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Abstract

Let M be an n-vertex combinatorial triangulation of a Z2-homology d-sphere. In this paper we
prove that if n ≤ d + 8 then M must be a combinatorial sphere. Further, if n = d + 9 and M is not
a combinatorial sphere then M can not admit any proper bistellar move. Existence of a 12-vertex
triangulation of the lens space L(3, 1) shows that the first result is sharp in dimension three.

In the course of the proof we also show that any Z2-acyclic simplicial complex on ≤ 7 vertices

is necessarily collapsible. This result is best possible since there exist 8-vertex triangulations of the

Dunce Hat which are not collapsible.

2000 Mathematics Subject Classification. 57Q15, 57R05.

Keywords. Combinatorial spheres, pl manifolds, collapsible simplicial complexes, homology spheres.

1 Introduction and results

All the simplicial complexes considered in this paper are finite. We say that a simpli-
cial complex K triangulates a topological space X (or K is a triangulation of X) if X is
homeomorphic to the geometric carrier |K| of K.

The vertex-set of a simplicial complex K is denoted by V (K). If K, L are two simplicial
complexes, then a simplicial isomorphism from K to L is a bijection π : V (K) → V (L) such
that for σ ⊆ V (K), σ is a face of K if and only if π(σ) is a face of L. The complexes K,
L are called (simplicially) isomorphic when such an isomorphism exists. We identify two
simplicial complexes if they are isomorphic.

A simplicial complex K is called pure if all the maximal faces of K have the same
dimension. A maximal face in a pure simplicial complex is also called a facet.

If σ is a face of a simplicial complex K then the link of σ in K, denoted by LkK(σ) (or
simply by Lk(σ)), is by definition the simplicial complex whose faces are the faces τ of K
such that τ is disjoint from σ and σ ∪ τ is a face of K.

A subcomplex L of a simplicial complex K is called an induced (or full ) subcomplex of
K if σ ∈ K and σ ⊆ V (L) imply σ ∈ L. The induced subcomplex of K on the vertex set U
is denoted by K[U ].

For a commutative ring R, a simplicial complex K is called R-acyclic if |K| is R-acyclic,
i.e., H̃q(|K|, R) = 0 for all q ≥ 0 (where H̃q(|K|, R) denotes the reduced homology).

0E-mail addresses: bbagchi@isibang.ac.in (B. Bagchi), dattab@math.iisc.ernet.in (B. Datta).
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By a subdivision of a simplicial complex K we mean a simplicial complex K ′ together
with a homeomorphism from |K ′| onto |K| which is facewise linear. Two simplicial com-
plexes K and L are called combinatorially equivalent (denoted by K ≈ L) if they have
isomorphic subdivisions. So, K ≈ L if and only if |K| and |L| are piecewise-linear (pl)
homeomorphic (see [11]).

For a set U with d + 1 elements, let K be the simplicial complex whose faces are all
the non-empty subsets of U . Then K triangulates the d-dimensional closed unit ball. This
complex is called the standard d-ball and is denoted by ∆d

d+1(U) or simply by ∆d
d+1. A

polyhedron is called a pl d-ball if it is pl homeomorphic to |∆d
d+1|. A simplicial complex

X is called a combinatorial d-ball if it is combinatorially equivalent to ∆d
d+1. So, X is a

combinatorial d-ball if and only if |X| is a pl d-ball.
For a set V with d + 2 elements, let S be the simplicial complex whose faces are all

the non-empty proper subsets of V . Then S triangulates the d-sphere. This complex is
called the standard d-sphere and is denoted by S d

d+2(V ) or simply by S d
d+2. A polyhedron

is called a pl d-sphere if it is pl homeomorphic to |S d
d+2|. A simplicial complex X is called a

combinatorial d-sphere if it is combinatorially equivalent to S d
d+2. So, X is a combinatorial

d-sphere if and only if |X| is a pl d-sphere.
A simplicial complex K is called a combinatorial d-manifold if the link of each vertex

is a combinatorial (d − 1)-sphere. A simplicial complex K is a combinatorial d-manifold if
and only if |K| is a closed pl d-manifold (see [11]).

If a triangulation K of a space X is a combinatorial manifold then K is called a combi-

natorial triangulation of X. If K is a triangulation of a 3-manifold then the link of a vertex
is a triangulation of the 2-sphere and all triangulations of the 2-sphere are combinatorial
2-spheres. So, any triangulation of a 3-manifold is a combinatorial triangulation.

Let τ ⊂ σ be two faces of a simplicial complex K. We say that τ is a free face of σ if σ
is the only face of K which properly contains τ . (It follows that dim(σ) − dim(τ) = 1 and
σ is a maximal simplex in K.) If τ is a free face of σ then K ′ := K \ {τ, σ} is a simplicial
complex. We say that there is an elementary collapse of K to K ′. We say K collapses to L
and write K ց

s L if there exists a sequence K = K0, K1, . . ., Kn = L of simplicial complexes
such that there is an elementary collapse of Ki−1 to Ki for 1 ≤ i ≤ n (see [3]). If L consists
of a 0-simplex (a point) we say that K is collapsible and write K ց

s 0. Clearly, if K ց
s L

then |K| ց |L| as polyhedra and hence |K| and |L| have the same homotopy type (see [11]).
So, if a simplicial complex K is collapsible then |K| is contractible and hence, in particular,
K is Z2-acyclic. Here we prove :

Theorem 1 . If a Z2-acyclic simplicial complex has ≤ 7 vertices then it is collapsible.

As an application of Theorem 1, we prove our main result - a recognition theorem for
combinatorial spheres :

Theorem 2 . Let M be an n-vertex combinatorial triangulation of a Z2-homology d-sphere.
Suppose M has an m-vertex combinatorial d-ball as an induced subcomplex, where n ≤ m+7.
Then M is a combinatorial sphere.

In consequence we get the following.

Corollary 3 . Let M be an n-vertex combinatorial d-manifold. If |M | is a Z2-homology

sphere and n ≤ d + 8 then M is a combinatorial sphere.
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Corollary 4 . Let M be a (d + 9)-vertex combinatorial triangulation of a Z2-homology d-
sphere. If M is not a combinatorial sphere then M can not admit any bistellar i-move for

i < d.

Since by the universal coefficient theorem any integral homology sphere is a Z2-homology
sphere, Theorem 2, Corollary 3 and Corollary 4 remain true if we replace Z2-homology by
integral homology in the hypothesis. In particular, we have :

Corollary 5 . Let M be an n-vertex combinatorial triangulation of an integral homology

d-sphere.

(a) If n ≤ d + 8 then M is a combinatorial sphere.

(b) If n = d + 9 and M is not a combinatorial sphere then M can not admit any bistellar

i-move for i < d.

Remark 1 . Corollary 3 is clearly trivial for d ≤ 2. In [5], Brehm and Kühnel proved that
any n-vertex combinatorial d-manifold is a combinatorial d-sphere if n < 3⌈d/2⌉ + 3 and it
is either a combinatorial d-sphere or a cohomology projective plane if n = 3d/2 + 3. So,
Corollary 3 has new content only for 3 ≤ d ≤ 8.

