek[x,y] satisfy df Ndg=-0-dx Ady and
J(0,0)#0#g(0,0). Let their total degrees with respect to (x,y) be respectively n,m.
Assume n>2 and m > 2. Then: '

(1) If (a,b) is a degree such that a <0 and b <0, then supp(f,) is either {(0,0)} or
lies entirely on the x-axis or the y-axis. The same holds for g.

(2) There exists a non-zero constant cek such that for every degree (a,b) with a>0
or b >0 one has

(f::b)m = c(g:,b)n.

In particular A, ,(f™ —cg") <max(mA, ,(f), nA, () for all degrees (a,b) with a>0
orb>0.

(3) mN(f)=nN(g) and mE(f) = nE(g). The Newton polygons of f and g look hke as
in figure 1.

(4) Let (a,b) be a degree such that a>0 or b> 0. Then there are (a, b)-homogeneous
elements h, h,ek[x,y] such that df 7, A dh, =h,dx A dy, A(f;b) +An)=Axy) +
A(h,) and for some p>0, (f,, )”——-&h"

[~

it TP

P b
RN\ ()

Y

Figure 1. Figure 2.
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Proof. Our assumptions f(0,0) #0, deg f =2 and df A dg=0-dx A dy together with
(3.1) part (4) imply that f— f(0, 0) is neither divisible by x nor y. So the Newton
polygon of f looks like as in figure 2.

From the diagram, the statements in (1) follow.
Let (a,b) be a degree with a>0 or b > 0. We claim that

A, () + A4 (9) > Ay, (3.

Consider separately the cases: (i) a>0, b<O0; (i) a<0, b>0; (ii)) a= b>0; (iv)
bza>0. : ‘

Case (i) Aus(f) > & Aap(@) > a 50 Ay (f5) > 20> By (X))

Case (iii): If a> b the above argument still holds. If a = b, then a=b =1 and Asp
equals the usual total degree on k[x,y]. Itis given that deg(f) + deg(g) =4 > deg(xy).

Cases (ii) and (iv) are symmetric to (i) and (iii).

It follows from (3.1) that df Ib A dg;b =0and A, ,(f)> 0, A,,9)> 0. Again using
(3.1) we get :

(f::b)Aa,b(g) — .e-(g:;b)Aa,b(f).

In particular, it follows that f :,5 is a monomial if and only if 9:,1, is a monomial.
Geometrically, this means that the line through (0,0) and P; (use the numbering of
E(f) as in the figure above) contains a point Q; at E(g) and that all points of E(g)
are obtained in this fashion. Also f, is not a monomial (i.e. represents a side of
N(f))if and only if g}, is not a monomial. Hence the sides {P,, P, , } and {Q;, 0.1}
are parallel. It follows that for some rational number A # 0 one has N(f)=AN(g).
Using (a,b) =(1, 1) one sees that A= n/m.

Let ¢, be the nonzero constant in k satisfying (f},)" = ci(g;b)” where (a, b) is chosen
such that supp(f;,)=P; and supp(g,,) = Q; Fora degree (a, b) which corresponds
to the side (P, P,,,) of the Newton polygon of f we have f :’b)”‘ =-6-(g:b)".
Comparing the monomials in this equation with maximal or minimal degree in x or
y one finds B =¢;=C;4,- Hencg all c; are equal to ¢ =c,. This proves (2) and (3).

For (4), put T*(g)=f"—cg". We claim that: §,,(f, T*(g)) <96,,(f.9) This can be
easily checked from df A dT*(g) = B¢ tdx Ndy. X6, ,(f, T(g)) =0, then h, = T'(9);,
and h, =6-(g; y*~! have the required properties. If 6, , (. T'(g)) > O, then (3.1) yields

a,b
ar s, A dTl(g)ib =0 and (f,,) =0(T*(g);,)" for some p> 0. Put T?(g)=f"—
& T'(g)". Then, as before, we deduce that 6, ,(f, T%(g)) <9, ,(f, T*(g)). Since, the
deficiency cannot decrease indefinitely, eventually some T*(g) has deficiency 0 and

we get:

. df AdT"(g) =0T (@) T (@) dx A dy
an .
AN+ AT (@) =86+ A@T @) T @)r ™"

The elements h, = T"(g),, and h, =0((gT*(9) T~ 1(g))*"*), have the required
properties. : :

Remark. Part (4) of (3.2) can be phrased differently. The condition ( ;’ L) =6h,
implies that f :b and h, are powers of the same homogeneous element C. Putting
D =-6-h,, the equation reads AC A dD = C'*ldx A dy, with t> —1. We study this
equation separately in the sequel to this section.
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Lemma3.3. Let C and D be(a, b)-homogeneous elements of k[x, y]. Write C = x'* y/' ¢(2)
and D = x"yi21(z) where i,,i5,j,,j,€Z, z=x""y* and o,1€k[7]. Then N

AT A(D)a’)> dx A dy

T o Xy

Proof. Note that:

(ﬂgAd_D)=<i1dx+j1dy+d’dz)A(izdx+j2dy+t'dz>.
cC D x ¥y o x y T

Using

t_if/\gzadx/\dyandd_y/\fli=bdx/\dy,

x oz Xy y z xy

it is easy to establish the formula.

