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Abstract

Recent findings on stress induced structural plasticity in rodents have identified important differences between the
hippocampus and amygdala. The same chronic immobilization stress (CIS, 2h/day) causes growth of dendrites and spines in
the basolateral amygdala (BLA), but dendritic atrophy in hippocampal area CA3. CIS induced morphological changes also
differ in their temporal longevity- BLA hypertrophy, unlike CA3 atrophy, persists even after 21 days of stress-free recovery.
Furthermore, a single session of acute immobilization stress (AIS, 2h) leads to a significant increase in spine density 10 days,
but not 1 day, later in the BLA. However, little is known about the molecular correlates of the differential effects of chronic
and acute stress. Because BDNF is known to be a key regulator of dendritic architecture and spines, we investigated if the
levels of BDNF expression reflect the divergent effects of stress on the hippocampus and amygdala. CIS reduces BDNF in
area CA3, while it increases it in the BLA of male Wistar rats. CIS-induced increase in BDNF expression lasts for at least 21
days after the end of CIS in the BLA. But CIS-induced decrease in area CA3 BDNF levels, reverses to normal levels within the
same period. Finally, BDNF is up regulated in the BLA 1 day after AIS and this increase persists even 10 days later. In contrast,
AIS fails to elicit any significant change in area CA3 at either time points. Together, these findings demonstrate that both
acute and chronic stress trigger opposite effects on BDNF levels in the BLA versus area CA3, and these divergent changes
also follow distinct temporal profiles. These results point to a role for BDNF in stress-induced structural plasticity across both
hippocampus and amygdala, two brain areas that have also been implicated in the cognitive and affective symptoms of
stress-related psychiatric disorders.
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Introduction

Accumulating evidence indicates that the same behavioral

stress, such as 10 days of chronic immobilization stress (2 hours/

day), can elicit contrasting patterns of structural plasticity in the rat

hippocampus and amygdala simultaneously [1–3]. In addition to

being essential components of the neural circuitry mediating stress

responses, these two brain areas have also been implicated in the

cognitive and affective symptoms of stress-related psychiatric

disorders [4,5]. Earlier studies revealed that repeated or chronic

stress causes dendritic atrophy in CA3 pyramidal neurons of the

rodent hippocampus [6]. In the basolateral amygdala (BLA), by

contrast, chronic stress triggers the opposite effect by strengthening

the structural basis of synaptic connectivity through dendritic

growth and spinogenesis [3]. Stress-induced dendritic remodeling

in these two brain areas differ not only in polarity, but also in

terms of their temporal persistence. For instance, exposure to 10

days of chronic immobilization stress elicits dendritic hypertrophy

in BLA principal neurons that lasts till at least 21 days after the

termination of stress [7]. Hippocampal CA3 atrophy, on the other

hand, is reversible within the same period of post-stress recovery

[1,7]. Interestingly, the unique temporal features of stress-induced

changes in the BLA are not limited to chronic stress alone. The

temporal pattern of structural plasticity in the BLA can also be

modulated by the duration of the stressor. A much shorter

duration of the same stress, such as a single 2 h episode of

immobilization, that fails to affect spine density or dendritic

arborization one day later, leads to a significant increase in spine

density ten days later [8]. Together, these studies have helped

identify novel features of stress-induced plasticity in the amygdala

that are quite distinct from those observed in the hippocampus.

Although little is known about molecular mechanisms under-

lying these contrasting effects of stress, previous studies in the

hippocampus provide valuable leads. For example, the same

chronic stress that elicits hippocampal dendritic atrophy also

reduces levels of the neurotrophin brain-derived neurotrophic

factor (BDNF) in the rodent hippocampus [9,10]. Conversely,

chronic administration of antidepressants prevents stress-induced

decrease in BDNF levels and dendritic atrophy in the hippocam-

pus [9,11]. Together these and other findings have contributed to

the ‘‘neurotrophic hypothesis’’, which states that symptoms

associated with stress-related disorders such as depression are a

result of decreased neurotrophic support, and conversely, that

increasing neurotrophic support would lead to the correction of

these symptoms [12,13]. This hypothesis has received support

from several studies including a report that direct BDNF infusion
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into the rodent hippocampus produces antidepressant effects

