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Abstract 

We investigate electrically driven contact line dynamics of a binary fluid system constituted by 

one Newtonian and other non-Newtonian fluid in a narrow fluidic channel with chemically 

patched walls. We use power-law model to describe the rheology of the non-Newtonian fluid and 

diffuse interface phase-field method to model dynamics of multiple phases.  We bring out the 

alteration in the interfacial dynamics as attributable to the rheology driven modifications in the 

interfacial stress and its interplay with the Maxwell stress originating from electrokinetic effects.  
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I. Introduction 

When two immiscible fluids  are in contact with a solid surface, the dynamics of the contact line 

formed at the fluid-fluid-solid interface plays an important role, and leads to far ranging 

consequences across scales.
1–13

 It is, therefore, not a surprising fact to appreciate the deep 

involvement of researchers from various disciplines on the systematic interrogation of the 

underlying physics associated with the contact line motion of immiscible binary fluid systems.
14–

17
 Coupled with other aspects of chemical physics over interfacial scales

18–21
 a thorough 

understanding of the contact line dynamics of binary fluid systems has lead to significant 

advancements in the design and development of several miniaturized devices of modern day 

technological relevance.
5,7,22–30

  In many of these devices, use of electrical actuation is a common 

practice now-a-days, primarily attributable to a possible elimination of moving parts and the on-

chip integrability of the fluidic system under concern. Recognizing this aspect, several 

researchers have addressed the underlying dynamics of electrically actuated two phase flows in 

different applications.
31–39

 However, they have mostly considered the driving and driven fluids to 

be Newtonian in binary flow configurations.   

 Recent advancements in lab-on-a-chip based micro-total-analysis systems, such as those 

commonly used for on-chip bio analysis, transportation of bio-fluids etc., have triggered the 

needs of understanding the interfacial dynamics of a binary fluid system in a miniaturized 

environment in which one of the fluids is non Newtonian in nature. The working fluids in these 

devices belong to the broad class of soft binary system. Typical examples concern blood (which 

is a typical shear-thinning fluid) samples being handled in microfluidics based pathological 

diagnostic devices. It is well recognized that dynamics of capillary filling of blood in a 

microfluidic channel may be non-trivially altered by mechanics over small scales.
40

  In addition, 

many industrial applications over small scales find the use of shear-thickening fluids as well. The 

underlying transport characteristics may get even more involved considering the interplay of 

rheological interactions with the substrate wettability.
31,41

 Recognizing such relevance, a few 

researchers have investigated the interfacial transport and contact line dynamics of non 

Newtonian fluids through narrow confinements, with one of the fluids being transported as non-
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Newtonian.
41–45

 However, no studies have yet been reported in the literature to capture the 

pertinent interactions with a driving electrical field in presence of electrokinetic effects.  

Here, for the first time, we attempt to analyze the electric field driven contact line 

dynamics of a binary fluid system constituted by one non-Newtonian fluid, with particular 

emphasis on delineating a rich physical interplay of  different forces arising due to rheological 

effects of the fluids and its coupling with the Maxwell stresses owing to electrokinetics and 

wetting phenomena over interfacial scales.
31,41

 We bring out the consequent alterations on the 

capillary filling rate, which may have far ranging consequences in the design of various bio-

microfluidic systems of practical relevance.  

II. Problem Formulation and Methodology 

A. Formulation of the problem and simulation set-up 

 We consider an external electric field driven transport of binary fluid system A/B, which 

contains one Newtonian and other non-Newtonian (power-law) fluid, through a narrow fluidic 

pathway. Figure 1 shows the set-up of our numerical simulations. In the numerical simulations, 

symmetric half of the channel is used owing to symmetric nature of the flow along the height of 

the channel. We consider the width of the channel to be much larger than its height, which, in 

effect, allows us to consider two-dimensional flow analysis. The height and length of the channel 

are 2H and L respectively. The coordinate system is shown in Fig. 1, where the x -axis and y -

axis are directed along the length and height of the channel respectively. We consider that the left 

side of the channel (i.e., up to a distance 1x L= ) is initially filled with fluid-A, whose density, 

viscosity and permittivity are Aρ , Aµ  and Aε  respectively. Fluid-B with density Bρ , viscosity Bµ  

and permittivity Bε , on the other hand, initially residing at the right side and the remaining 

portion of the channel. We consider the walls of the channel to bear specified surface 

wettabilities as manifested in terms of static contact angle. We further consider both the walls of 

the channel to have a surface charge as manifested in terms of an equivalent zeta potential 0ζ . 
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FIG. 1. (color online) Schematic describing the problem with physical dimensions. The solution domain is 

the symmetric upper-half of the channel and the origin is placed at the middle of the left end of the 

channel. Fluid A (light gray) resides in the left side of the channel and fluid B (deep gray) is at the right 

side of the channel. The wall is chemically patched. The applied electric field ( E ), actuates the flow. The 

angle sθ  and θ  are the static contact angle at the wall and the slope of the interface respectively. 