Lemma 3.4. Let C and D be nonzero (a, b)-homogeneous elements of k[x,y] such that
dC AdD =-6-C'"*"1dx A dywitht > 0.If A(C) # 0 and A(C)A(xy) >0, then C' divides D.

Proof. Multiplying by C*~! the equation becomes d(C*) A dD =-6-C*'dx A dy. After

replacing C by C* one sees that it is enough to deal with the case t = 1. Also, the
nonzero constant can be absorbed in D.

Multiplying both sides of the equation by —g—yD— and using the reductions mentioned

above, it is equivalent to

XY gc hdD =2 dx A gy,
D D

. C
Using the notation of (3.3) we find that the expression _Dx! equals:

xi1+1-'i2yj1"'1".i20-

= (s ~1afs) +2 <A(?" _40) )

T (o2

Moreover, we can easily prearrange ¢{0) #0 and 7(0) # 0, since any factors of z
can be absorbed in the monomials. }

The monomial x**1~2yit+1=j2 must then be a rational function of z and clearly
a monomial z" for some integer r. Now clearly, the rational function of z on the right
hand side does not have a pole at z =0, so neither does the left hand side. Since r
is the z-adic order of the left hand side, we get that r is a nonnegative integer.

Let A(# 0) be any root of ¢ with multiplicity e, > 0 and a root of  with multiplicity
e, = 0. If we can show e, > e,, then we have proved that ¢ divides r.

Write 0 =(z — 1)*'¢, and t =(z — 1)®27,. One obtains:

z’(al/r;)(z - 'l)ef-ez

4 2A©)e; — AD)ey)

=(i1j2-—i2j1)+z(A(C)t’1/rl—A(D)a’l/al) )
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If e, >e,, then A.(C)ez = A(P)el. Using A(D) = A(C) + A(xy) this yields e; A(xy) =
. (e; — ey )A(C), which contradicts the hypothesis A(C)A(xy) > 0.
' ‘ In o_rder to show that C divides D we are left with showing i, <i, and j, <j,. Or.
in obvious notation, (i,,j;) < (i5,j,). ,
If r =0, then, (i_1 =j1) +(1,1)=(i,,j,) and we are done.
If r > 0, thcp (}1 Ja— i? j1)=0. Hence for integers 4,,4, (not both zero) one has
Ay(i1,j1) = Az(iz,j2) Using again A(D)= A(C)+ A(xy) this yields (4, —4,)A(C)=

A, A(xy). If A,A(xy) =0 then A, = 4, and we are finished. If 1, A(xy) #0, then we may

tflkt? Ay > 0._ The assumption A(xy)A(C)>0 gives A;>A4, and that implies
(i15J1) < (iz5]2)-

Lemma 3.5. Let 05 C and D denote (a, b)-homogeneous elements such that dC A dD =
Cdx A dy. Suppose a >0 and b> 0. Then C has “at most two points at infinity” which
means: There' are (a, b)-homogeneous elements x, and y, with k[x,y]=k[x,,y] such
that C =6-x. y;.

Moreover, D =-0-x,y, and i #j. The only possibilities are:

. (1) a=b=1 and x,,y, are linear expressions in x and y.
i@{ (2) a=1andb>1andx1=xandy1__,y+ﬁ_xb.

(3) a>1and b=1and x; =x+ 6" and y, = .

4 azlandb>1and x, =x and y, = y.

Proof. Theformula A(D) = A(xy) implies that D must have the form A, xy + 4,X° + 43"
If 1, #0 and A3 #0, then a=b=1and s=t=2.D is obviously equal to x; ¥,
where x, and y, are linear in x and y. Also, D cannot be a square, SO X;,y; are
linearly independent.
If 4, #0, A,#0 and A;=0, then D=-6x(y +-0-x*"1). Since y+Ox"! is
(a, b)-homogeneous it follows that a = 1, b=s—1. We take in this case x; =x and

y=y+ B-x".

If A, #0, 4, =0, A3 #0, then similarly D = ©x,y, with x; =x+0)%, y1 =y and
b=1. .

If 4, #0 and 4, = A3 =0, then take x, = x and y, =y. In this case (a,b) can be
arbitrary.

Finally, 4, =, =0 or 4; =43 =01is not possible. o
In all cases we have D =-0-x, y,. Write C = X4,x; ¥1 with'sgpp((D c{@i,j)lai+bj=
A(C)}. The equation dC A dD = --Cdx, A dy, becomes explicit: x; C, — J1 C, =9C
This implies that for some integer !
supp(C) = {@)li—j=1}

Hence C is a2 monomial in x; and y;.

i

Remarks. (1) The restriction in (3.5) given by a >0 and b > 0 is necessary as is shown

in the following counterexample: (a, b) = (1, 0),C=x? yO +'1)3 and D = xy(y + 1) have

the property dC A dD = Cdx A dyand Cisnota monom1a21 in new vanablcs; X1, V1-

(2) Another example: (ab)=(3,—1) and C = x(xy® +1)*and D= xy(xy® + 1). Then
dD = Cdx A dy.

