MedChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/medchemcomm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

N-Arylalkylbenzo[*d*]thiazole-2-carboxamides as anti-mycobacterial agents: Design, new methods of synthesis and biological evaluation

Parth Shah,^a Tejas M. Dhameliya,^a Rohit Bansal,^a Manesh Nautiyal,^a Damodara N. Kommi,^a Pradeep S. Jadhavar,^a Jonnalagadda Padma Sridevi,^b Perumal Yogeeswari,^b Dharmarajan Sriram,^b and Asit K. ⁵ Chakraborti^{a,*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Abstract: Benzothiazole-2-carboxyarylalkylamides are 10 reported as new class of potent anti-mycobacterial agents. Forty one target compounds have been synthesized following a green synthetic strategy using water as the reaction medium to construct the benzothiazole scaffold followed by (i) microwave-assisted catalyst-free, and (ii) ammonium

- ¹⁵ chloride-catalysed solvent-free amide coupling. The antimycobacterial potency of the compounds was determined against H₃₇Rv strain. Twelve compounds exhibited promising anti-TB activity in the range of 0.78-6.25 μg/mL and were found to be non-toxic (< 50% inhibition at 50 μg/mL) to HEK
- ²⁰ 293T cell lines with the therapeutic index (TI) of 8-64. The most promising anti-TB compound 5bf showed MIC 0.78 μ g/mL (TI > 64). The molecular docking studies of 5bf predicts it to be a ligand for the *M. tuberculosis* HisG, the putative drug target for tuberculosis, and could serve as

25 guiding principle for lead optimization.

Introduction

The human tuberculosis (TB), caused by infection with *Mycobacterium tuberculosis* (Mtb),¹ is world's most debilitating ³⁰ disease accounting for the death of 1.3 million people in 2012 and 8.6 million new cases.² The majority of Mtb infected people contain the pathogen as asymptomatic latent TB infection (LTBI) and about 2 billion people with LTBI are in the risk zone of disease re-activation.^{1,3} The options for treating TB is limited to the following thermore the range of the following thermostry of the following thermosterian and the following the following thermosterian and the following the following the following thermosterian and thermosterian and

- ³⁵ the following therapeutic regimen:⁴ (i) first –line drugs isoniazid (INH), rifampicin (R), pyrazinamide (Z), ethambutol (E), and rifapentine (P) or rifabutin (Rfb) (Group 1), (ii) second-line drugs aminoglycosides streptomycin (S), kanamycin (Km), amikacin (Amk), the polypeptides capreomycin (Cm), viomycin (Vim)
- ⁴⁰ (Group 2), the fluoroquinolones (e.g., ciprofloxacin (Cfx), levofloxacin (Lfx), moxifloxacin (Mfx), ofloxacin (Ofx), gatifloxacin (Gfx) (Group 3), and para-amino salicylic acid (Pas), cycloserine (Dcs), teridizone (Trd), ethionamide (Eto), prothionamide (Pto), thioacetazone (Thz), and linezolid (Lzd)
- ⁴⁵ (Group 4), and (iii) third-line drugs clofazimine (Cfz), amoxicillin plus clavulanate (Amx/Clv), imipenem plus cilastatin

(lpm/Cln), clarithromycin (Clr) (Group 5). The rise of drug resistance Mtb strains is a severe obstacle for the treatment against TB with about 440,000 cases of multidrug-resistant TB ⁵⁰ (MDR-TB) (resistance to at least R and INH)⁵ responsible for most of deaths for TB, extensively drug-resistance TB (XDR-TB) (MDR-TB plus resistance to a fluoroquinolone and at least one second line injectable agent i.e. Amk, Km and/or Cm) reported in 84 countries⁶ and the recent reports on totally drug-resistant TB 55 (TDR-TB) that are resistant to all first- and second-line TB drugs.⁷ Treatment of drug sensitive TB requires 6 months with first-line therapy involving 2 months of four drugs (INH, R, Z, and E) followed by 4 months of INH plus R through directly observed treatment short course strategy (DOTS) with a cure rate $_{60}$ of > 95%. The treatment of drug-resistant TB requires 18-24 months or longer, involving the use of the second-line drugs which are more toxic and expensive. The dual pandemics of TB and human immunodeficiency virus-1 (HIV) compound the problem causing morbidity and mortality.8 The major challenges 65 associated with the available therapy are: drug intolerance and toxicities, drug-drug interaction particularly with the antiretroviral therapy (ART) drugs to treat patients co-infected with TB and HIV.^{2,8,9} All these press the need to develop novel, more effective and well tolerated drugs to curb the TB pandemic.^{10,11}