Remark 2 . Another result in [5] says that any n-vertex combinatorial d-manifold is simply
connected for n ≤ 2d+2. Since a simply connected integral homology sphere is a sphere for
d 6= 3, and since for d 6= 4 all combinatorial triangulations of d-spheres are combinatorial
spheres, this result implies that all combinatorial triangulations of integral homology d-
spheres (d 6= 3, 4) with ≤ 2d + 2 vertices are combinatorial spheres. This is stronger than
Corollary 5 (a) for d ≥ 6. Thus Corollary 5 (a) has new content only for d = 3, 4, 5.

Remark 3 . In [8, p. 35], Lutz presented a 12-vertex combinatorial triangulation of the lens
space L(3, 1). (It is mentioned in [7, p. 79] that Brehm obtained a 12-vertex combinatorial
triangulation of L(3, 1) earlier.) Since L(3, 1) is a Z2-homology 3-sphere (H1(L(3, 1),Z) =
Z3, H2(L(3, 1),Z) = 0), Corollary 3 is sharp for d = 3.

It follows from Corollary 3 that 12 is the least number of vertices required to triangulate
L(3, 1). It follows from Corollary 4 that a 12-vertex combinatorial triangulation of L(3, 1)
can not admit any bistellar i-move for 0 ≤ i ≤ 2.

Remark 4 . Recall that the Dunce Hat is the topological space obtained from the solid
triangle abc by identifying the oriented edges ~ab, ~bc and ~ac. The following is a triangulation
of the Dunce Hat using 8 vertices.
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Since this example is contractible but not collapsible, it follows that the bound 7 in Theorem
1 is best possible.
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Remark 5 . Let H 3 be the non-orientable 3-manifold obtained from S 2 × [0, 1] by iden-
tifying (x, 0) with (−x, 1). It follows from works of Walkup [14, Theorems 3, 4] that if K
is a combinatorial 3-manifold and |K| is not homeomorphic to S 3, S 2 × S 1 or H 3 then

f1(K) ≥ 4f0(K) + 8 and hence f0(K) ≥ 11. Thus if M (6= S 3) is a Z2-homology 3-sphere
then at least 11 vertices are needed for any combinatorial triangulation of M . Now, Corol-
lary 3 implies that at least 12 vertices are needed. In [4], Björner and Lutz have presented
a 16-vertex combinatorial triangulation of the Poincaré homology 3-sphere.

In [2], we have shown that all combinatorial triangulations of S 4 with at most 10 vertices
are combinatorial 4-spheres. Now, Corollary 3 implies that all combinatorial triangulations
of S 4 with at most 12 vertices are combinatorial spheres. So, any combinatorial triangula-
tion (if it exists) of S 4 which is not a combinatorial sphere requires at least 13 vertices.

Remark 6 . The conclusion in Corollary 4 (namely, that certain combinatorial manifolds
do not admit any proper bistellar move) appears to be a strong structural restriction. We
owe to F. H. Lutz the information that the smallest known combinatorial sphere (other
than a standard sphere) not admitting any proper bistellar move is a 16-vertex 3-sphere.

2 Preliminaries and Definitions.

For a simplicial complex K, the maximum k such that K has a k-face is called the dimension

of K. An 1-dimensional simplicial complex is called a graph. A simplicial complex K is
called connected if |K| is connected.

For i = 1, 2, 3, the i-faces of a simplicial complex are also called the edges, triangles and
tetrahedra of the complex, respectively. For a face σ in a simplicial complex K, the number
of vertices in LkK(σ) is called the degree of σ in K and is denoted by degK(σ).

If the number of i-simplices of a d-dimensional simplicial complex K is fi(K), then the
vector f = (f0, . . . , fd) is called the f -vector of K and the number χ(K) :=

∑d
i=0(−1)ifi(K)

is called the Euler characteristic of K. If fk−1 =
(f0

k

)
then K is called k-neighbourly.

For two simplicial complexes K, L with disjoint vertex sets, the join K ∗ L is the
simplicial complex K ∪ L ∪ {σ ∪ τ : σ ∈ K, τ ∈ L}.

If K is a d-dimensional simplicial complex then define the pure part of K as the simplicial
complex whose simplices are the sub-simplices of the d-simplices of K.

A d-dimensional pure simplicial complex K is called a weak pseudomanifold if each
(d− 1)-face is contained in exactly two facets of K. A d-dimensional weak pseudomanifold
K is called a pseudomanifold if for any pair τ , σ of facets, there exists a sequence τ =
τ0, . . . , τn = σ of facets of K, such that τi−1 ∩ τi is a (d − 1)-simplex of K for 1 ≤ i ≤ n.
In other words, a weak pseudomanifold is a pseudomanifold if and only if it does not have
any weak pseudomanifold of the same dimension as a proper subcomplex. Clearly, any
connected combinatorial manifold is a pseudomanifold.

For n ≥ 3, the n-vertex combinatorial 1-sphere (n-cycle) is the unique n-vertex 1-
dimensional pseudomanifold and is denoted by S 1

n .
A d-dimensional pure simplicial complex K is called a weak pseudomanifold with bound-

ary if each (d − 1)-face is contained in 1 or 2 facets of K and there exists a (d − 1)-face of
degree 1. The boundary ∂K of K is by definition the pure simplicial complex whose facets
are the degree one (d − 1)-faces of K.

A simplicial complex K is called a combinatorial d-manifold with boundary if the link
of each vertex is either a combinatorial (d − 1)-sphere or a combinatorial (d − 1)-ball and
there exists a vertex whose link is a combinatorial (d − 1)-ball. A simplicial complex K
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is a combinatorial d-manifold with boundary if and only if |K| is a compact pl d-manifold
with non-empty boundary. Clearly, if K is a combinatorial d-manifold with boundary then
∂K 6= ∅ and Lk∂K(v) = ∂(LkK(v)), for v ∈ V (∂K). Therefore, ∂K is a combinatorial
(d − 1)-manifold. Clearly, if K is a combinatorial d-ball (d > 0) then K is a combinatorial
d-manifold with boundary and ∂K is a combinatorial (d − 1)-sphere.

Example 1 . Some weak pseudomanifolds on 6 or 7 vertices.
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Υ1 = S 2
4 ∪ S 2
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4 ∪ (S 0
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Σ 1, . . . ,Σ 5 are combinatorial spheres. RP 2
6 triangulates the real projective plane. Υ1, Υ2

are the smallest examples of weak pseudomanifolds which are not pseudomanifolds.

The following results (which we need later) follow from the classification of all 2-
dimensional weak pseudomanifolds on ≤ 7 vertices (e.g., see [1, 6]).

Proposition 2.1 . Let K be an n-vertex 2-dimensional weak pseudomanifold. If n ≤ 6
then K is isomorphic to S 2

4 , S 1
3 ∗ S 0

2 , S 0
2 ∗ S 0

2 ∗ S 0
2 , RP 2

6 or Σ 1 above.

Proposition 2.2 . Let K be a 7-vertex 2-dimensional weak pseudomanifold. If the number

of facets of K is ≤ 10 then K is isomorphic to S 1
5 ∗ S 0

2 , Σ 2, . . . ,Σ 5, Υ1 or Υ2 above.