?3(; /I\Iogever, the foyllowing generalization is valid. Assume that- C and D are (a,b)-

homogeneous elements such that dC A dD = Cdx A dy and the highest y-degree terms

—_
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in C and D are unrelated. Assume further that a > 0. Then the conclusion of the
Lemma holds. For a proof, note that the hypothesis implies that the highest y-degree
term in D must be -O-xy since its jacobian with the highest y-degree term of C must
reproduce itself up to a constant multiplier. It follows that we must have

D =-0xy+ 4,x"

The proof is easily finished. Let us further note that in case a+b >0 and b <0,
we must have 4, =0 and hence C,D are monomials in x, y already.

Theorem 3.6. Let f,gek[x,y] satisfy the Jacobi-condition and suppose that their
degrees n and m satisfy nfm and mn. Then GCD(n, m) cannot be 1, a prime number or 4.

Proof.

Suppose the contrary. Using (3.2) part (4) for the ordinary degree (1, 1) and the lemmas
(3.4)and (3.5) one sees that after a linear change of variables, f f , =0x"y withs <t.

We will deduce that either our Theorem holds or by suitable automorphisms, if
necessary, we can arrange that for some positive integers u, v

fii="00"y")" and g7, =6(x"y")’,

where GCD(R, §) = GCD(u,v) = 1. We will then deduce a final contradiction from
this situation to finish the proof.

First we show that the case s =0 can be reduced to the above situation.

If s = 0, then, the Newton polygon N(f) has a side starting with (0, t) corresponding
to a degree (a;b) with a>b>0. Reasoning as before, we find b=1 and

=-B-((x +-0-y*)*y*)® for some postive integer R. Similarly, g, b= ((x+0y")"y Y

for some pos1t1ve integer S. Hence (v+ au)R =n and (v + au)S = m. So (v + au) divides
GCD(n, m), in other words, (v + au) divides a prime number or 4.

There are only two possibilities:

(i) u,v are nonzero, GCD(u,v) = 1 and GCD(R, §) equals 1 or 2
(i) a=u=2,v=0and GCD(R,S)=1 (this occurs only when GCD(n, m) = 4).

We can clearly apply a suitable automorphism of the form: x —x +-6-y% y—y so
that the y-degree reduces, but the hypothesis of the Theorem continues to hold. We
can also check that after the automorphism, the new (1, 1) degree forms for f, g become
O(x"y")%, ©-(x"y")° respectively. In the case (i), the new GCD(n,m) becomes 2
and we can start the proof again with the assurance that we will not run into case
(i) again. Thus we have achieved the promised reduction.

Now we assume s > 0 and again reduce to the situation ment1oned at the - beginning
of the proof.

Consider the side of N(f) which starts with (s, £) and is directed towards the x-axis.
For weights corresponding to this hnc, we must have >0, a+b >0 and b <0. As
before we write f 1, =-8-C® and g, =-6-C5 where C is (a, b)-homogeneous and not a
monomial. Further B(Cy )= f 11 and O(CT Y=g, . Write CY S =x"
O<u<n.

Since (u+v)R=nand u+v)S=m and GCD(n,m)=1, pnme or 4, we find again
that GCD(u v)= 1.
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Thus, again, we have achieved the promised reduction.

Now we deduce the final contradiction.

Consider the equation dC A dD = Cdx A dy with respect to the (1, 1)-degree. If
A, (D) <2, then according to (3.5) we find that C is a monomial in x and y.

If A, ,(D)>2, then dC}, AdD, =0. Hence a power of D{ | is equal to a power
of C{ . But since GCD(y,v) = 1, we have in fact, D} | = 9-(C{ ) for some p. Replace
now D by D* = D —9-C?. Then dC A de = Cdx A dy, D* is (a, b)-homogeneous and

A, (D*) <A, (D). So finally one findsa Dwith A, ;(D)<2anddCA dD = Cdx A dy.
This implies again the contradiction “C is a. monomial”.

4. Some interesting calculations for plane curves

Preamble. We continue to use the previous notation. Explicitly, we fix polynomials
f,g in k[x,y], satisfying the Jacobi-condition. Without loss of generality, we may
assume that f,g are monic in y. In fact, the best way of describing our setup is to
start with the situation as deduced in the beginning of the proof of (3.6), where
f f  =(x*y") with s <t and make a linear change x—y + x. Even this change is not
quite necessary but avoids technical complications.

Set n to be the y-degree of f and m to be the y-degree of g.

Now the first corner of the Newton diagram (figure 3) will be along the line joining
(s, t) to the origin.

We may, in this case, view the pair f,g as describing a parametric polynomial

plane curve with parameter y over the field k(x). We, therefore get a standard
meromorphic Newton-Puiseux expansion of g in k(x)((r)) where 7 is defined by

f =n""and k(x) denotes the algebraic closure of k(x). Using the change of variables
from x, y to x,n we compute J . ,(f, g) or the x-derivative of the n-expansion. Then it is
easy to see that we have:

gm0+ O ek X))

In other words, the Newton-Puiseux expansion of g, indeed lives over the field
k(x). Moreover, all the terms of the expansion up to the displayed term of ordern—1
are free of x.