 

B. Methodology 

1. Phase field model 

 In the present study, we consider diffuse-interface based phase field model to describe the 

contact line motion of binary fluid systems. According to phase field method, the state of the 

binary fluid system at any spatiotemporal location is  described by an order parameter φ , which 

in the present case is characterized by the relative phase concentration of the respective phases, 

1 2 1 2( ) ( )n n n nφ = − + , where 1n  and 2n  are the number density of molecules of Fluid-A and 

Fluid-B respectively. Therefore, in the present study, 1φ =  represents the displacing phase fluid 

(Fluid-A in the schematic) and 1φ = −  represents the displaced phase fluid (Fluid-B in the 

schematic). The thermodynamic behavior of the binary fluid systems can be described by the 

Ginzburg-Landau free energy functional.
46–53

 

( ) 21
d

2
F f φ φσξ

∀

 = + ∀ 
 ∫ ∇∇∇∇         (1) 
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In Eq. (1), F  is the total energy, ∀  spans over the entire fluid domain. The coefficients σ  and 

ξ  can be linked to the interfacial tension and interface width respectively. The first term in Eq. 

(1) is the expression for the bulk free energy density of the binary fluid system, while the second 

term takes care of the interfacial free energy due to the presence of an interface separating the 

two fluids. We may cast the first term on the right hand side of Eq. (1) in the form of a double 

well potential which for an isothermal system can be written as:
26,54,55

 

2 2( ) ( 1)f
σ

φ φ
ξ

= −           (2) 

Two minima of the phase field variable φ  correspond to the two stable phases i.e., fluid-A and 

fluid-B respectively. The chemical potential (G) is defined as the variational derivative of free 

energy functional with respect to the order parameter φ  and takes the following form: 

2( )
F

G f
δ

φ σξ φ
δφ

′= = − ∇          (3) 

2. Governing transport equations of the fluid motion 

 The governing transport equations for the problem considered in the present study are the 

continuity, momentum, Cahn-Hilliard equation for the interfacial movement, and the Poisson-

Boltzmann equation for the charge distribution in the channel.  

2.1 Cahn-Hilliard model for the interface movement 

 The convection-diffusion equation governing the evolution of the order parameter can be 

expressed in the form given below.
12,13,46,49,52,56–59

 

( G)t Mφ φ∂ + ⋅ = ∇ ⋅u ∇ ∇∇ ∇∇ ∇∇ ∇          (4) 

In the above equation, u  is the velocity field, M  is a constant that controls the diffusion across 

the interface and is termed as the mobility of the order parameter and G  is the chemical potential 

as described by Eq. (3). The boundary conditions for Eq. (4) are given below:
29

 

0G =⋅n ∇∇∇∇            (5a) 
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( )tan
2

d

π
φ θ φ φ ⋅ = − − − ⋅ 

 
n n n∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇        (5b) 

In the above two equations, n  is the outward pointing normal coordinate. The first boundary 

condition as given in Eq. (5a) ensures no flux through the surface. In Eq. 5b,  dθ  is the dynamic 

contact angle, which is related to the static equilibrium contact angle by the Cox-Voinov relation 

as given by: 
60,61

  

( )3 3 9Ca lnd s slipR lθ θ= +          (5c) 

Here R  is the macroscopic length scale, slipl  is the molecular slip length.  In Eq. 5(c), sθ  is the 

imposed static contact angle, the capillary number (Ca) is computed based on the local contact 

line velocity and the molecular slip-length is assumed to be of the order of the interface width.
26

  

2.2 Charge Distribution: Poisson-Boltzmann equation and Laplace equation 

 An aqueous solution in contact with the solid surface develops an interfacial charge 

(independent of the application of any external electric field) that leads to the formation of thin 

region of net charge density close to the surface which is  referred to as the Electric Double Layer 

(EDL).
34

 The potential distribution in the EDL is described by the Poisson-Boltzmann equation.
62

 

[ ]· eε ψ ρ= −∇ ∇∇ ∇∇ ∇∇ ∇           (6) 

In Eq. (6), ε  is the permittivity of the fluid and eρ  is the net electric charge density. The net 

electric charge density eρ  can be described by the Boltzmann distribution, which for a :z z  

symmetric electrolyte takes the form as given below.
34,63

 

02 sinh( )e Bze k Tρ ρ ψ= −           (7) 

where 0ρ  is the reference charge density, e  is the protonic charge, Bk  is the Boltzmann constant, 

z  is the valance, and T  is the absolute temperature. In Eq. (6), we use the following boundary 

conditions: 
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0( , )x Hψ ζ± =            (8) 

where 0ζ  is the potential (zeta potential) specified at the channel walls.  