[14,15]. Also, transgenic overexpression of the neurotrophin

BDNF has antidepressant effects and prevents chronic stress-

induced hippocampal atrophy in mice [16]. Interestingly, in the

same transgenic mice, overexpression of BDNF also causes

spinogenesis in the BLA. Moreover, BLA spinogenesis is also

triggered by chronic stress in control mice but is occluded by

BDNF overexpression, thereby suggesting a role for BDNF

signaling in stress-induced plasticity in the amygdala. These

findings, in turn, are consistent with the significant body of

evidence establishing a role for BDNF as a potent regulator of

morphological plasticity of dendrites in various brain regions [17].

Therefore, in the present study we test the prediction that if BDNF

plays a key role in stress-induced structural plasticity across both

hippocampus and amygdala, then the divergent effects of stress

should also be manifested as differential patterns of BDNF

expression in these two brain areas.

Materials and Methods

Animals
Eight week-old (adult) male Wistar rats (National Centre for

Biological Sciences, Bangalore, India) were housed in groups of 2

or 3 in a standard 14 h light and 10 h dark schedule (lights on at

7:00 A.M) with ad libitum access to food and water. All animal care

and experimentation procedures were approved by the Institu-

tional Animal Ethics Committee, National Centre for Biological

Sciences (Approval No: SC-5/2009) and Committee for the

Purpose of Control and Supervision of Experiments on Animals,

Government of India (Registration No: 109/CPCSEA).

Stress protocol and experimental design
The behavioral stress protocol has been described elsewhere

[3,7,8]. Briefly, rats were randomly assigned to experimental groups

– controls or different intensities of stress. Rats were subjected to

chronic immobilization stress (CIS) or acute immobilization stress

(AIS). Subsequently random subsets of the stressed rats were allowed

to recover for 21 days from CIS and 10 days from AIS. Stress

consisted of complete immobilization for 2 h per day (between 10

AM and noon) in rodent immobilization bags without access to either

food or water, for 10 consecutive days in case of CIS (CIS+1d) and a

subset of these rats were allowed to recover for 21 days (CIS+21d)

(Figure 1A and 2A). AIS consisted of a single immobilization session

of 2 h, after which either 1 day (AIS+1d) or 10 days (AIS+10) of

recovery later animals were sacrificed (Figure 3A). Day 1 marks the

beginning of the experiment while arrow indicates the end point.

Body weights
The net change in weights of rats between the beginning and

end points of the experiments was divided by the starting weight

and multiplied by 100 to calculate percentage gain in body

weights.

Corticosterone measurements
Rats were weighed and sacrificed by rapid decapitation under

deep anesthesia (halothane) and trunk blood was collected within 3

minutes for each animal; all samples were collected between 10

AM and 1 PM. Samples were centrifuged at 16000 rcf for 5 min at

4uC, and serum was stored at 280uC. Serum corticosterone level

was determined by using Correlate - EIA kit according to the

manufacturer’s instructions (Assay designs). Absorbance at 405 nm

was determined by microplate reader (Biorad). Corticosterone

concentration (ng/ml) was determined using the standard curve.

Anesthesia, decapitation and blood collection was conducted

rapidly (within 39) in an adjacent room in order to minimize stress

effects and keep the time to blood collection standardized.

Tissue collection and BDNF measurements
Basolateral amygdala (BLA) was micro dissected from 400 mm

thick coronal sections obtained from McIlwain Tissue Chopper.

Area CA3 was dissected from 400 mm thick transverse hippocampal

sections obtained using the chopper (Figure 1A). Tissue was lysed in

the presence of protease inhibitor cocktail (Roche). BDNF was

estimated using BDNF Emax immunoassay kit (Promega) according

to manufacturer’s protocol. Protein levels were estimated using

BCA kit (Pierce). Levels of BDNF were normalized to protein levels.