Let X be a pure simplicial complex of dimension d ≥ 1. Let A be a set of size d+2 such
that A contains at least one and at most d + 1 facets of X. (It follows that all except at
most one element of A are vertices of X.) Define the pure d-dimensional simplicial complex
κA(X) as follows. The facets of κA(X) are (i) the facets of X not contained in A and (ii)
the (d + 1)-subsets of A which are not facets of X. κA is said to be a generalized bistellar

move. Clearly κA(κA(X)) = X. Let β = {x ∈ A : A \ {x} ∈ X} and α = A \ β. Then
α ∈ X and β ∈ κA(X). The set β is called the core of A. If α is an i-simplex of X then κA

is also called a generalized bistellar i-move. Observe that if d is even and κA is a generalized
bistellar (d/2)-move then fd(κA(X)) = fd(X).

Now suppose X is a weak pseudomanifold, and A, α and β are as above. Notice that
(a) either α is a d-simplex in X or V (LkX(α)) ⊇ β and (b) if β ∈ X then LkκA(X)(β) =

LkX(β) ∪ S i−1
i+1 (α) 6= S i−1

i+1 (α) (and therefore κA(X) is not a combinatorial manifold even

5



if X is so). We shall say that κA is a bistellar move if (bs1) β 6∈ X and (bs2) either α
is a d-simplex in X or V (LkX(α)) = β (and hence LkX(α) is the standard sphere on the
vertex set β). If 1 ≤ i ≤ d − 1 then a bistellar i-move is called a proper bistellar move.
Observe that if X is a combinatorial d-manifold then (bs2) holds for any (d + 2)-subset A.
If a generalized bistellar move is not a bistellar move then it is called singular.

Two weak pseudomanifolds are called bistellar equivalent if there exists a finite sequence
of bistellar moves leading from one to the other. Let κA be a bistellar move on X. If X1

is obtained from X by starring ([1]) a new vertex in α and X2 is obtained from κA(X)
by starring a new vertex in β then X1 and X2 are isomorphic. Thus if X and Y are
bistellar equivalent then X ≈ Y . In [10], Pachner proved the following : Two combinatorial

manifolds are bistellar equivalent if and only if they are combinatorially equivalent.

Example 2 . Let the notations be as in Example 1.

(a) Let A = {1, 2, 5, 6} ⊂ V (RP 2
6 ). Put R = κA(RP 2

6 ). Then R is not a weak pseudo-
manifold. Observe that (bs1) is not satisfied here and hence κA is a singular bistellar
move. Note that the automorphism group A5 of RP 2

6 is transitive on the 4-subsets of
its vertex set. In consequence, all singular bistellar 1-moves on RP 2

6 yield isomorphic
simplicial complexes.

(b) Let B = {2, 3, 6, 7} ⊆ V (Σ 2). Then κB(Σ 2) is the union of two spheres with one
common edge 67. Here (bs1) is not satisfied.

(c) Let C = {1, 2, 3, 6} ⊆ V (Υ1). Then κC(Υ1) = Υ2. Here also (bs1) is not satisfied and
κC(Υ1) 6≈ Υ1 but κC(Υ1) is a weak pseudomanifold.

(d) Let D = {1, 2, 3, 6} ⊆ V (Υ2). Then κD(Υ2) = Υ1. Here (bs2) is not satisfied.

(e) If E = {2, 3, 4, 6} ⊆ V (Σ 4) then κE(Σ4) is a 7-vertex pseudomanifold with 12 facets.
In this case, (bs1) is not satisfied.

(f) Let F = {2, 3, 4, 6} ⊆ V (Σ 2). Then κF is a bistellar move and κF (Σ 2) = Σ 3.

Let L ⊆ K be simplicial complexes. The simplicial neighbourhood of L in K is the
subcomplex N(L,K) of K whose maximal simplices are those maximal simplices of K
which intersect V (L). Clearly, N(L,K) is the smallest subcomplex of K whose geometric
carrier is a topological neighbourhood of |L| in |K|. The induced subcomplex C(L,K) on
the vertex-set V (K) \ V (L) is called the simplicial complement of L in K.

Suppose P ′ ⊆ P are polyhedra and P = P ′∪B, where B is a pl k-ball (for some k ≥ 1).
If P ′∩B is a pl (k−1)-ball then we say that there is an elementary collapse of P to P ′. We
say that P collapses to Q and write P ցQ if there exists a sequence P = P0, P1, . . . , Pn = Q
of polyhedra such that there is an elementary collapse of Pi−1 to Pi for 1 ≤ i ≤ n. If Q
is a point we say that P is collapsible and write P ց0. For two simplicial complexes K
and L, if K ց

s L then clearly |K| ց |L|. A regular neighbourhood of a polyhedron P in a
pl d-manifold M is a d-dimensional submanifold W with boundary such that W ցP and
W is a neighbourhood of P in M . The following is a direct consequence of the Simplicial
Neighbourhood Theorem ([11, Theorem 3.11]).

Proposition 2.3 . Let K be a combinatorial d-manifold with boundary. Suppose ∂K is an

induced subcomplex of K. Let L be the simplicial complement of ∂K in K. Then |K| ց |L|.

6



Proof. Let M be a pl d-manifold such that |K| is in the interior of M (we can always find
such M , e.g., one such M can be obtained from |K| ⊔ (|∂K| × [0, 1]) by identifying (x, 0)
with x ∈ |∂K|).

Since L = C(∂K,K), |L| ⊆ |K| \ |∂K| and hence |K| is a neighbourhood of |L| in
int(M). Again, since L is the simplicial complement of ∂K in K and ∂K is an induced
subcomplex of K, C(L,K) = ∂K. Finally, since ∂K is an induced subcomplex of dimension
d − 1, each d-simplex of K intersects V (L). This implies that N(L,K) = K.

Let P = |L|, A = |K| and J = ∂K. Then ∂A = |∂K| and N
•

(L,K) := N(L,K) ∩
C(L,K) = J . Thus (i) P is a compact polyhedron in the interior of the pl manifold M ,
(ii) A is a neighbourhood of P in int(M), (iii) A is a compact pl manifold with boundary
and (iv) (K,L, J) are triangulations of (A,P, ∂A) where L is an induced subcomplex of K,

K = N(L,K) and J = N
•

(L,K). Then, by the Simplicial Neighbourhood Theorem, A is a
regular neighbourhood of P . Hence A ցP . 2

We need the following well-known results (see [11, Lemma 1.10, Corollaries 3.13, 3.28])
later.

Proposition 2.4 . Let B, D be pl d-balls and h: ∂B → ∂D a pl homeomorphism. Then h
extends to a pl homeomorphism h1:B → D.

Proposition 2.5 . Let S be a pl d-sphere. If B ⊆ S is a pl d-ball then the closure of S \B
is a pl d-ball.

Proposition 2.6 . A collapsible pl manifold with boundary is a pl ball.

Question . Is it true that under the hypothesis of Proposition 2.3, we have K ց
s L ?

3 Z2-acyclic simplicial complexes.

In this section we prove Theorem 1.

Lemma 3.1 . Let X be a 7-vertex simplicial complex. Suppose (a) X is Z2-acyclic, (b)
X is not collapsible, and (c) X is minimal subject to (a) and (b) (i.e., X has no proper

subcomplex satisfying (a) and (b)). Then X is pure of dimension d = 2 or 3 and each

(d − 1)-face of X occurs in at least two facets.