We further note that an externally applied axial voltage, which actuates the flow, also acts on the 

immiscible binary fluid system, in addition to the induced transverse field as mentioned above. 

The corresponding potential distribution ( *ψ ) will satisfy the following equation:
38,63

 

[ ]*· 0ε ψ =∇ ∇∇ ∇∇ ∇∇ ∇            (9) 

The boundary conditions for Eq. (9) are given below:  

0*(0, )

*( , ) 0

* | 0y H

y V

L y

ψ

ψ
ψ =±

=


= 
⋅ = n ∇∇∇∇

          (10) 

2.3 Fluid flow equations 

 The diffusion of the order parameter across the interface contributes a body force term in 

the momentum equation, which couples the fluid flow description with that of the order 

parameter.
13,48,49,52,64

 On the other hand, electrokinetic effects give rise to additional body force 

terms in the momentum equation.
21,38

  Accordingly, one may write the continuity and the 

momentum conservation equations as: 

⋅u = 0∇∇∇∇            (11a) 

( ) ( )( )( )( ) ( ) ( ) * 2 1 2t ep G ρρ ρ τ φ ρ ψ ε ρ ε∂ + ⋅ ⊗ = − + + + ∂u u u I + E.E + E.E∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇  (11b) 

The term τ  appearing in the first term in the right hand side of Eq. (11b) denotes the deviatoric 

stress, which may be modeled based on the constitutive behavior of the fluid under concern. In 

particular, for power law fluid, nkτ γ= & , where k  is the flow consistency index, n  is the flow 

behavior index ( 1n <  for shear thinning fluids, and 1n > for shear thickening fluids), and γ&  is the 

rate of deformation. The second term in right hand side of Eq. (11b) arises because of the 

presence of an interface in the flow field, while the remaining three terms are the electrokinetic 
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body force terms. The penultimate term arises due to the spatial variation of permittivity and the 

last term is an outcome of electrostiction force that becomes significant when permittivity is a 

function of the density. We mention here that E  is the total electric field that accounts for both 

the EDL field (ψ ) and the applied electric field ( *ψ ).  

To describe the fluid motion in the channel, no slip and no penetration boundary 

conditions ( 0, 0u v= = ) are applied at the walls of the channel. Moreover, we assume that both 

the fluids are initially at rest. We further consider the inlet ( inp ) and outlet gauge pressures ( outp ) 

to be zero. In compliance with the phase field method, we consider that the permittivity, density 

and effective viscosity appearing in Eqs. (6), (9) and (11b) to be explicit functions of the order 

parameter and can be mathematically written as:
12,36–38,41,49,52,53

  

( ) ( )1 2 1 2A Bε ε φ ε φ= + + −          (12a) 

( ) ( )1 2 1 2A Bρ ρ φ ρ φ= + + −         (12b) 

( ) ( ), ,1 2 1 2eff eff A eff Bµ µ φ µ φ= + + −         (12c) 

Note that effµ  in Eq. (12c) is the effective viscosity and can be expressed as: 1n

eff kµ γ −= & . 

For the Newtonian fluid (i.e., 1n = ), effµ  is the viscosity of the fluid. It is important to mention 

here that we have considered property matched binary fluids (permittivity, density and viscosity) 

in the present study and hence the last two terms of the momentum equation (Eq. 11b) drop out.  

2.4  Non-dimensional equations 

In order to cast the governing transport equations and the boundary conditions into non-

dimensional form, we use following dimensionless variables: 0* * /( / );V Lψ ψ ξ=
 

, , / ;refu v u v u=
  

, , / ;x y x y ξ=  / ;Bze k Tψ ψ=
 

 ,/ ;eff eff eff refµ µ µ=
 

/ ;refρ ρ ρ=  / refε ε ε= ; 

/ refp p p=  and / reft t t= , where , /ref eff ref refp uµ ξ= ; /ref reft uξ=  and 
0

,

ref B

ref

eff ref

k TV
u

ze L

ε

µ
= . The 
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chemical potential is non-dimensionalized as: ( )/ /G G σ ξ= . With the aid of the dimensionless 

parameters mentioned above, finally, we arrive at the following set of dimensionless equations.  