Figure 1. Various benzothiazole scaffolds with anti-tuberculosis activity.¹²⁻¹⁹

The benzothiazole scaffold has been recognized as an essential

pharmacophoric feature for anti-tuberculosis activity.¹²⁻¹⁹ However, the design of the target compounds in these reports is focused on the C-2 heteroatom (predominantly nitrogen) substitution of the benzothiazole moiety (Motifs A, C, D, F-H; Figure 1). The finding on the Mth growth inhibitory potential of

- ⁵ Figure 1). The finding on the Mtb growth inhibitory potential of 2-methylbenzothiazoles (Motif E; Figure 1) is the lone example of C-2 carbo substitution which however focused on functional building through the benzenoid nucleus.¹⁶ Most of these cases the nitro aryl containing fragments is a predominant structural feature
- ¹⁰ (Motifs B-D, G and H). The nitro aromatic group is involved in DNA adduct formation, methaemoglobinemia and are potentially mutagenic.²⁰

Results and Discussion

In the present study we adopted scaffold hopping strategy²¹ and ¹⁵ designed the C-2 carboxamide (reverse amide)²² substituted benzothiazole scaffold (Figure 2).

Figure 2. New benzothiazole scaffold with C-2 reverse amide ²⁰ substitution (present work).

The design for the new scaffold (*N*-arylalkylbenzo[*d*]thiazole-2carboxamides) is devoid of the nitroaryl moiety thus would be free from nitroaryl-derived toxicity and gains boost from the recent pharmaceutical use of benzothiazoles for treating the ²⁵ proliferation of the HIV virus, treating AIDS or delaying the onset of AIDS or ARC symptoms²³ as it would augment the anti-

tubercular potency of the newly designed 2-carboxamido benzothiazoles in view of the Mtb-HIV co-infection.

Chemistry

- ³⁰ The synthetic design of the target compounds is depicted in Scheme 1. The key intermediate ethyl benzothiazole-2carboxylate **2a** can be prepared by the reaction of 2aminothiophenol **1a** with (i) ethyl carboethoxyformidate in refluxing ethanol²⁴ and (ii) ethyl triethoxyacetate at 130°C for 18
- ³⁵ h.²⁵ The lack of commercial availability of the coupling agents (ethyl carboethoxyformidate and ethyl triethoxyacetate) necessitates a more convenient method of preparation. The acidcatalyzed condensation of **1a** with commercially available diethyl oxalate in 1:2 molar ratio followed by thermal decomposition of
- ⁴⁰ the intermediate at 225°C under nitrogen forms **2a** in moderate yield.²⁶ Earlier we reported that benzothiazoles are conveniently synthesized by condensation of **1a** with aldehydes in water under heating²⁷ or even at rt in the presence of catalytic amount of SDOSS²⁸ that constitute a green protocol. The treatment of **1a**

⁴⁵ with ethyl glyoxalate in water in the presence of SDOSS (10 mol%) afforded 2a in 83% yield after 5 h (route a, Scheme 1). Hydrolysis of 2a with LiOH·H₂O in aqueous THF at 10°C for 30 min afforded 3a in 97% yield (route b, Scheme 1).

Scheme 1. Synthetic strategies for the synthesis of *N*-arylmethylbenzo[*d*]thiazole-2-carboxamides.