Taylor Resultant Theorem 4.1. [A2, P. 153]. Given any two noriconstant polynomials

AY o
(1,1)-line Line X=Y
(s,ti
| N
AX
Figure 3.
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p(t), q(t) over a field K of characteristic 0, set

0() - Res (p(t)—p(r) q(r)—q(r))

N 3
t—1 t—1

Set A=XK{[p(t),q(t)] and let € be the conductor of the ring A in the ring A’ = K[t].
Then € = ©(t)A'. In particular, thinking of p(t), q(t) as parametrizing the plane curve

H(X,Y)=Res,(p(t) - X,q(t) - Y)

we get:

(1) The parametrization is faithful if and only if K (t) = Qt(A) or, equivalently, @ (t) 5 0.
(2) If © #0, then the curve is nonsingular (at finite distance) if and only if A= A’ or,
in other words, ® = 6-¢K.

Proof. Let p(t) have degree n and set E=Qt(K[p(t)]). Then K(t) is a separable
algebraic extension of degree n over E. Let ¢,,...,t, =t be a full set of conjugates of
t in some fixed algebraic closure of E. Note that we have the factorizations:

PO _

(z—t).
t—=1 1..(n—1)

By the defining property of resultants, we get that
) — qlt,
Lm—1) t—1;

where the nonzero constant is needed to handle signs and powers of the leading
coefficient if any.

We also have from the definition of H(X, Y) that

H(p(®), V)= (=1 [] (Y—q(t))

1...n
and so

Hy(p@®,qg@)=(—1" ] (a(®—a()).

1...(n~1)

Also, if we pick a new indeterminate W, then

p(W)—p(t)=1H W—t), sop'(®)= H (t—1).

l..(n—1)

From the above calculations, it follows that

o) =-o-2xPl:40)
')

The Dedekind Formula for the conductor and the different exactly says that the
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fractionary ideal generated by the right hand side of the above equation is the
conductor ideal €. This establishes the main formula. '

The parametrization is faithful if and only if the field K(t) coincides with Qt(A).
Now the fields K (f) and Qt(A) are distinct if and only if

[Qt(A):K(p())] <n=[K(): K(p())]

or in other words g(¢) has less than n conjugates over K (p(t)). But this last condition
is equivalent to g(t) = q(t;) for some i <n, or, in other words, to ®(t) =0.
The rest of the proof follows from the properties of the conductor.

Semigroups. We now present some connections between Newton-Puiseux expansions
and certain value-semigroups associated with plane curves.

We begin with a field K whose characteristic does not divide a given integer M,.
We consider a (Laurent) power series '

o(n) =Y an'eK((n)

Without considering the genesis of this series, we build a set of associated sequences
as follows. .

First set S = supp(¢)= {ile; #0}. Set M, to be the order of ¢, ie. ord,¢(n)=
inf {i|lieS}. Also set d, =|M,l, dy = GCD(M,,d,). Further, set n, =d, /d,.

Assume that we have already inductively constructed My,..., M; as well as
associated sequences q,,...,did1s---sdi+1 and ny,...,n;. We extend this construction
as follows.

Set M;,, =inf{j > M;|jeS and j is not divisible by d;,}. In case M;,; =c0 we
set h=i and declare the process finished. Otherwise, set gir;=Miv1—M;,
diy2=GCDM,,,,d;4,) and nyy, = diy1/diea

Of course, the inductive definition is then continued.

There are two more associated sequences which can be now defined in terms of
the above.

so =M, and 5;,=Ziq,d, for 1<i<h
Also, we set |
| ro =5 and r;=s;/d; for I1<i<h
It is easy to see that GCD(ro,...,7;) = d;+ and hence any integer b is an integral
combination of rg, ..., r; iff d;, divides b. ‘
Strict generation. A combination Za;r; is said to bé a strict combination if

(1) a, >0 and
(2) 0<a;<n for 1<i<h

‘We say that {r;} form a strict set of generators if the semigroup generated by ro,...,7:
consists entirely of their strict combinations.

There are two special cases of interest when we get a strict set of generators {r;}
from the given ¢ and M,. See [Al, Chapter 8]. ’
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Algebroid Case: Here My >0, x =4 and y=¢(n) describe the local Newton-
Puiseux expansion for a plane curve at a point in the plane, provided the curve has
only one branch at the point. In this case, M; >0 and ¢(1)eK[[n]]. If A denotes
the local ring of the point on the curve, then the unique valuation of the curve
centered at 4 coincides with the n-adic order and the semigroup of values of all the
(nonzero) elements of A is the semigroup (strictly) generated by {r,}.

Meromorphic Case: This is a special case of a meromorphic curve. Here, M, <0,
x =n™° and y = ¢(n) describe the expansion at infinity for a plane curve, provided
the curve has oﬁiy one branch (or place) at infinity. In this case, all r; are negative. ,
If A denotes the coordinate ring of the curve, then the n-adic order denotes the unique
valuation at infinity (nonpositive on A) and the semigroup of orders of (nonzero)
elements of A coincides with the semigroup (strictly) generated by {r;}.

Thus, any properties deducible from strict generation apply to each of these
situations.