Data analysis
Percentage changes in body weight gain were compared

between control and experimental groups using unpaired

Student’s t test assuming unequal variances. Corticosterone

measurements and BDNF data were analyzed using unpaired

Student’s t test assuming unequal variances in the case of CIS and

CIS+21d. In case of corticosterone measurements for AIS and

AIS+10d, Kruskal–Wallis test followed by Mann–Whitney post-hoc

test with Bonferroni’s adjustment was used because the data

distributions called for a non-parametric analysis. For the analysis

Figure 1. Chronic stress regulates BDNF expression in CA3 and
BLA in contrasting manner. Data are presented as mean 6 SEM. A
Experimental design of chronic stress (CIS+1d) followed by micro
dissection of area CA3 from transverse hippocampal sections or BLA
from coronal sections. B BDNF expression in area CA3 is decreased after
chronic stress (Control, n = 5; CIS+1d, n = 5), C Chronic stress up
regulates BDNF expression in BLA (Control, n = 6; CIS+1d, n = 8). Chronic
stress induced changes in BDNF expression profile is normalized to
respective control level. D Serum corticosterone levels are up regulated
after chronic stress in comparison to controls (Control, n = 5; CIS+1d,
n = 6). Significant differences *, p,0.05; Unpaired, two-tailed, Student’s
t-test was used to compare stress and control groups.
doi:10.1371/journal.pone.0030481.g001
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of the BDNF ELISA data, ANOVA followed by post-hoc Fisher’s

least significant difference (LSD) test was used for pairwise

comparison in the case of AIS and AIS+10d. P-values less than

0.05 were considered significant.

Results

Chronic stress elicits opposite effects on BDNF levels in
the BLA and area CA3

As described above, chronic immobilization stress (CIS; 2 h/day

for 10 days) leads to contrasting patterns of dendritic remodeling

in the BLA versus hippocampal area CA3. Specifically, 1 day after

the termination of stress, the same CIS that caused dendritic

atrophy in the CA3 pyramidal neurons, elicited dendritic growth

and spinogenesis in the BLA principal neurons. As BDNF

promotes dendritic and spine growth [18], we reasoned that the

levels of BDNF expression may reflect the divergent effects of

chronic stress on neuronal morphology in the BLA versus area

CA3. To test this prediction, we conducted ELISA analysis on

tissue micro-dissected from these two brain regions in control and

CIS treated rats (Figure 1A). There was significantly lower levels of

BDNF protein in the area CA3 1 day after chronic stress (Control,

1.0060.11; n = 5; CIS+1d, 0.4360.07; data normalized to control

animals; n = 5, P,0.05; Figure 1B). In striking contrast, the same

chronic stress led to significantly higher levels of BDNF protein in

the BLA 1 day later (Control, 1.0060.01; n = 6; CIS+1d,

1.4460.15; data normalized to control animals; n = 8; P,0.05;

Figure 1C). Thus, these data indicate that similar to its differential

effects on dendritic arborization, CIS also modulates BDNF levels

in the area CA3 and BLA in contrasting fashion.

We also confirmed the efficacy of our CIS paradigm by

assessing two widely used indicators of stress. First, we measured, 1

day after the end of the 10 day CIS protocol, the blood serum

levels of corticosterone, a common indicator of HPA axis

activation. There was a significant increase in the levels of

corticosterone in CIS animals relative to control animals (Control,

83.8642.2 ng/ml of serum; n = 5; CIS+1d, 338.2694.8 ng/ml of

serum; n = 6; P,0.05; Figure 1D). Second, we compared changes

in body weight (Table 1) and found a significant reduction in the

percentage weight gained 1 day after CIS (Control, 30.2661.37%;

n = 12; CIS+1d, 14.461.94%; n = 12; P,0.05).

Recovery after chronic stress fails to reverse elevated
levels of BDNF in the BLA, but not in area CA3

Earlier studies have reported that the impact of chronic stress

also differs between the hippocampus and amygdala in terms of its

temporal persistence. For instance, dendritic hypertrophy in the

BLA persists even after 21 days of stress-free recovery following 10

days of CIS. On the other hand, CIS-induced hippocampal CA3

atrophy is reversible within the same 21-day period of recovery.