Proof. Notice that, because of the minimality assumption, X has no free face. Clearly,
dim(X) ≤ 5, since otherwise X is a combinatorial ball. Suppose dim(X) = 5. By mini-
mality, each 4-face of X is in 0 or ≥ 2 facets. Since X has 7 vertices, it follows that each
4-face is in 0 or 2 facets. Therefore the pure part Y of X is a 7-vertex 5-dimensional weak
pseudomanifold and hence Y = S 5

7 ⊆ X. Then H5(X,Z2) 6= 0, a contradiction. Thus
dim(X) ≤ 4.

Suppose, if possible, dim(X) = 4. Let Y be the pure part of X. Then, each 3-face of
Y occurs in at least two facets. If #(V (Y )) ≤ 6, then Y = S 4

6 and hence H4(X,Z2) 6= 0,
a contradiction. Thus V (Y ) = V (X) has size 7. Define a binary relation ∼ on V (Y ) by
y1 ∼ y2 if V (Y )\{y1, y2} is not a facet of Y . Since each 3-face of Y is in at least two facets,
it follows that ∼ is an equivalence relation with at least two equivalence classes. Therefore
either there is an equivalence class W of size 6 or else we can write V (Y ) = V1 ⊔ V2, where

7



V1, V2 are unions of ∼-classes and #(V1) ≥ 2, #(V2) ≥ 2. In consequence Y (and hence X)
contains a 4-sphere as a subcomplex : the standard sphere on W or the join of the standard
spheres on V1 and V2. Therefore H4(X,Z2) 6= 0, a contradiction. Thus dim(X) ≤ 3.

If dim(X) = 1 then X is a Z2-acyclic connected graph and hence is a tree. But any tree
has end vertices and hence is collapsible, a contradiction. So, dim(X) = 2 or 3.

Since H̃0(X,Z2) = 0, X is connected. Since X has no free vertex, it follows that each
vertex of X is in at least two edges.

Next we show that X has no maximal edge. Suppose, on the contrary, X has a maximal
edge e. Then Y := X \ {e} is a subcomplex of X. We claim that Y is disconnected. If not,
then there is a subcomplex K = S 1

n of X containing the edge e. The formal sum of the edges
in K is an 1-cycle over Z2 which is not a boundary since it involves the maximal edge e.
Hence H1(X,Z2) 6= 0, a contradiction. So, Y is disconnected. Since each vertex of X is in
at least two edges, it follows that each component of Y has ≥ 3 vertices. Since X has seven
vertices, it follows that some component of Y has exactly three vertices and contains an S 1

3 .
If these three vertices span a 2-face then its edges are free in X, contradicting minimality.
In the remaining case X has an induced S 1

3 whose edges are maximal, contradicting Z2-
acyclicity of X.

In case dim(X) = 2, this shows that X is pure. In case dim(X) = 3, we proceed to
show that X has no maximal 2-face, proving that it is pure in that case too.

Suppose, on the contrary, that dim(X) = 3 and X has a maximal 2-face ∆ = abc. Let’s
say that an edge of X is good if it is in a tetrahedron of X, and call it bad otherwise. First
suppose that all three edges in ∆ are good. Since X has no free triangle, each vertex in
the link of an edge has degree 0 or ≥ 2 and hence there are at least three vertices of degree
≥ 2 in the link of a good edge. Since ∆ is maximal, it follows that the link of each of the
three edges in ∆ has ≥ 3 vertices outside ∆. Since, there are only four vertices outside ∆,
it follows from the pigeonhole principle that there is a common vertex x outside ∆ which
occurs in the link of all three edges in ∆. Hence S 2

4 (∆ ∪ {x}) is a subcomplex of X. The
sum of the four triangles in this S 2

4 is a 2-cycle (with Z2 coefficients) which can not be the
boundary of a 3-chain since one of these triangles is maximal. Therefore H2(X,Z2) 6= 0, a
contradiction. Thus ∆ contains at least one bad edge.

We claim that ∆ can’t have more than one bad edges. Suppose, on the contrary, that
ab and ac are bad edges in X. Notice that (arguing as in the proof of the case dim(X) = 4),
if a 3-dimensional simplicial complex on ≤ 6 vertices has ≥ 2 tetrahedra through each
triangle then it contains a combinatorial S 3. Therefore the pure part Y of X must have
seven vertices. In particular a ∈ Y . Since ab and ac are bad edges, b, c 6∈ LkY (a) and
hence degY (a) ≤ 4. Therefore LkY (a) = S 2

4 . Hence we can apply an improper bistellar
move to Y to remove the vertex a, yielding a 6-vertex 3-dimensional simplicial complex Ỹ
with ≥ 2 tetrahedra through each triangle. Hence Ỹ has an S 3 as a subcomplex, so that
H3(Y,Z2) = H3(Ỹ ,Z2) 6= 0. Therefore H3(X,Z2) 6= 0, a contradiction. Thus ∆ contains
exactly one bad edge, say ab. Hence ac and bc are good edges.

Since X has no free edge, there is a second triangle, say abd, through ab. Since ab is
a bad edge, abd is maximal. By the above argument, ad and bd are good edges. If both
acd and bcd are triangles of X then X has S 2

4 (a, b, c, d) as a subcomplex, and at least one
of the triangles of this S 2

4 is maximal in X, yielding the contradiction H2(X,Z2) 6= 0 as
before. Therefore, without loss of generality, we may assume bcd 6∈ X. Note that a is an
isolated vertex in LkX(bc) and d does not occur in LkX(bc). Since bc is a good edge, it
follows that all three vertices outside {a, b, c, d} (say x, y and z) occur in LkX(bc). Similarly,
x, y, z ∈ LkX(bd). Again, the good edges ac and ad have at most one non-isolated vertex
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from {a, b, c, d} in their links, hence each of them has at least two of x, y, z in their links.
Therefore, there is one vertex, say x, which occurs in the link of all the four edges ac, bc,
ad, bd. Hence S 0

2 (c, d) ∗ S 1
3 (a, b, x) is a subcomplex of X. Since one of the triangles in

this 2-sphere is maximal, it follows that H2(X,Z2) 6= 0, a contradiction. Thus X has no
maximal triangles nor maximal edges, so X is pure.

Finally, the last assertion follows from purity and minimality of X. 2

Lemma 3.2 . Let X be a 7-vertex 2-dimensional Z2-acyclic simplicial complex. Then X is

collapsible.

Proof. Let X be a minimal counter example. Let fi, 0 ≤ i ≤ 2, be the number of i-faces
in X. Since X is Z2-acyclic, χ(X) = 1. Thus, f0 = 7 and f1 = f2 + 6.

For i ≥ 0, let ei be the number of edges of degree i in X. By Lemma 3.1, ei = 0 for
i ≤ 1. Two-way counting yields

5∑

i=2

ei = f1 = f2 + 6,
5∑

i=2

iei = 3f2.