In order to avoid the two-step synthesis for **3a** a direct one pot ⁵⁵ preparation from oxalic acid was planned. Benzazoles can be prepared in one-pot directly from carboxylic acids through in situ carboxyl activation by thionyl chloride^{29,30} but the microwaveassisted direct condensation^{31,32} with carboxylic acids appears to be more appealing in the context of green synthesis. However, the ⁶⁰ treatment of **1a** with oxalic acid (1.4 equiv, route c) under microwave irradiation afforded **3a** in moderate yield (60%). Therefore, the two stage process of water-SDOSS mediated condensation of ethyl glyoxalate with **1a** followed by hydrolysis (routes a and b) was preferred and **3a** was obtained in 80.5% ⁶⁵ yield. The desired amides **5aa-az** were formed by DCC-assisted coupling of **3a** with various substituted arylalkyl amines **4a-z** (Scheme 2).

70 Scheme 2. Synthesis of 5aa-az via DCC-assisted coupling of 3a with the amines 4a-z (Method A).

Reagents and condition: (i) $\text{LiOH} \cdot \text{H}_2\text{O}$ (1 equiv), Water (2 mL), THF, 10°C, 30 min, 97%. (ii) Oxalic acid (1.4 equiv), neat, 100°C, 4 h, 60%. (iii) DCC (1.2 equiv), DCM, Et₃N (4 equiv), rt, 12 h.

⁷⁵ Although the DCC-assisted amide formation (Scheme 2) afforded the synthetic targets, in view of the longer reaction time and the generation of waste it was planned to develop a better methodology to comply with the timely compound supply³³ for biological evaluation and enrich the medicinal chemists' tool
⁸⁰ box.³⁴ Microwave-assisted activation would enable the condensation of **2a** with an amine.³⁵ The reported microwave-assisted amide formation requires stoichiometric amount of KOBu^t.³⁶ Herein we describe a base-free protocol by the treatment of **2a** with the amines **4a-z** in MeCN at 100°C under
⁸⁵ microwave irradiation (Scheme 3) to afford the desired amides **5aa-az** in 51-97% yields in 15 min (Table 1) (Method B).

Scheme 3. Microwave-assisted synthesis of **5aa-az** by direct condensation of the amines **4a-z** with **2a** (Method B).

Table 1. Synthesis of the *N*-arylalkyl benzo[d]thiazole-2-carboxamides s **5aa-az** by the newly developed methods A^a and B^b (Schemes 2 and 3, respectively).

respectiv	/ely).			
Entry	Amine	Compd	Yield	(%) ^c
-		No.	Method A	Method B
1	E NH2	5aa	78	85
2	NH ₂	5ab	66	83
3	FNH2	5ac	55	87
4	F F	5ad	70	87
5	F F	5ae	54	95
6	F NH2	5af	60	96
7		5ag	58	97
8	NH ₂	5ah	68	68
9	CINH2	5ai	71	85
10		5aj	73	84
11		5ak	49	63
12	NH ₂	5al	65	75
13	Me NH ₂	5am	51	79
14		5an	75	85
15	MaQ NH2	5ao	76	80
16	MeO OMe	5ap	48	64
17	MeO NH ₂	5aq	51	74
18	MeO NH ₂	5ar	58	58
19		5as	58	60
20	F ₃ C	5at	61	64
21		5au	55	64
22		5av	51	51
23		5aw	55	55

55

65

^a **3a** was treated with the amine (1.3 equiv) in the presence of DCC (1.2 equiv) and Et₃N (4 equiv) in DCM at rt for 12 h. ^b **2a** was treated with the amine (1.2 equiv) in MeCN (except for entries 24-26) under microwave irradiation (100 °C) for 15 min. ^c Isolated yield. ^d MeOH was used as the s solvent instead of MeCN.

All of synthesized twenty benzo[d]thiazole-2the six carboxamide 5aa-az were subjected to in vitro anti-TB activity against M.tuberculosis H37Rv strain).37 27294 (ATCC The minimum inhibitory concentration (MIC), the minimum 10 concentration in µg/mL of the compound required for 99% inhibition of bacterial growth, of 5aa-az and those of the standard drugs (INH, R, E, Z and Cfx) determined in triplicate at pH 7.4, are provided in Table 2. All of these synthesized compounds showed MIC values in micromolar range (3.125-50 µg/mL). Out

¹⁵ of these, seven compounds (5aa, 5ac, 5ad, 5af, 5ah, 5aw and 5ax) exhibited MIC in the range of 3.125–6.25 µg/mL with 5aa and 5ax being the most active (MIC 3.125 µg/mL) in the series and was found to be more potent than the standard drug Z (MIC 6.25 µg/mL).³⁸

²⁰ **Table 2.** Antimycobaterial activity of **5aa-az**, and a few standard anti-TB drugs.