Since the data presented so far indicates that the CIS-induced

increase and decrease in BDNF levels parallels BLA hypertrophy

and CA3 atrophy respectively, we tested if the temporal profile of

BDNF levels during post-stress recovery also differ in the two

regions. Twenty one days after the end of CIS, we found no

difference in BDNF levels in area CA3 between control and CIS

animals (Control, 1.0060.15; n = 6; CIS+21d, 1.0060.2; data

normalized to control animals; n = 6; P.0.05; Figure 2B). In the

Figure 3. Acute stress modulates BDNF profile differentially in
CA3 and BLA. Data are presented as mean 6 SEM. A Experimental
design of acute stress (AIS+1d) and recovery for 10 days from acute
stress (AIS+10d). B BDNF expression in area CA3 in response to acute
stress. Acute stress does not change the BDNF levels in CA3 (Control,
n = 9; AIS+1d, n = 9; AIS+10d, n = 6, F(2,21) = 2.11, p.0.05). C Acute stress
up regulates BDNF expression in BLA and this up regulation persists
even after recovery (Control, n = 6; AIS+1d, n = 5; AIS+10d, n = 6,
F(2,14) = 4.82, p,0.05). BDNF expression profile was normalized to
respective control levels and evaluated by Fisher’s post-hoc. D Effect of
acute stress and recovery from acute stress on serum corticosterone
levels (Control, n = 11; AIS+1d, n = 5; AIS+10d, n = 6, Kruskal-Wallis
ANOVA, x2

(2) = 10.01, p,0.05, Mann-Whitney post-hoc, p,0.05). Signif-
icant differences *, p,0.05.
doi:10.1371/journal.pone.0030481.g003

Figure 2. Contrasting profiles of BDNF in CA3 and BLA in
response to recovery from chronic stress. Data are presented as
mean 6 SEM A Experimental design of 21 days of recovery from
chronic stress paradigm (CIS+21d). B BDNF expression in area CA3
comes back to control levels post recovery from chronic stress (Control,
n = 6; CIS+21d, n = 6), C Chronic stress induced up regulation in BDNF
expression in BLA persists even after twenty one days of recovery
(Control, n = 4; CIS+21d, n = 6). BDNF expression profile is normalized to
respective control level. D The up regulation of serum corticosterone
levels persists even after recovery from chronic stress (Control, n = 7;
CIS+21d, n = 6). Significant differences *, p,0.05; Unpaired, two-tailed,
Student’s t-test was used to compare stress and control groups.
doi:10.1371/journal.pone.0030481.g002
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BLA, by contrast, BDNF levels remained significantly elevated

even after the same post-CIS recovery period (Control,

1.0060.02; n = 4; CIS+21d, 2.360.49; data normalized to control

animals; n = 6; P,0.05; Figure 2C). Thus, unlike CA3 area, CIS-

induced up-regulation of BDNF protein levels in the BLA persists

up to 21 days after the end of stress.

We also monitored the impact of CIS on blood serum levels of

corticosterone and relative gain in body weight after the same

recovery period. Corticosterone levels remained elevated even 21

days after CIS (Control, 43.0611.7 ng/ml of serum; n = 7;

CIS+21d, 146.3634.9 ng/ml of serum; n = 6; P,0.05;

Figure 2D). In contrast, there was no difference in the percentage

gain in body weight between stressed and unstressed animals after

the recovery period (Control, 73.4164.1%; n = 4; CIS+21d,

70.063.5% n = 6 P.0.05) (Table 1).

Acute stress also differs in its impact on BDNF expression
over time in the BLA and area CA3

The results described so far show that BDNF levels in area CA3

and BLA, following exposure to CIS, are strikingly different both

in terms of the direction and time course of change. In contrast to

the robust effects seen when the 2 h immobilization stress is

repeated for 10 consecutive days, only a single episode of the same

stress (acute immobilization stress or AIS) is known to trigger a

different temporal pattern of changes in the BLA. Unlike CIS, AIS

fails to affect spine density or dendritic arborization, when

measured 1 day later. However, the same AIS leads to a gradual

increase in spine density 10 days later in the BLA. Therefore, next

we examined if AIS modulates BDNF levels in the hippocampus

and amygdala over time. We found only a modest reduction in

BDNF in area CA3 that was not statistically significant either 1 or

10 days after AIS (Control, 1.0060.11; n = 9; AIS+1d, 0.7360.05;

data normalized to control animals; n = 9; AIS+10d, 1.0260.19;

data normalized to control animals; n = 6; P.0.05; Figure 3B).