Hence
e3 + 3e5 ≤ e3 + 2e4 + 3e5 = f2 − 12. (1)

Let’s say that an edge of X is odd (respectively even) if it lies in an odd (respectively even)
number of triangles. Note that each graph has an even number of vertices of odd degree.
Applying this trivial observation to the vertex links of X, we conclude that each vertex of
X is in an even number of odd edges. Thus the total number e3 + e5 of odd edges is = 0 or
≥ 3. If there is no odd edge then the sum of all the triangles gives a non-zero element of
H2(X,Z2), a contradiction. So, e3 + e5 ≥ 3. Combining this with (1), we get f2 ≥ 15 and
hence f1 ≥ 21 =

(7
2

)
. Hence f1 = 21, f2 = 15, e3 = 3, e4 = e5 = 0.

Since each vertex is in an even number of odd edges, it follows that the three odd edges
form a triangle ∆, which may or may not be in X.

If ∆ is in X, then the sum of the remaining triangles gives a non-zero element of
H2(X,Z2), a contradiction. If ∆ is not in X then (as each of the three edges in ∆ has three
vertices in its link and there are four vertices outside ∆) by the pigeonhole principle there
is a vertex x 6∈ ∆ such that x occurs in the link of each of the three edges in ∆. Then the
sum of all the triangles excepting the three triangles in ∆∪{x} gives a non-zero element of
H2(X,Z2), a contradiction. 2

Lemma 3.3 . Let U be a 2-dimensional pure simplicial complex on ≤ 7 vertices. Suppose

the number of triangles in U is ≤ 10 and each edge of U is in an even number of triangles.

Then either U is the union of two combinatorial spheres (on 4 or 5 vertices) with no common

triangle, or U is isomorphic to one of S 2
4 , S 1

3 ∗S 0
2 , S 0

2 ∗S 0
2 ∗S 0

2 , S 1
5 ∗S 0

2 , RP 2
6 , Σ 1, . . . ,Σ 5

or R (of Example 1 and Example 2 (a)).

Proof. Let S be the list of simplicial complexes in the statement of this lemma. We find
by inspection that S is closed under generalized bistellar 1-moves.

If f0(U) ≤ 5 then U is a weak pseudomanifold and hence, by Proposition 2.1, U ∈ S.
So assume f0(U) = 6 or 7. The proof is by induction on the number n(U) of degree 4 edges
in U . If n(U) = 0 then U is a weak pseudomanifold and hence, by Propositions 2.1 and 2.2,
U ∈ S. So let n(U) > 0 and suppose that we have the result for all smaller values of n(U).
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By the assumption, all the edges of U are of degree 2 or 4. Therefore, a two-way counting
yields 4n(U) + 2(f1(U) − n(U)) = 3f2(U) ≤ 30. Thus, n(U) + f1(U) ≤ 15. Therefore,

f1(U) < 15, (2)

showing that U has at least one non-edge. Fix an edge ab of degree 4 in U . Let W be the
link of ab. If each pair of vertices in W formed an edge in U then f1(U) would be ≥ 15,
contradicting (2). So, there exist c, d ∈ W such that cd is a non-edge in U .

Let A = {a, b, c, d}. Then κA is a generalized bistellar 1-move and hence κA(U) also
satisfies the hypothesis of the lemma, and n(κA(U)) = n(U) − 1. Therefore, by the in-
duction hypothesis, κA(U) ∈ S. Since S is closed under generalized bistellar 1-moves,
U = κA(κA(U)) ∈ S. 2

Lemma 3.4 . Let X be a 7-vertex 3-dimensional simplicial complex. Suppose (a) X is

Z2-acyclic, (b) X is not collapsible, and (c) X is minimal subject to (a) and (b). Then the

f -vector of X is (7, 20, 30, 16), (7, 21, 32, 17), (7, 21, 33, 18), (7, 21, 34, 19) or (7, 21, 35, 20).

Proof. For 0 ≤ i ≤ 3, let fi be the number of i-faces of X. For i ≥ 0, let ti be the number
of triangles of degree i in X. By Lemma 3.1, we have ti = 0 for i ≤ 1. Two way counting
yields

4∑

i=2

ti = f2,
4∑

i=2

iti = 4f3

and hence
t3 ≤ t3 + 2t4 = 4f3 − 2f2. (3)

Say that a triangle of X is odd (respectively even) if it is in an odd (respectively even)
number of tetrahedra of X. By the same argument as in Lemma 3.2, each edge is in an
even number of odd triangles, so that the number t3 of odd triangles is 0 or ≥ 4.

If there is no odd triangle then the sum of all the tetrahedra gives a non-zero element
of H3(X,Z2), a contradiction. So, t3 ≥ 4. Combining this with (3) we get

2f3 − f2 ≥ 2. (4)

Since X is Z2-acyclic, by a result of Stanley ([13]), X has a 2-dimensional subcomplex
Y such that the f -vector of X equals the f -vector of a cone over Y . (In [13], the author
uses the vanishing of the reduced cohomology groups as his definition of acyclicity, while
we have used the homology definition. However, since the coefficient ring used is a field,
these two definitions coincide.) Let (g0, g1, g2) be the f -vector of Y . Thus, g0 = 6 and

f1 = g1 + 6, f2 = g1 + g2, f3 = g2. (5)

Hence (4) yields
g2 ≥ g1 + 2. (6)

Let m =
(6
2

)
− g1, n =

(6
3

)
− g2 be the number of non-edges and non-triangles of Y ,

respectively. Since each non-edge is in exactly four non-triangles and any two non-edges are
shared by at most one non-triangle, we have n ≥ 4m−

(m
2

)
. Also, from (6) we get n ≤ m+3.

Hence m + 3 ≥ 4m −
(m

2

)
or (m − 1)(m − 6) ≥ 0. So, either m ≤ 1 or m ≥ 6.

First suppose m ≥ 6, i.e., g1 ≤ 9. If each edge of Y was in ≤ 3 triangles then we
would have g2 ≤ g1, contradicting (6). So, there is an edge of Y contained in four triangles,
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together covering all the nine edges of Y . But, apart from the four triangles already seen,
no three of these nine edges form a triangle of Y . Thus g2 = 4, g1 = 9 – contradicting (6).
So, m ≤ 1, i.e., g1 = 14 or 15.

If g1 = 14 then the four triangles through the missing edge are missing from Y , so that
g2 ≤ 16. Thus, by (6), (g1, g2) = (14, 16), (15, 17), (15, 18), (15, 19) or (15, 20). The lemma
now follows from (5). 2

Lemma 3.5 . Let X be a 7-vertex 3-dimensional Z2-acyclic simplicial complex. Then X is

collapsible.

Proof. Let X be a minimal counter example. As before, each edge is in an even number
of odd triangles. Let fi’s and tj’s be as in the proof of Lemma 3.4. Then, by Lemma 3.4,
t3 + 2t4 = 4f3 − 2f2 ≤ 10 and hence the number t3 of odd triangles is ≤ 10.

Let U denote the pure 2-dimensional simplicial complex whose facets are the odd tri-
angles of X. Then each edge of U is in an even number of triangles of U . Therefore, by
Lemma 3.3, we get the following cases :

Case 1 : U is the union of two combinatorial spheres with no common triangle (on 4 or 5
vertices), say on vertex sets A and B.