Compound	$MIC^{a}\left(\mu g/mL\right)^{a}$	Compound	$MIC^{a}\left(\mu g/mL\right)$
5aa	3.125	5aq	50
5ab	25	5ar	25
5ac	6.25	5as	50
5ad	6.25	5at	12.5
5ae	25	5au	12.5
5af	6.25	5av	12.5
5ag	25	5aw	6.25
5ah	6.25	5ax	3.125
5ai	50	5ay	25
5aj	50	5az	25
5ak	50	INH	0.098
5al	12.5	R	0.197
5am	50	Е	1.56
5an	25	Z	6.25
5 ao	50	Cfx	1.56
5ap	12.5		

 $^{\rm a}$ 99% inhibition of growth of *M.tuberculosis* H_{37}Rv (ATCC 27294 strain).

While establishing the structure activity relationship (SAR) of the ²⁵ amides **5aa-az** with respect to their anti-TB activity it was realized that the unsubstituted amides **5aa** and **5ax** are more potent compared to their substituted analogues and this leaves little scope for further optimization of the lead. To further improve the anti-TB activity it became apparent to increase the

- ³⁰ diversity through structural modification in the benzenoid moiety of the benzothiazole scaffold. Thus, we explored the potential of the *N*-arylalkylbenzo[*d*]thiazole-2-carboxamides having Cl and CF₃ group in the benzenoid nucleous of the benzothiazole ring.
- The desired starting materials chloro/trifluoromethyl substituted ³⁵ 2-carboethoxybenzothiazoles **2b** and **2c** were prepared following the similar green protocol of SDOSS-water promoted cyclocondensation of ethyl glyoxalate with **1b** and **1c** respectively, as mentioned above for the synthesis of **2a** (route a, Scheme 1)

$$R \xrightarrow{SH} H \xrightarrow{O} H \xrightarrow{OEt} SDOSS (10 \text{ mol}\%) \xrightarrow{SDOSS (10 \text{ mol}\%)} R \xrightarrow{SDOSS (10 \text{ mol}\%)} R \xrightarrow{OEt} N \xrightarrow{OEt} SDOSS (10 \text{ mol}\%) \xrightarrow{OE} SDOSS$$

Scheme 4. Synthesis of the chloro/trifluoromethyl substituted 2-carboethoxybenzothiazoles 2b and 2c, respectively.

During the preparation of the 5Cl/CF₃ substituted *N*arylalkylbenzo[*d*]thiazole-2-carboxamides we revisited the earlier ⁴⁵ method of microwave-assisted amide formation (Method B, table 1) and realized the dependence on the use of organic solvents (MeCN/MeOH). In an attempt to avoid the use of volatile organic solvent, to comply with the green chemistry principle,³⁹ a new synthetic protocol (Method C) for the preparation of the desired ⁵⁰ chloro/trifluoromethyl substituted *N*-arylmethyl benzo[*d*]thiazole-2-carboxamides was developed under solvent-free condition in the presence of catalytic amount (20 mol%) of NH₄Cl at 100 °C (Scheme 5).

Scheme 5. Synthesis of the chloro/trifluoromethyl substituted *N*-arylmethyl benzo[*d*]thiazole-2-carboxamides by NH₄Cl-catalysed direct condensation of 2b and 2c with the corresponding amines under solvent-free condition (Method C).

⁶⁰ This method was found to be more advantageous compared to Method A and Method B. The product was isolated by diluting the reaction mixture with cold water followed by filtration of the solid precipitate to furnish the final product that did not require any further purification (Table 3).

