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Nanoscale self-affine surface smoothing by ion bombardment
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Abstract

Topography of silicon surfaces irradiated by a 2 MeV Si+ ion beam at normal

incidence and ion fluences in the range 1015
− 1016 ions/cm2 has been investi-

gated using scanning tunneling microscopy. At length scales below ∼ 50 nm,

surface smoothing is observed; the smoothing is more prominent at smaller

length scales. The smoothed surface is self-affine with a scaling exponent

α = 0.53 ± 0.02.

PACS no. 61.16.Ch; 61.80.Jh; 68.35.Bs; 68.35.Ct

One of the fundamental problems in materials science is to understand the effects of

particle radiation on solid surfaces. The evolution of solid surface topography during ion-

beam irradiation is governed by the interplay between the dynamics of surface roughening

due to sputtering and smoothing due to material transport during surface diffusion. These

competing processes are responsible for the creation of characteristic surface features like

quasiperiodic ripples [1–4] and self-affine topographies [4–6]. These have been observed in

the ion energy regime where sputtering is dominant and ion incidence is tilted to the surface

normal. Although there is a large number of observations of ripple formation there are only

a few studies on the scaling of the surfaces evolved in ion bombardment [4–6]. A common

feature of most rough surfaces observed experimentally or in discrete models is that their

roughness follows simple scaling laws. Surface root-mean-square roughness σ is defined as

σ =< [h(x, y) − h]2 >1/2, where h(x, y) is the surface height at a point (x, y) on the surface
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and h is the average height. The surface is termed self-affine if σ changes with the horizontal

sampling length L according to σ ∞ Lα, where 0 < α < 1 is the roughness exponent [6].

The roughness exponent quantifies how roughness changes with length scale and its value is

indicative of the surface texture.

For graphite bombarded with 5 keV Ar ions at an angle θ = 60◦ with respect to the

surface normal, Eklund et al [5]. reported α ≃ 0.2 − 0.4, consistent with the predictions

of the Kardar-Parisi-Zhang (KPZ) equation in 2+1 dimensions. Krim et al [6] observed a

self-affine surface roughness generated by 5 keV Ar ion bombardment of an Fe thin film

sample at θ = 25◦, with a scaling exponent α=0.53, with no theoretical model predicting

this value. In all these cases an increase of surface roughness was observed due to ion bom-

bardment. Since ion arrival on the surface is a stochastic process and sputtering events

are spatially distributed and of variable magnitude, surfaces are generally roughened during

bombardment. In all the studies mentioned above the conditions are such that the erosion of

the surface due to sputtering in ion bombardment is dominant over surface atomic diffusion.

However, if the surface atomic diffusion dominates over sputtering, surface smoothing rather

than roughening can occur [2]. Carter and Vishnyakov [2] have shown that inclusion of a

directed flux of atoms parallel to the surface, generated by ion bombardment, in a stochastic

differential equation description of the dynamics of surface evolution during sputter-erosion

can induce smoothing for near-normal (θ ≈ 0) ion incidence. The flux of atoms parallel to

the surface provides an effective diffusion causing surface smoothing which competes with

the roughening caused by sputtering. For θ ≈ 0, roughening is weak as sputtering yield is

small and smoothing dominates. Indeed for an ion incidence angle θ ≈ 0, surface smoothing

have been observed in ion bombardment over a large range of ion energies [2,7]. Although

some observations of surface smoothing have been reported, to our knowledge there has been

no scaling studies of ion-beam induced surface smoothing. In scaling studies for nonequi-

librium film growth by deposition, a value of α ≈ 0.35 is expected when surface mobility

of deposited particles are not allowed and α=0.66 is expected when surface mobility is al-
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lowed [8–10]. For ion-induced roughening the observed value of α=0.2−0.4 is in reasonable

agreement with the exponent for growth without surface diffusion. For ion-beam induced

smoothing, where surface diffusivity is important, one may expect a different value of the

scaling exponent α.