First suppose #(A) = #(B) = 4. If both A and B are 3-faces in X then the pure
simplicial complex X̃ whose facets are those of X other than A, B is a 3-dimensional weak
pseudomanifold. This implies that the sum of all the tetrahedra, excepting A and B, gives
a non-zero element of H3(X,Z2), a contradiction. So, without loss of generality A 6∈ X.

Since each of the four triangles inside A is of degree 3 in X, the three vertices (say x, y,
z) outside A occur in the link of all the four triangles. Then the 3-sphere S 2

4 (A) ∗ S 0
2 (x, y)

occurs as a subcomplex of X, forcing H3(X,Z2) 6= 0, a contradiction.
In the remaining case #(A) = 4, #(B) = 5 (since U has at most 10 triangles, the

case #(A) = #(B) = 5 does not arise). Write B = {b1, b2, b3, x, y} and U = S 2
4 (A) ∪

(S 1
3 (b1, b2, b3) ∗ S 0

2 (x, y)). As above, we must have A ∈ X.
If both b1b2b3x and b1b2b3y are in X, then the sum of the 3-faces other than A, b1b2b3x

and b1b2b3y gives a non-zero element of H3(X,Z2), a contradiction. So, without loss of
generality, b1b2b3x 6∈ X. Since the triangles of S 1

3 (b1, b2, b3)∗S 0
2 (x, y)) are degree 3 triangles

in X, it follows that b1b2xy, b1b3xy, b2b3xy ∈ X. Then the sum of the tetrahedra other
than A and these three tetrahedra gives a non-zero element of H3(X,Z2), a contradiction.

Case 2 : U = S 2
4 . We get a contradiction as in Case 1.

Case 3 : U = S 1
3 ∗ S 0

2 . We get a contradiction as in Case 1.

Observation 1 : As t3 ≥ 8 in the remaining cases, we have 2f3−f2 ≥ 4 and hence only the
following two possibilities survive for the f -vector of X : (7, 21, 34, 19) and (7, 21, 35, 20).
Therefore X has at most one missing triangle and at most one triangle of degree 4, and
these two cases are exclusive. It follows that, if x is a vertex not covered by the odd
triangles, then LkX(x) is a 6-vertex 2-dimensional neighbourly weak pseudomanifold. But,
from Proposition 2.1, we see that RP 2

6 is the only possibility. Thus, LkX(x) = RP 2
6 . This

implies that if V1 ⊆ V (U) is a 3-set then exactly one of V1 and V (U) \ V1 is a simplex in
LkX(x). In particular, any two triangles in LkX(x) intersect.

Case 4 : U = S 0
2 (a1, a2) ∗ S 0

2 (b1, b2) ∗ S 0
2 (c1, c2). Then the odd triangles of X are aibjck,

1 ≤ i, j, k ≤ 2. If {a1a2bjck : 1 ≤ j, k ≤ 2} ⊆ X, then the sum of the remaining
tetrahedra gives a non-zero element of H3(X,Z2), a contradiction. So, without loss of
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generality, a1a2b1c1 6∈ X. As a1b1c1, a2b1c1 are degree 3 triangles, it follows that a1b1b2c1,
a2b1b2c1 ∈ X. If both a1b1b2c2 and a2b1b2c2 are in X then X ⊇ {aib1b2ck : 1 ≤ i, k ≤ 2},
hence we get a contradiction as before. So, without loss of generality, a2b1b2c2 6∈ X.

Since a1a2b1c1, a2b1b2c2 6∈ X and a1b1c1, a2b2c2 are degree 3 triangles, it follows that
these two disjoint triangles occur in the link of x. But this contradicts Observation 1.

Case 5 : U = Σ1 of Example 1. Thus, the odd triangles are 125, 126, 156, 235, 236, 345, 346
and 456. If 1256, 3456 6∈ X then, since 125 and 346 are degree 3 triangles, they are disjoint
triangles in LkX(x), contradicting Observation 1. So, without loss of generality, 1256 ∈ X.

If 3456 6∈ X then, since 345, 346, 456 are degree 3 triangles, 2345, 2346, 2456 ∈ X. Then
the sum of all the tetrahedra, excepting 1256, 2345, 2346, 2456, gives a non-zero element of
H3(X,Z2). So, 3456 ∈ X.

If 2356 ∈ X, then the sum of all the tetrahedra, excepting 1256, 2356, 3456, gives a
non-zero element of H3(X,Z2). Therefore 2356 6∈ X.

Since 235 and 236 are degree 3 triangles, 2345, 2346 ∈ X. First suppose that at least
one of 1356, 2456 is in X. Without loss, say 2456 ∈ X. Then the sum of all the tetrahedra,
excepting 1256, 2456, 2345, 2346, gives a non-zero element of H3(X,Z2). Thus 1356,
2456 6∈ X. Then, since 156, 456 are degree 3 triangles, 156x, 456x ∈ X.

Since 2356, 2456 6∈ X, x ∈ LkX(256), i.e., 256x ∈ X. Similarly, looking at 356, we
conclude that 356x ∈ X. Thus, 56x is a degree 4 triangle in X. But this is not possible
since, by Observation 1, LkX(x) is RP 2

6 .

Observation 2 : In the remaining cases, t3 = 10 and hence the f -vector of X is (7, 21, 35, 20).
In consequence, t4 = 0. Thus all triangles are of degree 2 or 3. Since f3 =

(7
3

)
, each edge in

X has degree 5. Thus if e is an edge outside U then the link of e is a pentagon (S 1
5 ).

Case 6 : U = RP 2
6 . In this case, all the 4-sets of vertices not containing x contain exactly

two odd triangles each. In particular, all the tetrahedra of X not containing x contain
exactly two odd triangles each. Trivially, each tetrahedron through x contains at most one
odd triangle. Thus, letting αi, i ≥ 0, denote the number of tetrahedra of X containing
exactly i odd triangles, we have α2 = 20−10 = 10 and α0 +α1 = 10. But two way counting
yields α1 + 2α2 = 10 × 3 = 30. Hence α1 = 10, α0 = 0. Thus x occurs in the link of each
odd triangle and hence LkX(x) = U . Therefore the 10 tetrahedra of X not passing through
x add up to a non-zero element of H3(X,Z2), a contradiction.

Case 7 : U = R of Example 2 (a). Thus, the odd triangles are 123, 124, 125, 126, 135, 146,

236, 245, 345 and 346. We claim that LkX(12) ⊇ •

•

•

• 3
4 6
5

. If, for instance, 1236 6∈ X then,
as 123, 126, 236 are degree 3 triangles, x belongs to the link of each of these triangles. Then

LkX(2x) ⊇ •
•

•��HH
6

1 3 , contradicting Observation 2. This proves the claim.
Since 3, 4, 5, 6 are of degree 3 and x is of degree 2 in LkX(12), it follows that LkX(12) =

•
•

•
• •��HH

HH��
XXX
���3

5 x

6

4

or =
•

•

•
• •��HH

HH��
XXX
���5

3 x

4

6

.
In the first case, 125, 126 ∈ LkX(x). Hence, by Observation 1, 345, 346 6∈ LkX(x).