Pe ( G)t Mφ φ ∂ + ⋅ = ⋅ u ∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇         (13) 

( )2 sinh· ε ψ λ ψ  = ∇ ∇∇ ∇∇ ∇∇ ∇          (14) 

*· 0ε ψ  = ∇ ∇∇ ∇∇ ∇∇ ∇           (15) 

0⋅ =u∇∇∇∇            (16) 

( ) ( )2Re ( ) ( ) ( ) sinh * Cat p Gρ ρ ρ τ λ ψ ψ φ ∂ + ⋅ ⊗ = − + + u u u I +∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇   (17) 

In the present study, we have considered the properties of power-law fluid to be the reference 

properties while non-dimensionalizing of the governing transport equations. The scheme of non-

dimensionalisation gives rise to a few dimensionless parameters which are defined as: Peclet 

number, 2Pe /ref cu Mξ σ= ; Capillary number, ,Ca /ref eff refu µ σ=  and Reynolds number, 

,Re /ref ref eff refuρ ξ µ= . We define M  as: 
cM M M=  where Mc is defined following reported 

MD simulation studies
65

 as: 
4

c eM C l mε= ; l and eε  
being the length scale and energy scale 

respectively in the Lennard-Jonnes potential for fluid molecules and m  being the molecular mass 

of fluid, and C is a constant ( ≈0.023). The term λ  in equation (14), which is called the inverse of 

Debye length, can be expressed as: ( )1/2

2 /ref ref bze k Tλ ρ ε=
 
and λ λξ= . In the present analysis, 

4

0 ~ 10 V/mV L , which makes, 410 m/srefu −= .  

C. Numerical Method and Model Benchmarking 

 In the present study, we have used the finite element multiphysics framework of 

COMSOL
® 

for solving the governing transport equations. We have used PARDISO solver and 

generalized-α  scheme for temporal discretization. We have used uniform grid sizes of 

, 0.2x y ξ∆ ∆ =  for all the simulations. It is important to mention in this context here that before 

applying the driving force to actuate bulk fluid motion, we initialize the phase field variable to 
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form the interface of co-existing two bulk phases (φ = ± 1). Initialization of phase field variable, 

in essence, leads to an equilibrium interface profile following the solution of the equation: 

( ) 0G φ =            (18) 

 Model Validation: We have benchmarked the phase field model for the moving contact 

line problems using the results reported in Wang et al,
46

 whose model and numerical framework 

are in turn benchmarked against molecular dynamic simulations.
65

 In Fig. 2, we show the 

benchmarking results, where we show the variation of the contact line velocity for a pressure 

driven flow over a substrate having patterned wettability i.e., the substrate has periodic patches 

which preferentially like and dislike the incoming fluid stream. When the contact line moves over 

the chemically patterned surface, the moving interface has to dynamically adjust with the 

substrate affinity condition and has to switch between the interface profiles for the different 

patches. As the contact line moves from the favorable to the unfavorable stripe, the contact line 

undergoes an acceleration (de-pinning) and jumps to the favorable stripe where it tends to pin. 

This periodic pinning/depinning of the contact line, when it moves over the pattered substrate, is 

manifested as an oscillatory motion of the contact line as manifested in Fig. 2. We observe an 

extremely good agreement between the present and reported results
46

. 

Grid independence study – The effects of grid size on the accuracy of the results have been 

shown in Fig. 2(b), which shows the variation of contact line velocity along the length of the 

channel for different grid sizes. One may clearly see from Fig. 2(b) that the variation becomes 

negligible as the grid size is reduced below , 0.1x y ξ∆ ∆ = , 0.2ξ . Accordingly, the grid sizes 

, 0.2x y ξ∆ ∆ =  have been considered for all our subsequent studies.  
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FIG. 2. (a) Model benchmarking. Contact line velocity shown as a function of distance along 

the capillary. The simulations results using the present model are represented by the solid lines 

and the square markers are used to represent the results reported by Wang et al.
46

. The results of 

the present numerical simulations and the reported numerical experimental results are in perfect 

match.  b) Grid independence study: Contact line velocity as a function of the location along 

the channel for three different values of grid sizes.  

 

 We further mention that from here onwards the overbars used to represent non-

dimensional quantities will be dropped from the variable nomenclature for the ease of 

representation. 

III. RESULTS AND DISCUSSIONS 

 Here, we present the rheology-modulated contact line motion of the binary fluid system 

and show the intriguing interfacial dynamics owing to competing effects of the fluid rheology 

and its interaction with the electrical forcing and surface wettability. We consider different flow 

configurations like Newtonian fluid displacing power-law fluid ( N P ) and vice versa ( P N ). It 

is important to mention here that we use the following dimensionless parameters in the present 

study unless otherwise specified: Re 0.01= , P e 0.02= , Ca = 0.1, 0 4ζ = − , 0.2λ = . These 

values are in accordance with the typical parameters encountered in microfluidic 

setups
21,25,41,46,49

. It is important to mention here that while discussing the results, we will refer to 

the static contact angle values ( )sθ as reference parameters, even though the model takes into 

(a)  (b) 
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account the dynamic contact angles ( )dθ , which are computed dynamically depending on the 

local contact line velocity as the interface evolves. 