Uniqueness of expression. Assume that {r;} is any sequence of nonzero integers with
0<i<h. Assume that d;=GCD(ry,...,r;_,) for 1<i<h+1 and that n,=d,/d,,,
for L<i<h. Let " denote the semigroup generated by {r;}.

If b is any integer in the group generated by {r;} or equivalently, if d, ., divides b,
then we have a unique (partially strict) expression

h

b=y ar; where 0<a,<n, for 1<i<h.
0

Moreover, if {r;} form a strict set of generators for T, then beT iff a, = 0.

Proof. This is standard stuff as in [A1, Chapter 1]. The main idea is as follows. The
remark about the condition for b to be in the group is obvious from the fact that
the GCD of ro,...,r, is d;,. It is also obvious that n;r; is divisible by d; and hence
is an integral combination of ry,...,r;_;. Thus any given integral combination of b
in terms of ry,...,r, can easily be transformed to the desired (partially strict) form.
Uniqueness is deduced from the GCD properties by induction on the last r; present
in the expression.
The last assertion follows easily from the definition of strict generation.

A Symmetry Property. Assume that {r;} form a strict set of generators for a semigroup
I'. Set

h
o= —ro+ 2, (n;—)r
1

Given any two integers u,v divisible by dy, |, such that u + v = g, one and only one of
u,v belongs to T.

Proof. Clearly u, v belong to the group generated by {r;}. Write the unique (partially
strict) expression for u as

h
=Y wr; where 0<u;<n, for 1<i<h
0 .
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Then obviously the unique (partially strict) expression for v is given by
h
v=(—1—uy)ro+ Z‘(ni— u;— ;.
1

Thus, from the above criterion we have:
uell iff uy >0 and vel iff (— 1 —uy) =0.

Cor:lductor of a semig.roup. I.f a semigroup consists of nonnegative integers only. The
con ucton: of thg semigroup is defined to be the least nonnegative integer such that it
and all blg_germtegers are in the semigroup.

If a semigroup consists of nonpositive integers only, the conductor of the semigroup

is dt?fined to be the largest nonpositive integer such that it and all smaller integers
are in the semigroup.

AF or.mula For The Conductor. Assume that {r;} form a strict set of generators for
a semigroup T'. To simplify notation, further assume that dy,, =1, i.e. that the group
generated by {r;} consists of all integers.

Set as before:

h
=—ro+2,m—1r
1

If T consists entirely of nonnegative integers, then the number ¢ =0+ 1 has the
properties: :

(1) c is an even integer.

(2) Every integer bigger than or equal to c is in T and ¢ is the smallest integer with
this property. In other words, c is the conductor of T

(3) There are exactly c/2 positive integers not inT.

If T consists entirely of " nonpositive integers, then the numbef ¢ =0 —1 has the
properties:

(1) ¢ is an even integer.

(2) Every integer smaller than or equal to c is in T and c is the largest integer with
this property. In other words c is the conductor of T.

(3) There are exactly c/2 negative integers not in T

 Proof. Suppose first that T" consists of nonnegative integers only. By assumption

— b¢I if b> 0 and hence by the symmetry property, ¢ — (= b)=o0 + bel.

Again by the symmetry property, OeI” and hence o — 0= o¢I". Thus, no number
smaller than ¢ has the desired property.

Also, ¢ must be odd, since if o = 2b, then b= —b will be both in T as well as
outside T" by the symmetry property. Thus all the ¢ integers from 0 to o =c — 1 can
be paired off as u, c—u where exactly one of each pair is in T. This proves the
remaining claim. :

The case of nonpositive I is similar.
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Length of the integral closure: Algebroid case. Assume that we have the Algebroid
Case described above and A is the local ring of a point on the curve. Let A’ be the
integral closure of A in its quotient field (the function field of the curve) and let € be
the conductor of A’ over A. Let I" be the semigroup of values of (nonzero) elements of
A in the unique valuation centered at the point and let ¢ be the conductor of T as
described above. Then the length of A'/A as an A-module is exactly c/2. By the well
known Gorenstein property of such local rings, the length also coincides with the length
of AJ% as an A-module. In particular, the length is described by the formula

‘ 1-—?‘0+E’i(ni—1)ri
2 .

This verifies the formula on page 169 of [A2]

Proof. To simplify matters, we assume that the field K is algebraically closed. It is
clear that if we take the values of various nonzero elements of A’ we get the semigroup
of all nonnegative integers. List the ¢/2 nonnegative integers which do not belong to
I' as uy,...,u,, and pick a sequence of c/2 elements of A’ with values u,,...,u,,
respectively. It is easy to see that they form a basis of 4’/4 over K and in fact
determine the length of 4’/A.

The proof for the general K should be carried out by the already mentioned
Dedekind formula or by the technique of extending the ground field. We omit these
technical details. '

Length of the integral closure: Meromorphic case. Assume that we have the
Meromorphic case described above and A = K[x,y] is the affine coordinate ring of a
curve having one place at infinity. Let A’ be the integral closure of A in its quotient
field (the function field of the curve) and let € be the conductor of A’ over A. Let T’
be the semigroup of values of (nonzero) elements of A in the unique valuation at infinity,
i.e., the unique valuation of the function field not containing A. Let ¢ be the conductor
of T as described above. Then the length of A’'/A as on A-module is exactly c/2. By
the well-known Gorenstein property of such rings, the length also coincides with the
length of A/% as an A-module. In particular, the length is described by the formula

1—ry+Zh(m,— D,
> :

Proof. The proof is formally the same as in the Algebroid case.