In this Letter, we present scanning tunneling microscopy (STM) characterization of sur-

face smoothing in 2 MeV Si+ ion irradiation of Si surfaces at normal incidence (θ = 0).

At length scales below ∼ 50 nm we observe smoothing of the ion-bombarded surface. The

observed value of the roughness exponent α = 0.53± 0.02 indicates the self-affine nature of

the smoothed surface. The ion irradiated surface shows smoother surface texture at smaller

length scales. We have chosen MeV ions for which sputtering yield is small. In comparison,

the collision-induced atomic displacement and effective surface diffusivity is large. Together

with normal incidence, these conditions are expected to cause smoothing. The observation

of scale dependent smoothing with increased smoothing at smaller length scales has direct

bearing on ion beam processing of nanostructures.

Si(100) substrates were irradiated with 2.0 MeV Si+ ions in the ion implantation beam

line of our 3 MV tandem Pelletron accelerator [11,12]. The ion beam was incident along the

surface normal (θ ≈ 0) and rastered on the sample in order to obtain a uniformly irradiated

area. One half of the sample was masked and hence unirradiated. An ion beam flux of

≈ 1 × 1012 cm−2 sec−1 was used with fluences in the range 1015 to 1016 ions/cm2. The

samples were kept at room temperature during ion irradiation. The pressure in the chamber

was ∼ 10−7 mbar. The sample was then taken out of the irradiation chamber and inserted

into a STM chamber (pressure: 3×10−10 mbar) with an Omicron variable temperature STM

operating at room temperature. STM height calibration was done by measuring atomic step

heights on clean Si(111) and Si(100) surfaces. Roughness measurements were made on the

pristine and the irradiated halves of the sample. We did not remove the thin (∼1.5 nm)

native oxide from the Si surface because the surface topography may be perturbed by the
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effect of Ehrlich-Schwoebel barriers in different crystallographic directions on a crystalline

surface. In this regard the presence of the thin oxide layer is helpful and the effect of the

anisotropic diffusion can be neglected.

In order to determine the roughness exponent from STM images we follow the procedure

described in ref. 6. Typical STM images from the pristine and the irradiated (fluence 4×1015

ions/cm2) parts of a sample are shown in Fig.1. A large number of scans, each of size L,

were recorded on the surface at random locations. The σ values for the rms roughness given

by the instrument for the individual scans were then averaged. This procedure was repeated

for many different sizes and a set of average σ vs. L values was obtained (each σ̄ is the

average of six to fifteen measurements). Each σ value was computed after the instrument

plane fitting and subtraction procedure had been carried out. σ̄ vs. L log-log plots for both

halves of the sample are shown in Fig.2. For the ion-bombarded area of the sample we ob-

serve surface smoothing and by fitting the linear part of the data we obtain α = 0.53± 0.02

below a length scale of ≃ 50 nm, indicating the self-affine nature of the irradiated surface.

Below this length scale, the pristine half of the sample shows no linear region in the log-log

plot of σ̄ vs. L. Two vertical profiles h(x) along the lines marked in Fig.1. are shown in the

inset of Fig.2. It is also clear from these profiles that for the irradiated part of the sample

the surface is much smoother at shorter length scales as indicated by the roughness data

and the scaling exponent.

In earlier scaling studies [5,6] on ion-bombarded surfaces, the conditions of ion energy

and the angle of incidence were favorable for strong sputtering and sputter-erosion of sur-

faces caused roughening. In order to explain the dominance of smoothing over roughening

in our case let us first compare the sputtering yields. From the conditions in refs.[5] and [6],

we estimate the sputtering yields of 3.7 atoms/ion and 3.9 atoms/ion, respectively, using

the TRIM (transport of ions through matter) code [13]. In our case the higher ion energy

and the normal incidence − both contribute to lowering the sputtering yield, which is < 0.2
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atom/ion. Thus the sputtering yield is smaller by almost a factor of 20. This indicates why

surface erosion, main reason for roughness enhancement, is not significant in our case. In

fact at large length scales surface roughness remains unaffected by ion bombardment. On

the other hand, number of surface atoms that would contribute to effective surface mobility

is large as discussed below. In ion-atom collisions in solids and at the surface, the elastic

energy lost by an ion is transferred to a recoil atom, which itself collides with other atoms

in the solid and so forth. In this way the ion creates what is called a collision cascade.