However, the same AIS caused a significant increase in BDNF

levels in the BLA 1 day later (Control, 1.0060.06; n = 6; AIS+1d,

2.3160.24; data normalized to control animals; n = 5; P,0.05;

Figure 3C). Moreover, this AIS-induced elevation in BDNF levels

persisted in the BLA even after 10 days (CTR, 1.0060.06; n = 6;

AIS+10d, 1.9860.46; data normalized to control animals; n = 6;

P,0.05; Figure 3C). These findings demonstrate that even a

shorter duration of stress triggers changes in BDNF in the BLA

and CA3 area that differ considerably in their direction and

temporal features.

Since the AIS paradigm is expected to be less severe compared

to CIS, we also monitored its impact on serum levels of

corticosterone and body weight gain at the same time points after

AIS when BDNF protein levels were measured. Relative to

controls, AIS caused a significant increase in corticosterone levels

1 day later (Control, 83.8626.0 ng/ml of serum; n = 11, AIS+1d,

594.76221.2 ng/ml of serum n = 5 P,0.05; Figure 3D). 10 days

after AIS, corticosterone levels continued to remain high, although

the difference was no longer statistically significant (Control,

83.8626.0 ng/ml of serum; n = 11; AIS+10d, 232.9678.9 ng/ml

of serum; n = 6; P.0.05). Further, unlike CIS, AIS did not cause

any significant change in the percentage of body weight gain 1 day

later (Control, 1.3160.31%; n = 6; AIS+1d, 0.9360.41%; n = 5;

P.0.05) (Table 1). This absence of any effect on body weight was

also seen after 10 days (Control, 30.2661.37%; n = 12; AIS + 10d,

17.3765.39%; n = 6; P.0.05) (Table 1). Taken together, it is only

1 day after CIS that we observed a significant effect of stress on

body weight gain.