5. The Newton Puiseux expansions for different weights

Preamble. We wish to generalize the Newton-Puiseux expansions discussed in the
previous section by making the expansion which will respect a certain weight.
We assume that f, g are polynomials in x, y of degree at least 2 satisfying the Jacobi-
condition. -
Fix rational weights a,b and set w = (a,b). Assume that A (f) >0 and A, (g) > 0.
Moreover, we are generally interested in weights corresponding to Newton lines only,

5
'
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although most of the calculations go through for the general case. Then clearly, at
least one of a, b is positive and since weights proportional by positive numbers yield
the same degree forms, we may assume a, b to be coprime integers. By interchanging
x, y if necessary, we are reduced to considering the cases a=0, b=1or a> 0 with
GCD(a,b) = 1. The case when a=0 is the case of considering the y-degree as the
weight and the corresponding expansion is as discussed in the last section. We
therefore assume that a>0. We also make the following assumption, which is
necessary for the validity of some of the technical results.

Special assumption: Assume that the weights a,b are such that a+b>0 or that
the weight of the monomial xy is positive.
~ Generally, this assumption is valid for weights along Newton lines starting above
the line X =Y, since in the contrary case, the resulting Newton diagram will not

_cross the X =Y line and the resulting polynomials f, g will be divisible by y and the

Jacobi-condition fails. In our current set up, this will be true for the sequence of
Newton lines starting from the end of the (1,1)-line until the first line which crosses
the X =Y line. ) .

We now set y = zt%, x = t*. Note that the change of variables from (x,y) to (z,1)
causes the Jacobian to be multiplied by -8-“**~ .

We now think of f,g as elements in the field k(z)((r)), the field of meromorphic
power series in © = +—1 over the field of rational functions in z. Note that the weight
of any of the original polynomials can simply be read off as the highest power of t
occurring, or, equivalently, the negative of the 7-order.

The change of variables to (z,7) causes the original Jacobian to be multiplied by
_e_t(a+b—1'),r—2=_e_,c—(a+b+1). o .

In particular, we can write f — -9-tA P(z) where P(z) is some polynomial.
Consequently,

f=-6P(2)t*P*(z,7) =B P(z)7" Awtf) P*(z, 1)

where P*(z,7) is a polynomial in t with coefficients in k(z), thought of as an element
of k(z)[[*]] and in fact, it is a unit in the power series ring k(z)[[*]]. By taking its
— A, (f)-th root, we can write

f=P@T >

where n = t(P*(z, 7))~ /¢ is a new generator for the power series ring k(z)((r)) over
k(2). -

Thus, the transformation from (x, y) to the new variables (z,n) multiplies ths
Jacobian by a unit times #~“*?* 1. Moreover, the w-degree can be computed as the
negative of the n-order. '

Given any power series

G =Y a)n

we can compufe its Jacobian with f to be
1, (£6)= Y0P @Da+ A, (NP .

In particular, if G is obtained from a polynomial in (x, y) by the change of variables
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explained above, we can check that f, G are w-related if and only if the term

= P'(2)Q(2)A,(G) + A, (f)P(2)Q'(2) ()

equals 0, where the leading term of G is written as Q(z)n =2+,

Moreover, in the unrelated case, the expression (x) coincides with a nonzero
constant times the leading coefficient of the transformation of the usual jacobian of
£, G.

If f,G are w-related, then solving the differential equation obtained by equating
(%) to 0, we deduce that

Aw(G) — - AW
P -0 .

Let us fix a polynomial H = H(z) such that we can write for some positive integers
v,00:
»Yo

f= D)

and such that this kind of expression does not hold for any polynomial of degree
smaller than that of H(z). Let us denote the expression Hy ™" by (.

Then the above relatedness condition gets replaced by “Q(z)n*+® is an integral
power of {”.

Thus, any power series G as above can be split in three parts:

G = terms involving powers of { + an® + higher terms
where ar® is the first term unrelated with £, In particular, we have

—-A,(f)+s=1+ord,(J,,(fG))

Newton-Puiseux expansions for a given weight. 5.1 Applying the above substitutions
to g, we see that it develops into a power series:

¢=Yan

We wish to set up the usual characteristic sequence associated with it, as commonly
done in the expansion techniques. :

~ Begin by setting M, to be the 7-order of g and set d, = A, (f) or the negative of

the n-order of f. Set d, = GCD(M,,d,) and n, =d, /d,.

Assume that we have inductively defined M,,...,M ; along with d,,...,d,,,
42;.--,q;and ny,...,n;. Then we set M., to be the first exponent of # in the support
of the expansion of g, which is not divisible by diyq. Setd,,=GCD(M,;,,d;,,),
M1 =d;yy/d;y;and g, = M, ; — M,. In case there is no such exponent, we declare
the process finished and set h = i. We say that we have h characteristic pairs (M, d;).