A. Contact Line velocity 

 We start our discussion with Figs. 3(a) - (c), which show the variation of contact line 

velocity ( clv ) of a two fluid system as considered in the present study. While investigating the 

contact line velocity, we consider three different values of static contact angle 0 045 ,90sθ =  and 

0135  in the analysis.   

 

 
(c) 

(a) (b) 
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FIG. 3. (Color online) Variation of contact line velocity ( clv ) vs. distance along the channel ( x ) for 

different flow configurations obtained at three different surface wetting conditions of the wall: (a) 
045sθ = , (b) 

090sθ = and (c) 
0135sθ = . P N  refers to power-law fluids (both shear-thickening and 

shear-thinning) displacing Newtonian fluid, while N P  indicates the reverse situation. N N  refers to 

Newtonian fluid is displacing another Newtonian fluid. For 
045sθ = , appreciable difference in contact 

line velocity is seen for the cases when receding fluids are power-law fluids. On the other hand, for the 

cases with advancing fluids as power-law fluids, the variation of contact line velocity does not show any 

significant difference with the alterations in the value of n. The contact line velocity for  
0135sθ =  

becomes higher when receding fluid is shear-thinning and lower when it is a shear-thickening fluid. 

 

The contact line velocity ( clv ) initially shows an increasing trend for all the cases 

considered. The initial increasing trend of  clv   can be attributed to the  sudden driving force 

experienced by the binary fluid system owing to the application of an external electric field, 

which compels the interface to accelerate along the capillary. Moreover, as the interface starts 

moving along the channel, it has to dynamically adjust to the contact angle specified at the solid 

substrate. However, the contact line velocity further downstream of the channel attains a steady 

profile for all the cases considered, as can be seen from Figs. 3(a)-(c).   

Once the contact line velocity reaches its steady value, significant differences in the 

velocity profile are observed with the alterations in sθ  and n . One can observe from Figs. 3(a)-

(b) that the contact line velocity for the cases of 0 045 and 90sθ =  becomes maximum and 

minimum when a Newtonian fluid displaces the shear-thickening ( N P  curve; 1.2n = ) and 

shear-thinning ( N P  curve; 0.8n = ) fluids respectively. On the other hand, a reverse scenario is 

observed in Fig. 3(c) for the variation of contact line velocity for 0135sθ = . In an effort to explain 

this, we would like to mention here that the advancement of the interface at the three phase 

contact line essentially depends upon the competition of three important forces:  the surface 

tension force, the electrical forcing, and the viscous drag. The marked difference in contact line 

velocity can be correlated to the presence of different topographical features of the two-fluid 

system under different conditions, as modulated by these forces. Different topographical features, 

in turn, will alter the viscous drag and its interplay with the surface tension forces as well as the 
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Maxwell stresses. The alteration in the net force will, in turn, result in an observable difference in 

contact line velocity as reflected in Figs. 3(a)-(c).  

In an effort to bring out the quantitative assessment about the variation of different forces 

across the contact line for the different cases, in Fig. 4, we show the variation of net force acting 

across the contact line cl x
F  as the interface moves along the channel. In Figs. 4(a), we show the 

variation of the net force by swapping the rheology of the driving and the driven fluids by 

keeping the flow behavior index (n) and electrical forcing unaltered for 045sθ = . For the case 

when shear-thinning fluid is the advancing one ( P N  curve; 0.8n = ), the net driving force acting 

across the contact line increases as attributable to a reduced magnitude of the viscous drag. Fig. 

4(b) shows the variation of net force with variation in the flow behavior index (n) of the receding 

fluid; advancing fluid being the Newtonian one in both the cases. It is clearly evident that the net 

force increases with increase in n. This is primarily due to the reduction in the magnitude of the 

viscous drag with increases in n. We further show, in Fig. 4(c), that for the case when receding 

fluid is shear-thinning ( N/ P  curve, n=0.8), the net force acting over the contact line becomes 

lower for 0135sθ = , which again underlines the favorable effect of surface tension force 

intrinsically attached with 45sθ = ° .  It is important to mention in this context here that the 

variation of net force acting across the contact line as delineated above are in clear support of the 

variation of contact line velocities as observed in Figs. 3(a)-(c).   

 

     (a)           (b)                            (c) 
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FIG. 4. (Color online) Variation of net force acting across the contact line for different cases. 

 

 B. Interface Bending 

 The flow displacement in the capillary is largely manifested by the interfacial shape of the 

immiscible binary fluid system. We show, in Fig. 5, the shapes of the interface obtained for 

different cases. It is important to mention in this context here that all the interface contours as 

shown in Fig. 5 correspond to flow time 15t = . Figure 5 suggests that for all the cases of static 

contact angles considered, when Newtonian fluid is displacing the shear-thickening fluid in the 

capillary ( N P  curve; 1.2n = ), the interface shows more bending towards the receding fluid. On 

the other hand, for the same flow configuration, when the receding fluid is shear-thinning ( N P  

curve; 0.8n = ), the interface meekly bends toward the receding fluid. It is noteworthy to observe 

from Fig. 5 that for the cases when advancing fluid is non-Newtonian (both shear-thinning and 

shear-thickening), the interface deviates mildly with the alterations in the substrate wettability. 