Discussion

This study explored two key facets of stress-induced modulation

of BDNF expression in the hippocampus and amygdala – one in

terms of region-specific differences, and the other in the temporal

domain. Because BDNF regulates dendritic architecture and

spines, both major targets of stress-induced structural plasticity, we

hypothesized that the levels of BDNF expression would reflect the

divergent effects of stress on the hippocampus and amygdala. To

test this hypothesis, we used two very different paradigms of

immobilization stress – an acute paradigm involving a single 2 h

session (AIS) and a chronic version wherein the same 2-hour stress

was repeated for 10 consecutive days (CIS). First, we tested

whether chronic stress elicits changes in BDNF protein levels that

parallel the contrasting patterns of dendritic remodeling observed

previously in the amygdala and hippocampus. We report that the

same CIS has strikingly opposite effects on BDNF expression one

day after the end of CIS – it reduces BDNF in area CA3, while it

increases BDNF in the BLA. This contrasting modulation was

accompanied by a significant up-regulation in circulating cortico-

sterone levels. Second, in light of earlier reports on the unique

temporal features of structural plasticity elicited in the amygdala

by both chronic and acute stress, we tested whether changes in

BDNF levels also exhibit distinct patterns across time in the two

areas. We find that not only does CIS elevate BDNF levels in the

BLA, but this increase lasts for at least 21 days after the end of

CIS, which is consistent with earlier findings on CIS-induced

dendritic hypertrophy in the BLA persisting for the same duration

after stress. In area CA3, however, CIS-induced decrease in

BDNF levels reverses to normal levels within the same post-stress

period of 21 days. This in turn is consistent with the previously

reported reversal of CA3 dendritic atrophy over the same time

frame. However, levels of corticosterone remain elevated even

after 21 days of recovery from stress. Finally, even acute

immobilization stress (AIS) modulates BDNF expression differen-

tially in the two brain areas. Exposure to AIS caused a trend in

lower BDNF levels in the CA3 area one day later, but neither was

this decrease statistically significant nor did it last for 10 days post-

stress. In contrast, the same AIS caused a more robust increase in

BDNF levels in the BLA that remained significantly above control

levels even 10 days after AIS. Interestingly, according to an earlier

study, AIS led to a delayed increase in BLA spine-density that was

manifested 10 days, but not 1 day after AIS. However, we find the

highest levels of BDNF in the BLA 1 day after AIS. Ten days after

AIS, the BLA continues to express significantly higher levels of

BDNF, albeit at levels that are lower than the 1-day time point.

Thus, AIS appears to trigger a rise in BDNF relatively soon after

stress that precedes the gradual build-up in spine-density in the

BLA. Future studies will be necessary to examine if this initial peak

Table 1. Summary of body weight measures.

Experimental group Control Stress p value

Mean 6 SEM n Mean 6 SEM n

CIS 30.361.4% 12 14.461.9% 12 0.00*

CIS+21d 73.464.1%; 4 70.063.5% 6 0.54

AIS 1.360.3% 6 0.960.4% 5 0.38

AIS+10d 30.361.4% 12 17.465.4%; 6 0.07

Data are presented as mean 6 SEM. Significant differences.
*, p,0.05; Unpaired, two-tailed, Student’s t-test was used to compare stress and
control groups.
doi:10.1371/journal.pone.0030481.t001
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in BDNF levels serves as an early signal for plasticity mechanisms

that eventually culminates in delayed BLA spinogenesis 10 days

later.

The contrasting effects of stress on BDNF shed new light on

earlier findings on the differential patterns of cellular changes

elicited by chronic and acute stress in the amygdala versus

hippocampus. Both in terms of the direction and temporal profile

of these changes, the enhanced levels of BDNF elicited by chronic

stress parallels the profile of dendritic growth and spinogenesis in

the BLA. These findings are also significant in view of an earlier

study demonstrating that transgenic overexpression of BDNF

enhances spine-density in the BLA of mice [16]. BLA spinogenesis

is also elicited by chronic stress. Importantly, transgenic over-

expression of BDNF occludes chronic stress induced spinogenesis

in the BLA. Together these findings suggest a role for BDNF in

stress-induced structural plasticity in the amygdala. The results

reported here also add to the earlier studies on region-specific

differences showing stress-induced increase in BDNF expression in

the hypothalamus [19] and the nucleus acumbens (NAc) [20]

compared to decreased levels in the hippocampus. Further, the up-

regulation of BDNF seen in the NAc after social-defeat stress

persists for as long as 4 weeks, similar to the prolonged increase we

see in the BLA [20]. The upregulation of BDNF reported earlier in

the hypothalamic paraventricular nucleus occurs in response to

both single 2 h as well as chronic 7 days of immobilization stress

[19]. On the other hand, chronic stress-induced reduction of

BDNF levels, and its reversal during stress-free recovery, mirrors

earlier findings on reversible dendritic atrophy elicited by chronic

stress in hippocampal area CA3. However, short episodes of acute

stress lasting 15 min or 60 min induces a transient increase in

BDNF mRNA levels in the hippocampus which is in sharp con-

trast to the decrease in BDNF mRNA expression seen in response

to longer stress [21]. Together, these findings also highlight the

importance of investigating the potential mechanisms that cause

the same stress to have opposite effects on BDNF expression as

well as the differential impact of variable durations of stress on

BDNF levels.

Exposure to stressful events leads to glucocorticoid release by

the activation of the hypothalamic–pituitary–adrenal (HPA) axis.