Strictly speaking, this whole construction depends on the choice of w, but we have
chosen not to clutter up the notation by tacking on an extra subscript.

We can visually display the characteristic sequence by writing:

g=c1nM1+.”+62nM2+"'+chth+"'

Associated with the above sequence is the sequence of “pseudoapproximate” roots,
which are certain polynomials in f, g, which we now introduce.
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Set go=f and g,=g. Define 0&,= Af), &,=—M=4,09) Also, set
p; =200 +0, — Z‘qu for i=1,... h. For technical reasons, set jio = 00. Note that y; is
also equal to §,— M;. Also set S;=n;_10;-,—q;. Itis a standard calculation to
check the identity (for 1 <i<h):

i—-1

‘Ui=50 +5l_ Z (nj_ 1)5j.

1

Note that by the known transformations, the Jacobian of f,g with respect to z,7
has f-order —a—b—1 and so the first unrelated term in the expansion of g =g,
has 7 order’ —a — b + 8,. Thus, we can write

g=gi=n"" e+ e )
wheré cis a nonzero polynomial in zand all earlier terms are related to f. In particular,
gy =070 ey ot T )
Now suppose that we };ave inductively built g, ...,g; such that for 1<j<i

(1) The n-order of g; is — J;, s0 that its w-weight is precisely J;.

(2) The first term in the expansion of g; which is unrelated to f has n-order
pj—a—b—34;

(3) g, is related to f.

Then we try to build g, as follows.

By a standard monomial in g, ..., g; we mean a monomial of the form IT,g% where
0 <o;<n; for 1<j<i, while 0 < a,. We will conveniently shorten the notation to
write g* for 11,97 '

For any 1 <j <i the n-order of g;is — d;, while the n-order of the first term in g;
unrelated to f is y;—8;—a—>b. Thus, g; is related to f if and only if this term is
not the leading term of g;, ie. —&;<p;— d;—a—b,or equivalently, a + b < u;. We
know this for 1 <j <i already.

We begin by a trial value v =g;'.

We keep on modifying v until it becomes gi ;.

(1) If the w-leading form of v cannot be expressed as the w-leading form of ag” for
some aek and some standard monomial g* in go,---»gi> then we declare g;, =vand
stop this modification. .

(2) If there is a standard monomial g% in g, .. .,d; such that v has the same w-leading
form as cg® for some cek, then we modify v to v — cg®. Note that the w-degree of v
decreases in this process and so the modification has to eventually stop.

We need to verify that g;,, has the correct order and indeed that it is the next
“pseudoapproximate root” as in the expansion techniques.

For f =g,, we might consider the difference between the leading term and the
first term unrelated to f to be oo, and hence equals g —a—b=10c0.

If 1 <j<i, then for g;, the difference between the order of the leading term and
the first unrelated term is exactly u;—a—b. Itis clear that the difference is the same
for any power of g;. Moreover, since the expression y;—a — b is a decreasing function

of j, the difference for any standard monomial g* is easily seen to be the infimum
ofuj—a—bsuch that o; #0. '
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Now, in the buildup of g;, ; described above, the first step of cancelling a monomial
causes this “gap of the first unrelated term” to decrease from y;,—a—b. Any
subsequent modifications only increase the n-order without affecting the first unrelated
term, since the modifying terms now all have bigger gaps.

Thus the final gap for g;,, i1s y;—a—b —q for some g. We wish to show that
4=4qi+1-

By the standard theory, g < ¢, since the modification cannot be pushed beyond
that even with coefficients in k(z). If g < g;,;, then the n order of our g;,, is in the
semigroup generated by the n-orders of g,,...,g;. The fact that our modification
process stopped means that the multiplier coefficient needed is not in k. It is then
evident that the highest z-degree term in g;,, cannot be related to that of f. From
the remarks in (3.5) and our special assumptions, it follows that the leading form of
f must be a monomial. Since we have also assumed that we have weights whose
degree form is a line, we are done.

Clearly, this process then continues, until we reach h or we reach an unrelated g;.
If i=h and g, is still related to f, then we can continue the modification until we
reach an unrelated g, ,. However, it cannot correspond to any characteristic term
(since we have gone past all such terms) and we can deduce that the leading form of
f must have been a monomial. We summarize this in:

Pseudoapproximate roots along a Newton Line 5.2. Assume that we have weight
w=(a,b) with a>0 and a+ b > 0 such that the degree form of f is not a monomial.
- Then, in the above notation, there is a sequence of pseudoapproximate roots g,,...,d;

for some i < h such that each g;is a polynomial in f, g over k. Moreover, g, is w-unrelated
to f and we have p;=a+ b.

Definition. Let w be any rational weight such that either w= (0, 1) or w = (a, b) with
a>0. We will say that f has i pseudoapproximate roots along w, if we can construct
the sequence g,,...,g; as described above. Note that the number i can be smaller
than the usual number h given by the expansion techniques and can even be h+ 1
when the degree form relative to w is a monomial. -

Now we consider the variation of the number of pseudoapproximate roots
corresponding to two consecutive Newton Lines. Let w, = (a,,b,) and w, = (a,,b,)
be the consecutive weights, so that b,/a, <b,/a,. Also assume that the common
corner for the Newton diagram of f is a point (s, s,) above the line X =Y (i.e.