The displaced atoms in this collision cascade may acquire a kinetic energy enough to es-

cape from the solid surface − a phenomenon known as sputtering. However, if the energy

(component normal to surface) of the displaced atoms is smaller than the surface binding

energy, the atoms may reach the surface but cannot leave the surface. They can however

drift parallel to the surface. We show the results of a TRIM simulation of sputtering yield

for our case in Fig.3. This shows the atoms reaching the surface vs. their energies normal

to the surface. Atoms which have energies greater than the surface binding energy (≈ 4.7

eV) will be sputtered. However, we notice that a large number of atoms reach the surface

with low energy (< 4.7 eV) with the number of atoms/eV peaking at ∼ 1 eV. These atoms

will not leave the surface (not be sputtered) [14]. The role of these atoms is important in

surface smoothing. These atoms have too low an energy (normal to surface) to escape the

energy barrier at the surface and will translate parallel to the surface. This collision-induced

atomic displacement and the consequent effective diffusivity parallel to the surface due to

ballistic atomic transport can be the dominant surface relaxation mechanism. As a result

smoothing may dominate roughening as discussed later in more details. Eklund at al [5]

studied submicron-scale surface roughening induced by ion bombardment and obtained an

scaling exponent α ≃ 0.2 − 0.4. This value of the exponent is reasonably explained by the

anisotropic KPZ equation (α = 0.38) [15] when the surface diffusion term is expected to

contribute negligibly. On the other hand, there are no concrete predictions of the expo-

nents for the case where ion beam induced surface smoothing or diffusivity is dominant.

Neither we know any scaling theory which predicts α ≈ 0.5. Assuming the possibility that
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the scaling theories applicable to nonequilibrium film growth may also be applicable to ion

bombardment, so long as no eroded material is redeposited onto the surface, we compare the

observed exponent with those expected for the deposition process, which are α ≈ 0.35 when

surface mobility of the deposited particles is ignored and α = 0.66 when surface mobility is

allowed [8–10]. In the first case the exponents are in good agreement for deposition and ion

bombardment. In our case surface mobility is important and the observed value of α = 0.53

is closer to that for the deposition model that includes surface mobility. Incidentally, Krim

et al. [6] also observed α = 0.53 for ion bombardment of an Fe film on a MgO substrate

where roughening, rather than smoothing, was dominant.

For ion irradiation, Carter and Vishnyakov [2] derived an expression showing the relative

magnitudes of the roughening (sputtering) term and the smoothing term due to recoiled

atoms which qualitatively explains the domination of smoothing over roughening at normal

and near-normal (θ ≈ 0) incidence of the ion beam. However, there is no prediction of

scaling exponent. For θ ≈ 0 they predict that smoothing dominates roughening at all wave

vectors. We find that at larger length scales (> 50 nm) initial surface roughness remains

practically unaffected by ion bombardment while smoothing becomes increasingly dominant

at lower length scales below 50 nm.

In order to show the relative strength of the smoothing and the roughening terms, Carter

and Vishnyakov [2] extended the treatment given by Bradley and Harper [16], who showed

(in 1+1 dimension) that, due to sputter-erosion alone, the deterministic defining equation

for h(x, t) can be written as

−
∂h

∂t
=

J

N
Y0(θ) −

J

N

∂

∂θ
[ Y0(θ) cos θ ]

∂h

∂x

+
Ja

N
Y0(θ) Γ1(θ)

∂2h

∂x2
(1)

where J is the mean ion flux incident at angle θ, N is the solid atomic density, Y0(θ) is the

sputtering yield of a plane surface, a is the mean depth of energy deposition by an ion, and
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Γ1(θ) is a function of θ, and standard deviations α and β of the bi-Gaussian ellipsoidal ion

energy spatial deposition density function. For order of magnitude estimation the ellipsoidal

distribution has been approximated by a spherical distribution with a = α = β, in which

case

Γ1(θ) = sin2 θ −
(

cos2 θ/2
) (

1 + sin2 θ
)