The temporal profile of changes in corticosterone profile shows an

initial rise 1 day after AIS which decreases 10 days later and

returns to levels that are not significantly different from control

levels. Thus, the variations in corticosterone levels reported here

appear to depend on both the severity of the stress paradigm and

time points of measurement after the termination of stress. Our

observations are broadly consistent with earlier reports showing

that the output of the HPA axis is influenced by the periodicity,

intensity and degree of habituation of the stressor [22–26]. The

reduction in hippocampal BDNF due to acute and chronic stress,

in turn, is known to be mediated at least in part by stress-induced

increase in glucocorticoids [10,27]. Yet the same increase in

corticosterone appears to be associated with enhanced BDNF

levels in the BLA. Stress also leads to significant increase in

extracellular levels of glutamate in the hippocampus and amygdala

[28–30]. This suggests that although some of the immediate

consequences of stress – elevated glucocorticoids and glutamate –

are similar in both brain areas, they subsequently lead to

contrasting patterns of BDNF expression and structural plasticity.

This implies that signaling mechanisms more downstream of the

initial changes in glucocorticoids and glutamate, but upstream of

BDNF, may hold the key to the differential impact of stress in

these brain areas. Importantly BDNF infusion into the hippocam-

pus of stressed rodents helped to protect against the deleterious

effects of stress despite high levels of circulating corticosterone

[31]. This suggests that BDNF could be a final point of

convergence for the stress induced effects in the hippocampus.

BDNF-mediated signaling is involved in stress response but the

direction and nature of signaling is region-specific, stress specific

and is influenced by epigenetic modifications along with post

translational modifications [32]. Thus, brain region specific

variations in BDNF expression is a key question that requires

further investigation. Moreover, a complex balance is maintained

in BDNF-driven neuronal plasticity, based on the competition

between BDNF-TrkB system and pro-BDNF-p75 system [33].

Interestingly, activation of TrkB and p75NTR promote and

suppress dendritic spine growth respectively [33]. Since the

findings presented here do not distinguish between TrkB and

p75NTR, which are known to have opposing biological functions,

future studies will be necessary to elucidate the impact of stress on

these different forms in different brain regions.

What may be the functional consequences of the divergent

effects of stress on BDNF in the hippocampus and amygdala?

Growing evidence has linked growth of dendrites and spines in

the BLA – caused either by stress or BDNF overexpression – to

enhanced anxiety-like behavior [8,15]. This is relevant in light of

our results showing that the same time points when stress triggers

higher anxiety is also when BDNF is elevated in the BLA. For

instance, both anxiety and BDNF are increased 1 and 21 days

after CIS. Interestingly, BDNF mRNA has been shown to be

elevated transiently in the BLA 2 hours after cued fear

conditioning and such a temporally restricted elevation of BDNF

signaling is believed to be a key step in the formation of a cue-

specific fear [34,35]. In contrast, a more sustained up-regulation

of BDNF in the BLA may underlie the pathological increase in

fear and anxiety observed following stress [16]. Hippocampal

memory and synaptic plasticity also depend on BDNF, and

reduced levels of BDNF following chronic stress is consistent with

a large body of evidence showing impairment of hippocampal

function and loss of hippocampal volume caused by stress [36–

39]. Further as hippocampal BDNF is critically involved in

resilience to stress, any reduction can enhance vulnerability to

stress [40]. Therefore, the opposite effects on BDNF in the

amygdala and hippocampus may provide a molecular basis for

the contrasting behavioral effects of stress on memories encoded

by these two brain areas. Moreover, these two brain areas differ

not only in their response to stress, but also in how they regulate

the stress response. While the hippocampus exerts a negative

feedback regulation of the stress response via the HPA axis, the

amygdala has the opposite effect [41]. Therefore, the differential

effects on BDNF in these two brain regions following stress could

lead to an imbalance in HPA axis function through a gradual loss

of hippocampal inhibitory control as well as a gain in excitatory

control exerted by the amygdala. The regional differences in the

pattern of BDNF expression triggered by stress also pose a

significant challenge for pharmacological interventions aimed at

countering the effects of stress on the amygdala and hippocam-

pus. Therefore, elucidation of the mechanisms behind the

differential effects of stress on BDNF in the hippocampus and

amygdala is likely to provide useful insights into novel therapeutic

interventions against stress-related psychiatric disorders that are

characterized by impaired cognitive function and abnormally

high fear and anxiety.
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