The electrical forcing acting over the interface within the EDL makes an effort to drag the 

interface along the capillary, while the interplay between surface tension force and viscous drag 

creates either a reverse or favorable impact on the interface movement depending upon the flow 

configurations and substrate wettability.   

 In an effort to analyze the effect of fluid rheology on the interface shape, we show, in Fig. 

6, the variation of velocity gradient normal to the channel wall nu ( )u n= ∂ ∂  at time 15t =  for 

different cases. Note that the interface assumes a steady profile at 15t = . We can argue from 

Figs. 6(a)-(b) that, for both the cases of sθ  ( )0 045 and 135=  and specific to the case of flow 

configuration where the receding fluid is shear-thinning ( N P  curve; 0.8n = ), the magnitude of 

normal velocity gradient at the three phase contact line is more. Since, we have used phase field 

method in the present study; the model automatically introduces a slip at the three phase (fluid-

fluid-solid) contact line. For a given slip length provided by the model itself, the higher velocity 

gradient at the contact line for the case when the receding fluid is shear-thinning ( N P  curve; 

0.8n = ) produces more slip velocity for both the cases of surface wettability considered. 

Relatively larger slip velocity corresponding to this kind of flow configurations (Newtonian fluid 
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displacing shear-thinning fluid) allows the contact line to move forward, and in effect, reduces 

the interface bending as can be seen in Figs. 5(a) and (c).  

 

 
 

FIG. 5. (Color online) Interface evolution in the flow as shown by its shape for different cases at 

a given time 15t = . The shape of interface shows insignificant difference with the alterations in 

surface wettability for the cases when advancing fluids are non-Newtonian (both shear-thinning 

and shear-thickening). 

 

 (a) (b) 

(c) (d) 
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 However, a precise look at Figs. 5(a) and (c) clearly unveils  that the interface mildly 

bends towards the receding fluid for the case of 045sθ = , while the interface severely bends in 

the direction of receding fluid for 0135sθ = , which essentially underlines the influence of surface 

tension force on the interface bending phenomena. We also note from the present figures that the 

location of contact line may change appreciably with the alteration in flow configuration (see 

inset of Fig. 5) while keeping the other relevant parameters unaltered.  On the contrary, when the 

receding fluid is shear-thickening ( 1.2n = ), the velocity gradient at the three phase contact line 

for all the cases of sθ  is relatively less (see Figs. 6a,b). The relatively lesser magnitude of normal 

velocity gradient produces small amount of slip velocity at the contact line. The small slip 

velocity for this particular flow configuration makes an obligatory situation for the interface to 

show a tendency of pinning at the contact line, which eventually results in a higher bending as 

one can foresee from Figs. 5(b) and (d). We further confirm from Fig. 7 that for a given surface 

wettability, the magnitude of velocity gradient normal to the wall ( nu ) remains almost invariant 

for the case when advancing fluid is non-Newtonian (both the shear-thickening and shear-

thinning). 

 
 

 

 
FIG. 6. (Color online) Velocity gradient normal to the channel wall for the case when advancing fluid is 

Newtonian for two different surface wetting conditions: 
045sθ = and

0135  respectively. The velocity 

gradient shown above corresponding to flow time 15t = . For a given static contact angle ( sθ ), a 

(a) (b) 
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significant difference in normal velocity gradient ( nu ) is observed for all the case when receding fluid is 

shear-thinning fluid ( N P  curve; 0.8n = ). 

 

 

FIG. 7. (Color online) Velocity gradient normal to channel wall for the cases when advancing fluids are 

shear-thickening and shear-thinning for two different static contact angles: 
045sθ = and

0135  

respectively. The velocity gradient shown above corresponding to 15t = . For a given sθ , no significant 

difference in the normal velocity gradient ( nu ) is observed with the alterations in the rheological 

combinations. 