Since these two are degree 3 triangles, it follows that LkX(345) = {1, 2, 6} and LkX(346) =

{1, 2, 5}. Since 1, 2 are of degree 2 in LkX(34), this forces LkX(34) =
•

•

•
•��HH

HH��5

1

2

6

and hence
x 6∈ LkX(34). This is a contradiction since X is 3-neighbourly.

In the second case, 125, 126 6∈ LkX(x) and hence, by Observation 1, 345, 346 ∈ LkX(x).
That is, 5x, 6x ∈ LkX(34). Also, as 34 6∈ LkX(12), we have 12 6∈ LkX(34). Since 5, 6 are
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of degree 3 and 1, 2, x are of degree 2 in LkX(34), it follows that LkX(34) =
•

•

•
• •��HH

HH��
XXX
���1

5 x

6
2

.
Hence 1345, 2345, 345x ∈ X. Also, as 123 is a degree 3 triangle and 1234 6∈ X, we have

1235 ∈ X. Thus •
•

• •��HH2

4 x
1 ⊆ LkX(35). Since 1, 4 are of degree 3 while 2, 6, x are of degree 2

in this link, it follows that LkX(35) = •
•

•

•

•��HH2

4 x
1 6 . Hence 356x ∈ X. Then •

•

•��HH
6

4 5 ⊆ LkX(3x),
contradicting Observation 2.

Claim : In the remaining cases, if F is a set of four vertices of U containing at least two odd
triangles, then either F ∈ X or F ⊆ V (LkU (x)) for some vertex x.

In these cases, V (U) = V (X). If F 6∈ X contains two odd triangles, then on the average,
a vertex outside F occurs in the links (in X) of ≥ 3×2+2×2

3 > 3 of the four triangles inside
F . Thus there is a vertex x in the link of all these triangles. If F 6⊆ V (LkU (x)) for this x,
then choose a vertex y ∈ F such that xy 6∈ U . Then LkX(xy) ⊇ S 1

3 (F \ {y}), contradicting
Observation 2. This proves the claim.

Case 8 : U = S 1
5 (Z5) ∗ S 0

2 (u, v). In this case, the above claim implies that X contains the
five tetrahedra {u, v, i, i + 1}, i ∈ Z5. Then the sum of the remaining fifteen tetrahedra
gives a non-zero element of H3(X,Z2), a contradiction.

Case 9 : U = Σ 2 of Example 1. Thus, the odd triangles are 126, 127, 167, 236, 237, 346,
347, 456, 457 and 567. By the above claim, 1267, 2367, 3467, 4567 ∈ X. Then the sum of
the remaining sixteen tetrahedra gives a non-zero element of H3(X,Z2), a contradiction.

Case 10 : U = Σ 3 of Example 1. Thus, the odd triangles are 126, 127, 167, 234, 237, 246,
347, 456, 457 and 567. By the claim, 1267, 2347, 4567 ∈ X.

If 2467 ∈ X then the sum of all the tetrahedra, excepting 1267, 2347, 4567, 2467, gives a
non-zero element of H3(X,Z2), a contradiction. So, 2467 6∈ X. Then, LkX(246) = {1, 3, 5}.

Since deg(247) = 2 and 2347 ∈ X, assume without loss of generality, that 2457 ∈ X and
1247 6∈ X. Then LkX(127) = {3, 5, 6}.

So, 2456, 2457 ∈ X and deg(245) = 2. Hence 2345 6∈ X. Then LkX(234) = {1, 6, 7}.
Now, 1234, 1237 ∈ X and deg(123) = 2. Therefore, 1236 6∈ X. Then LkX(126) =

{4, 5, 7}. This implies that •

•

•

• 1
4 6
7

⊆ LkX(25), a contradiction to Observation 2.

Case 11 : U = Σ 4 of Example 1. Thus, the odd triangles are 124, 127, 145, 156, 167, 234,
237, 347, 457 and 567. By the claim, 1247, 1457, 1567, 2347 ∈ X. Then the sum of the
remaining sixteen tetrahedra gives a non-zero element of H3(X,Z2), a contradiction.

Case 12 : U = Σ 5 of Example 1. Thus, the odd triangles are 123, 126, 135, 156, 234, 246,
345, 457, 467, 567. By the claim, 1234, 1235, 1246, 1256, 1345, 2345, 3457, 4567 ∈ X. Thus

LkX(14) ⊇ •

•

•

• 2
5 3
6

and LkX(25) ⊇ •

•

•

• 1
4 3
6

. Since 14 and 25 are not in U , Observation 2

implies that LkX(14) = •
•

•

•

•��HH
6

7 5 3

2

and LkX(25) = •
•

•

•

•��HH
6

7 4 3

1

. Thus 1457, 2457 ∈ X. Then
the triangle 457 is of degree 4 in X, a contradiction. This completes the proof. 2

Proof of Theorem 1 . Let Y be a minimal counter example. So, Y is an n-vertex (for some
n ≤ 7) Z2-acyclic simplicial complex which is not collapsible to any proper subcomplex.

If n < 7 then choose a facet α of Y and an element v 6∈ V (Y ). Let Ỹ be obtained from
Y by the bistellar d-move κα∪{v}, where d is the dimension of Y . Then Ỹ is an (n + 1)-

vertex Z2-acyclic simplicial complex. Since Y has no free face, Ỹ has no free face and hence
Ỹ is not collapsible to any proper subcomplex. Repeating this construction (if necessary)
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we get a 7-vertex Z2-acyclic simplicial complex X which is not collapsible to any proper
subcomplex. Then, by Lemma 3.1, X is of dimension 2 or 3. But, this is not possible by
Lemmas 3.2 and 3.5. This completes the proof. 2

4 Homology spheres.

Lemma 4.1 . Let Y be a pseudomanifold of dimension d. Let Y1 be a proper induced

subcomplex of Y which is pure of dimension d. Put L = C(Y1, Y ) and Y2 = N(L, Y ). Then

(a) Y1, Y2 are weak pseudomanifolds with boundary, (b) ∂Y2 is an induced subcomplex of Y2

and (c) ∂Y2 = ∂Y1 = Y1 ∩ Y2.

Proof . Since Y is a pseudomanifold and Y1 ⊂ Y is pure of maximum dimension, Y1 is a
weak pseudomanifold with boundary. Since the maximal simplices of Y2 are those maximal
simplices of Y which intersect V (L), Y2 is pure of dimension d and each d-simplex of Y is
either in Y1 or in Y2 but not in both. This implies that Y2 is a weak pseudomanifold with
boundary. This proves (a).

Let V1 = V (Y1), V2 = V (L). Then V (Y ) = V1 ⊔ V2. Now, τ is a facet of ∂Y2 ⇔
there exists a unique d-face σ2 ∈ Y2 containing τ ⇔ there exists a unique d-face σ1 ∈ Y1

containing τ ⇔ τ is a facet of ∂Y1. Therefore, ∂Y2 = ∂Y1 ⊆ Y1 ∩ Y2.
Since ∂Y2 = ∂Y1, ∂Y2 ⊆ Y2[V1] = Y2[V1 ∩ V (Y2)]. Conversely, let τ be a maximal face

in Y2[V1]. Since Y2 is pure, there exists a d-simplex σ2 ∈ Y2 such that τ ⊆ σ2. Since
Y1 = Y [V1], τ ∈ Y1 and hence there exists a d-simplex σ1 ∈ Y1 such that τ ⊆ σ1. This
implies that τ ∈ ∂Y1. Thus Y2[V1] ⊆ ∂Y1 = ∂Y2. So, Y2[V1] = ∂Y2. This proves (b).