~§1 <5,). The point corresponds to the lowest y-degree term for fr and the highest
y-degree term for f} * . Let the sequence g,,...,g; be constructed for the weight w,,
as shown above.

Then, A, (f)=a,s, +b1s2 and A,,(f)=a,s, + b,s,. Set

i=a231 +b,s,
asi +b;s,
and
T a, +b2.
a; + b,

Recall that g; is w,-related to f if and only if p;if(ay +by) > 1 and, in fact, we have:

Uy > H2 > v i _
a,+b, a; +b, a, +b,
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From the alternate formula for y;, it is clear that y; corresponding to w, is Au;. To
see if g; is also w,-related to f, we need to check if Au;/(a, +by)>1 or

_"LJ'___>}_*M_
a, +by _

With our hypothesis, it is easy to check that A*/A>1 and so the condition for
relatedness gets tighter as we move from w; to wy. Indeed, if i* is the last
pseudoapproximate root for the weight w,, then we must have,

A "
P Al - A 1
a,+b, a,+b, a,+ b,

or, in other words:

_/l_ e >__%_ H2 >...>_—l— Hir =1.

M*a,+b, A*a +b, A*a,+b;
->~5, Thus, we have p; = (a; + b;)A*/1. Naturally, i* <i. Consider the possibility that
ﬁ{ i* <i— 1. We choose a weight w; = (a3, b;) such that

a3 +b3sy pi-y _
a,;8; +bys, as+bs

or, in other words,

ST

Bi-y _ 415 +bys, a3+ b3
a, +b, ass;+bsys;a;+by

g Using (the consequence of the special assumption) a; + b, >0, it is easy to verify that
the expression ¥ (a, b) = a5,+bys; ath
as, +bs, a;+b, _
ratio b/a and consequently, the weight line corresponding to wj lies between the lines
- for wy, w,. Since, the w,, w, lines were assumed consecutive, this implies that the
g” degree form of f for the weight w, must be the same monomial 0-x*! y°2. Also, clearly,
' for w, we have exactly one less pseudoapproximate root than for w;.
What we have obtained is the result:

is a monotonic decreasing function of the

Variation along Newton lines 5.3. Assume that two consecutive Newton Lines of f share
a common vertex and let x*y** be the monomial pointing towards the vertex, chosen
as described above. Further assume that:

(1) The two weights wy =(a;,b,) and w, = (ay,b,) are such that a,,a, are positive.

(2) by/a, <by/ay.
(3) s, <s,.

Then f has at least one less pseudoapproximate root along w, than along w;.
Moreover, there exists an intermediate weight w3 = (as,b3) with

by _bs _by
a2 a3 al ’

such that we have exactly one less pseudoapproximate root along w, than along wy.
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Note. Note that we are discussing the concept of pseudoapproximate roots
corresponding to a given weight and we quit developing the pseudoapproximate
roots as soon as we reach an unrelated root corresponding to the weight. Thus, as
we start with the starting weight (0, 1) and consider various values (a, b) with the ratio
b/a steadily decreasing, we march along the Newton diagram. What we have shown
here is that we keep on getting fewer and fewer pseudoapproximate roots related to
f until we cross the line X =Y. Afterwards, generally the function Y (a,b) turns
increasing and the number of roots tends to increase. In fact, the sign of the derivative
of the function Y/(a, b) is determined by the sing of (s; — s,)/(a + b) and after crossing
the line X = Y the sign turns positive, unless the special assumption also fails and
a + b turns negative.

It is possible to make an independent argument to show that the highest y-degree
term of the unrelated pseudoapproximate root must become unrelated to that of f
below the X =Y line. Thus, in view of the remarks in (3.5), the special assumption
must fail after crossing the X = Y line. The analysis of Newton Lines in this region
after the X =Y line is not relevant for the remaining part and hence no further
discussion is provided here.

Lemma 5.4. Lower bound on the number of pseudoapproximate roots. Let a weight
w = (a, b) corresponding to a Newton Line of f satisfy 0<a and b < a. Then f,g must
be w-related. In other words, the number of pseudoapproximate roots for the weight
w is at least 2.

Proof. This is only a special case of the proof in the beginning of (3.2) where the
result is proved when either a or b are positive.

Case of two characteristic terms 5.5. Assume that f and g have at most two characteristic

terms for the (1, 1) weight and satisfy the rest of the conditions described in the preamble.
Then the Jacobian theorem holds for f,g.

Proof. In view of the various results from the earlier sections, it is clear that we are
reduced to considering the case where the first corners after the (1, 1) weight line for
f,g are of the form (pty,pt,), (qt,,qt,) respectively, where 0 <t, <t, and p,q are
coprime. Let w = (a, b) be the weight for the next line. Clearly, we have 0 < aand b < a.

By Lemma 5.3, we can have at most one pseudoapproximate root along w. This
means f,g must be w-unrelated.

On the other hand by Lemma 5.4, we get that f,g must be w-related. This is a
contradiction.
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