 

 In order to obtain deeper insights on the interface bending phenomenon, in Figs. 8(a)-(b), 

we show the slope of the interface vs. y  for different flow configurations. Note that all the 

curves depicting the slope of the interface are obtained at 15t = .  A closer scrutiny of Fig. 8 

clearly reveals that the slope of the interface increases within the EDL, which is as expected. One 

can anticipate from Figs. 8(a) & (b) that, for both the cases of sθ  ( 090  and 0135 ), the curvature 

of the interface is more when shear-thickening fluid ( N P  curve; 1.2n = ) is the receding fluid, 

whereas the interface curvature is less when receding fluid is shear-thinning ( N P  curve; 

0.8n = ). The above discussion implicates that the interface will bend strongly towards the 

displaced phase fluid when Newtonian fluid is displacing the shear-thickening fluid, disregarding 

the effects of surface wettability and this observation is nicely confirmed on the variation of 

interface shape as depicted in Fig. 5.  
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 We would like to discuss an important point here that, during the evolution of the 

interface, the contact angle usually shows an hysteretic behavior, which primarily arises due to 

the mismatch between the advancing contact angle in dynamic condition and the static contact 

angle imposed over the surface. However, we do not observe any such hysteretic behavior of the 

contact line in the present study as envisaged from Figs. 8(a)-(b).  The physical explanations 

behind the absence of contact angle hysteresis are as follows: The boundary condition, which 

takes the effect of surface wettability into the model used in the present study, allows the 

interface profile to follow the contact angle specified even during dynamic condition and hence, 

does not tolerate the hysteretic behavior.  

 

 

FIG. 8. (Color online) Interface slope for the cases when advancing fluid is Newtonian and receding fluids 

are non-Newtonian (both shear-thinning and shear-thickening) obtained at flow time 15t =  for different 

surface wetting conditions: (a) 
090sθ =  and (b) 

0135sθ = . The angle θ  represents the angle made by the 

line tangent to the interface with the solid substrate as shown in Fig. 1. The curvature of the interface is 

more when shear-thickening fluid ( 1.2n = ) is the receding fluid, and less when receding fluid is shear-

thinning ( 0.8n = ). 

 

We have, so far, shown that the alteration in flow configurations clearly alter the contact line 

motion over interfacial scales due to drastic change in the viscous drag as modulated by the 

electrical forcing and surface wettability. We have quantified the net force acting across the 

contact line due to intricate interplay of different forces as well.  In order to bring out the unique 

effect of electrical forcing on the rheology driven interfacial dynamics, we next attempt to 

(a) (b) 
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compare the variation of the contact line velocity and the evolution of the interface in the 

capillary considering an applied pressure gradient that gives rise to the same average velocity as 

that of the driving electric field considered here, while keeping the flow configuration and other 

common parameters unaltered. In doing so, we probe into the variation of the contact line 

velocity and interfacial dynamics considering 0135sθ = , when the receding fluids are shear-

thinning ( )N P; 0.8n =  and shear-thickening ( )N P; 1.2n =  respectively.  

 

 

FIG. 9. (Color online) (a) Time sequence plot of interface position for the cases when receding fluids are 

non-Newtonian ( )N P; 0.8 and 1.2n =  corresponding to flow time 15t = , (b) Slope of the interface of 

binary fluids for a case when receding fluid is shear-thickening ( )N P; 1.2n = . Both the figures 

correspond to 
0135sθ = . Slope of the interface in the electric field driven flows is higher in the region 

very close to the wall (i.e., within EDL) as compared to pressure driven flows albeit all other conditions 

remain unchanged. Interface in electrically driven flows mildly bends toward the receding fluid. 

 

 Figure 9 shows the variation of interface shape and slope of the interface for both 

electrically and pressure driven flow environments. In plotting Fig. 9, we consider that non-

Newtonian fluids (both shear-thinning and shear-thickening) are getting displaced by the 

Newtonian fluid ( )N P; 0.8 and1.2n =  for the case of 0135sθ = . It is important to mention here 

that all the interface contours shown in Fig. 9(a) correspond to flow time 15t = . Note that, for a 

given set of simulation parameters viz., the property ratios and the static contact angle, the 

(a) (b) 
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interface in a pressure driven flow severely bends toward the receding fluid as compared to that 

of the electrically driven flows, which is primarily attributed to the nature of forcing acting over 

the interface.  

 

Fig. 10. Variation of the forces acting along the direction transverse to the channel. 

In order to understand the distinctive natures of forcing in the two cases, we compute the forces 

driving transport in the two cases. The surface tension force behaves similarly in both the cases. 

The body force due to pressure gradient, driving unit average velocity through the channel is 

Pres 1

212
av

effu
S Hµ

=
= . Using Debye-Huckel linearization, the electrical body force, which leads 

to unit average velocity takes the form 
( ) ( )

( )( )
( )( )

( )

2 1

E ect 1l

cosh tanh
1

cosh

2

22avu

eff H

H
S

y

H

µ λ λ λ

λλ=

−
 

= − 
  

. In 

Fig. 10, we show the variation of the two body forces ( )Elect Pres,S S  along the direction transverse 

to the channel.  It is important to note that in electrically driven flows, the driving force is mainly 

confined over a small region  very close to the wall, i.e., inside the EDL (which scales with λ ) 

which is in sharp contrast to the pressure driven flow configuration where the driving force is 

acting over the complete lateral extent. As a result, the contact line moves at a faster pace in 

electrically driven flow as compared to the pressure driven configuration. On the other hand, in 

the pressure driven configuration, the interface along the centerline of the channel moves at a 
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faster rate as compared to the electrically actuated capillary transport, for the same average flow 

velocity. These two features can be seen clearly from the interface profiles shown in Fig. 9(a). As 

a result of the abovementioned effects, the point of inflection appearing in the interface profile is 

pushed towards the EDL in electrically actuated transport configuration which is clear from Fig. 