Since τ ∈ Y1 ∩ Y2 implies τ ∈ Y2[V1] = ∂Y2, Y1 ∩ Y2 ⊆ ∂Y2. Therefore Y1 ∩ Y2 = ∂Y2.
This completes the proof. 2

Lemma 4.2 . Let X be a connected combinatorial d-manifold. Let X1 be an induced sub-

complex of X which is a combinatorial d-ball. Put L = C(X1,X) and X2 = N(L,X).
Then

(a) X2 is a connected combinatorial d-manifold with boundary.

(b) |X2| ց |L|.

(c) If, further, L is collapsible then X is a combinatorial sphere.

Proof . Let V1 = V (X1), V2 = V (L). Then V (X) = V1 ⊔ V2. As in the proof of Lemma
4.1, X2 is pure of dimension d and each d-simplex of X is either in X1 or in X2 but not in
both.

Let v be a vertex of X2. Notice that v ∈ X1 \ ∂X1 ⇒ LkX1
(v) ⊆ LkX(v) are (d − 1)-

spheres ⇒ LkX1
(v) = LkX(v) ⇒ v 6∈ X2, a contradiction. So, either v ∈ V2 or v ∈ ∂X1.

If v ∈ V2 then each d-simplex of X containing v is in X2 and hence LkX2
(v) = LkX(v)

is a combinatorial (d − 1)-sphere.
If v ∈ ∂X1 then (Y, Y1, Y2) := (LkX(v),LkX1

(v),LkX2
(v)) satisfies the hypothesis of

Lemma 4.1. Therefore, by Lemma 4.1, LkX1
(v)∩LkX2

(v) = ∂(LkX2
(v)). This implies that

the closure of |LkX(v)| \ |LkX1
(v)| in |LkX(v)| is |LkX2

(v)|. Since |LkX(v)| is a pl (d − 1)-
sphere and |LkX1

(v)| is a pl (d − 1)-ball, by Proposition 2.5, |LkX2
(v)| is a pl (d − 1)-ball.

Thus, LkX2
(v) is a combinatorial (d − 1)-ball.
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Thus X2 is a combinatorial d-manifold with boundary such that ∂X2 (= ∂X1, by Lemma
4.1) is connected. Therefore, if X2 were disconnected, it would have a d-dimensional weak
pseudomanifold as a component. This is not possible since X is a d-dimensional pseudo-
manifold. Therefore X2 is connected. This proves (a).

As L = X[V2], we have L ⊆ X2 and hence L = X2[V2]. Since, by Lemma 4.1, ∂X2 is the
induced subcomplex of X2 on V1 ∩ V (X2), this implies that L is the simplicial complement
of ∂X2 in X2. Then, by Proposition 2.3, |X2| ց |L|. This proves (b).

Now, if Lց
s 0 then |L| ց0 and hence |X2| ց0. So, by Proposition 2.6, |X2| is a pl ball.

Let σ be a d-simplex in S d
d+2. Let B1 = |σ| and B2 = |S d

d+2 \ {σ}|. Then B1 and B2 are
pl d-balls. Let f2:B2 → |X2| be a pl homeomorphism. Let f = f2|∂B2

. Since ∂B1 = ∂B2

and ∂(|X1|) = |∂X1| = |∂X2|, f : ∂B1 → ∂(|X1|) is a pl homeomorphism. By Proposition
2.4, there exists a pl homeomorphism f1:B1 → |X1| such that f1|∂B1

= f = f2|∂B2
. Then

f1 ∪ f2 is a pl homeomorphism from |S d
d+2| to |X|. This proves (c). 2

Lemma 4.3 . Let X be a combinatorial triangulation of a Z2-homology d-sphere. Let X1

be an induced subcomplex of X which is a combinatorial d-ball. Let L = C(X1,X) and

X2 = N(L,X). Then X2 is Z2-acyclic.

Proof . Let J = X1 ∩ X2. Then, by Lemma 4.1, J = ∂X1. So, J is a combinatorial
(d − 1)-sphere. Therefore, Hd−1(J,Z2) = Z2 and H̃q(J,Z2) = 0 for all q 6= d − 1. Also
H̃q(X1,Z2) = 0 for all q ≥ 0. For q ≥ 1, we have the following exact Mayer-Vietoris
sequence of homology groups with coefficients in Z2 (see [9, 12]) :

· · · → Hq+1(X) → Hq(J) → Hq(X1) ⊕ Hq(X2) → Hq(X) → H̃q−1(J) → · · · (7)

Now, Hd(X,Z2) = Z2 and H̃q(X,Z2) = 0 for q 6= d. By Lemma 4.2, |X2| is a connected
d-manifold with non-trivial boundary. Therefore, Hd(X2,Z2) = 0 and H0(X2,Z2) = Z2.
Then, by (7), Hq(X2,Z2) = 0 for 0 < q < d− 1 and for q = d− 1 we get the following short
exact sequence of abelian groups :

0 → Z2 → Z2 → Hd−1(X2,Z2) → 0.

Clearly, this implies Hd−1(X2,Z2) = 0. Thus, H̃q(X2,Z2) = 0 for all q ≥ 0. 2

Proof of Theorem 2. Let X1 be an m-vertex induced subcomplex of M which is a
combinatorial d-ball. Let L = C(X1,M) and X2 = N(L,M). Then, by Part (b) of Lemma
4.2, |X2| ց |L|.

Again, by Lemma 4.3, X2 is Z2-acyclic and hence L is Z2-acyclic. Since n ≤ m + 7, the
number of vertices in L is ≤ 7. Therefore, by Theorem 1, L is collapsible. Then, by Part
(c) of Lemma 4.2, M is a combinatorial sphere. 2

Proof of Corollary 3. If σ is a d-simplex of M then the induced subcomplex ∆d
d+1(σ)

is a (d + 1)-vertex combinatorial d-ball. Therefore, by Theorem 2, M is a combinatorial
sphere. 2

Proof of Corollary 4. Assume, if possible, that M admits a bistellar i-move κA for some
i < d. Let β be the core of A and α = A \ β. Then M [A] = ∆i

i+1(α) ∗ S d−i−1
d−i+1 (β) is a

(d+2)-vertex combinatorial d-ball. Therefore, by Theorem 2, M is a combinatorial sphere,
a contradiction. This proves the corollary. 2
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tionen kompakter semilinearer Mannigfaltigkeiten, Abh. Math. Sem. Univ. Hamburg 57 (1987) 69–86.

[11] C. P. Rourke, B. J. Sanderson, Introduction to Piecewise-Linear Topology, Springer-Verlag, Berlin, 1982.

[12] E. H. Spanier, Algebraic Topology, Springer-Verlag, New York, 1966.

[13] R. P. Stanley, A combinatorial decomposition of acyclic simplicial complexes, Discrete Math. 120 (1993)
175–182.

[14] D. W. Walkup, The lower bound conjecture for 3- and 4-manifolds, Acta Math. 125 (1970) 75–107.

16