(2)

In order to introduce the effective diffusion parallel to the surface they estimated the atomic

flux parallel to the surface to modify the last term in Eq.(1):

−
J

N

{

f(E) d cos2θ − Y0(θ) a

[

sin2 θ −
cos2θ

2
(1 + sin2θ )

]}

∂ 2h

∂ x2
(3)

where f(E) is the no. of recoil atoms each ion generates in the solid and d is the average

distance traveled by the recoiled atoms. d is of the order of a few interatomic distances. For

θ = 0, the expression (3) [ i.e, the last term in Eq(1) ] is negative and smoothing dominates

roughening at all wave vectors. f(E) = k(E)/2Ed, where k(E) is the fraction of ion energy

deposited in elastic collisions and Ed is a displacement energy [17]. In the simulation results

shown in Fig.3 we have used Ed=15 eV. The results shown in Fig.3 only qualitatively shows

how a large number of hyperthermal recoil atoms, arriving at the surface but unable to

escape the surface, can cause surface smoothing as implied by Eq.(1) along with expression

(3). Expression (3) only qualitatively describes the effect of f(E) in surface smoothing. For

a quantitative understanding future theoretical work should include the effect of a distri-

bution like that shown in Fig.3. So far theoretical works concentrated only on the low ion

energy regime where sputter-erosion is dominant and the approximation (a = α = β) used

in deriving the expression for Γ1(θ) [ Eq.(2) ] may be valid. However, for high ion energies,

it is not valid. For example in our case, for 2 MeV Si ions in Si, a = 1.94 µm, α = 248 nm

and β = 288 nm. In the existing theories it is assumed that energy released by the ions at

a depth a contributes an amount of energy to surface points that may induce surface atoms

to break their bonds and leave the surface [15]. This is true for low ion energies where a is

small. However, ion energy release deep inside the sample would hardly have any effect on
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surface atoms. Future theories must take this aspect into account.

In conclusion, we have observed nanoscale surface smoothing in ion bombardment. The

smoothed surface is a self-affine fractal surface with a scaling exponent α = 0.53 ± 0.02.

Below a length scale of ∼ 50 nm, the smoothing is more dominant at smaller length scales.

This phenomenon may be used in reducing surface roughness of nanostructural devices

by ion beam processing as ion beams are widely used in device fabrication. Transport in

nanostructures is expected to improve when roughness is minimized. For an understanding

of the scaling exponent observed in surface smoothing further theoretical studies will be

necessary.
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FIGURE CAPTIONS:

Fig.1. STM images recorded on a pristine (top) and ion-bombarded (bottom) silicon

surface. The scan size is 300 × 300 nm2 and the vertical scale (black to white) is 2.2 nm.

Height profiles along the lines are shown in Fig.2.

Fig.2. Average root-mean-square roughness vs. scan size on the pristine and the ion

irradiated surfaces. Each point represents an average of 6 to 15 scans recorded at random

locations on the surface. Surface smoothing is observed at scan sizes below ∼ 50 × 50 nm2.

The least-squares fit (solid line) to the linear portion of the data for the irradiated sample

gives the scaling exponent α = 0.53±0.02. No linear part is observed for the pristine sample

data. Two vertical profiles h(x) measured along the lines marked in Fig.1, are shown in the

inset (scales in nm): (a) pristine, (b) irradiated sample.

Fig.3. A Monte-Carlo simulation result showing the energy distribution of ion-beam

induced displaced atoms reaching the surface. Atoms with energy > 4.7 eV leave the surface

(sputtered). The large number of atoms below 4.7 eV (surface binding energy) cannot leave

the surface and contribute to an effective surface diffusion due to ballistic atomic transport

leading to smoothing.
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FIGURES

Fig.1 (top)
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Fig.1 (bottom)
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Fig.2.
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Fig.3
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