9(b), where we show the slope of the interface separating the binary fluids. From Fig. 9(b) it is 

easily perceptible that the deformation of the interface within the EDL is large as compared to the 

pressure driven transport scenario.  

C. Filling Dynamics: Length of the advancing fluid 

 We have highlighted the rheological effects of the fluid as modulated by the electrical 

forcing and the wetting characteristics of the solid substrate on the interface bending phenomena 

in the preceding section. The primary objective of obtaining the interfacial shape of the binary 

fluid system was to predict the flow displacement in the capillary, which, in turn, dictates the 

length of the advancing liquid column in the capillary. Here we focus on the effects of the fluid 

rheology and surface wettability on the filling dynamics. In particular, we show, in Fig. 11, the 

variation of the length of the advancing liquid column in the capillary for different flow 

configurations. It is noteworthy to observe from Fig. 11 that, for both the values sθ  considered in 

the present analysis, the time taken by the advancing fluid (Newtonian) to fill a certain length of 

the capillary increases when receding fluid is shear-thinning ( N P  curve; 0.8n = ), while for the 

cases when shear-thickening fluid is the receding fluid ( N P  curve; 1.2n = ), the required time 

decreases. Moreover, one can see that for the range of surface wettabilities considered, the filling 

time for the cases when advancing fluids are non-Newtonian (either shear-thinning or shear-

thickening fluid) are comparable with the cases when both the receding and advancing fluids are 

Newtonian. 

Figures 4 and 5 indicate that the alteration in fluid rheology and its interaction with the 

electrokinetic effect strongly affects the interface bending phenomena of two-fluid system 

following the net force acting across the contact line. Therefore, it is quite reasonable to expect 

that the time required by the advancing fluid to move a certain length along the capillary will 

indeed depend on the evolution of the interface of two-fluid system, which will, in turn, severely 
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depend on the particular combinations on hand, as confirmed in Fig. 11.  Notably, the negligible 

differences in the variation of interfacial shape for the cases when both the non-Newtonian 

(shear-thinning and shear-thickening) as well as Newtonian fluids displacing another Newtonian 

fluid ( P N  and N N  curve)  as seen in Fig. 5  are in clear support of the filling times depicted in 

Fig. 11.  

 

 

 

FIG. 11. (Color online) Variation of the length of the advancing liquid column in the capillary for 

different cases. For both the cases of surface wettability, the time ( t ) taken by the advancing fluid 

to reach a certain length of the capillary becomes more when advancing and receding fluids are 

(a) (b) 

(c) (d) 
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Newtonian and shear-thinning ( 0.8n = ) respectively, while the same decreases when advancing 

and receding fluids are shear-thickening ( 1.2n = ) and Newtonian respectively. 

IV. CONCLUSIONS 

 In the present study, we have investigated the rheology modulated contact line dynamics 

of a binary fluid system acted upon by an externally applied electric field in presence of EDL 

phenomena. The study reveals that the rheological effects of the fluids, in conjunction with 

electrical forcing and substrate wettability, play a crucial role on the interfacial electro-chemical-

hydrodynamics, which, in turn, alters the interface shape and the length of the advancing liquid 

column into the capillary. For 045sθ = , perceptible difference in the contact line velocity is seen 

with the alterations in the flow behavior index for the cases when receding fluids are power-law 

fluids. On the other hand, for the cases with advancing fluids as power-law fluids, the variations 

in the contact line velocity are not significant with the alterations in the flow behavior index. 

Furthermore, the contact line velocity for 0135sθ =  becomes higher when receding fluid is shear-

thinning and lower when it is a shear-thickening fluid, primarily attributable to the intricate 

variations in the viscous drag acting over the three-phase contact line. Thus, it can be inferred 

that the combination of rheology and wettability can be judiciously used for controlling 

electrokinetically driven contact line motion of binary fluid systems We believe that the present 

study may enhance the understanding of filling dynamics from a fundamental perspective of 

contact line motion which may bear far reaching consequences in potential application in lab-on-

a-chip based microfluidic devices, which are commonly used for the transportation of non- 

Newtonian biofluids such as blood. 
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