	Amine	R	Compd no.	Yield (%)
1	NH ₂	Cl	5ba	79
2	F F	Cl	5bd	75
3	F	Cl	5bf	52
4	NH ₂	Cl	5bh	62
5	CINH2	Cl	5bi	59
6	CI NH2	Cl	5bj	56
7	OMe NH ₂	Cl	5bo	63
8	MeO NH ₂ MeO	Cl	5bp	63
9	O NH ₂	Cl	5bw	65
10	H ₂ N	Cl	5by	73
11	MeO OMe	Cl	5bz	86
12	NH ₂	CF ₃	5ca	83
13	F NH2	CF ₃	5cd	78
14	H ₂ N NH ₂	CF ₃	5cy	54
15	MeO Me	CF ₃	5cz	70

5 ^a 2b/2c was treated with the amine (1.0 equiv) in the presence of NH₄Cl (20 mol%) under neat condition at100 °C for 1-2 h. ^b Isolated yield.

These newly synthesized fifteen compounds (Table 3) were subjected to in vitro biological evaluation and were found to have significant improvement in their anti-TB activity with MIC ranges of 3.125-50 µg/mL (Table 4) compared to the MIC ranges of 3.125-50 µg/mL for the 2-carboxamido benzothiazoles without any substitution in the benzene ring of the benzothiazole scaffold (Table 2). Among the eleven chloro substituted derivatives, five compounds showed improved potency (0.78-15 6.25 µg/mL). The most active compound **5bf** (MIC 0.78 µg/mL) turned out to be eight fold more potent than its unsubstituted

This journal is © The Royal Society of Chemistry [year]

counterpart **5af**. However, the CF_3 substituted derivatives (**5ca**, **5cd**, **5cy** and **5cz**) did not show any improvement in anti-TB potency.

²⁰ **Table 4.** Antimycobaterial activity of the additional *N*-arylmethyl benzo[*d*]thiazole-2-carboxamides with chloro/trifluoromethyl substitution in the benzene ring of the benzothiazole scaffold.

Compound	MIC^{a} (µg/mL)	Compound	$MIC^{a}\left(\mu g/mL\right)$
5ba	6.25	5bw	25
5bd	25	5by	1.56
5bf	0.78	5bz	12.5
5bh	12.5	5ca	6.25
5bi	25	5cd	12.5
5bj	25	5cy	50
5bo	12.5	5cz	25
5bp	6.25		

^a 99% inhibition of growth of *M.tuberculosis* H₃₇Rv (ATCC 27294 strain.

The in vitro cell viability of the compounds with MIC ≤ 12.5 µg/mL was evaluated against HEK-293T (Human Embryonic Kidney) cell lines at 50 µg/mL concentration by using [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)] MTT assay. The % inhibitory cytotoxicity data are summarized in Table 5 and graphically represented in Figure 3 along with the ³⁰ MIC values of the respective compounds. In general, all of these eleven compounds were found to be non-toxic (< 50% inhibition) and **5bf** the most active compound has therapeutic index greater than 64. The compound **5bf** emerged as the most promising anti-TB lead compound from this series.

Table 5. In vito cen viability of compounds with vite $\ge 12.5 \mu$			
Compound	HEK 293T	Mtb	
	% Inhibition ^a	MIC (µg/ mL) $^{\rm b}$	
5aa	41.21	3.125	
5ac	44.56	6.25	
5ad	50.34	6.25	
5af	52.12	6.25	
5ah	35.62	6.25	
5al	42.6	12.5	
5ap	19.12	12.5	
5at	36.70	12.5	
5au	36.00	12.5	
5av	38.12	12.5	
5aw	16.12	6.25	
5ax	21.98	3.125	
5ba	40.12	6.25	
5bf	32.16	0.78	
5bh	35.97	12.5	
5bo	38.92	12.5	
5bz	30.95	12.5	
5bp	36.13	6.25	
5by	25.9	1.56	

 $_{35}$ Table 5. In vitro cell viability of compounds with MIC $\leq 12.5~\mu\text{g/mL}.$

	ted Manuscript
	nications Accept
$c \qquad \qquad$	stry Commur
Figure 4. (a) Docking pose of 5bf with HisG PDB:1NH8 as determined using Autodock Vina 4.2. Structure is represented using Pymol. (b) Ligand-protein surface docking pose (c) Docked structures of two reported HisG inhibitors. ¹⁵	iemi
The literature report ¹⁵ reveals that the nitrobenzothiazole fragment is the essential feature for inhibitory potential against HisG. A careful analysis of this benzothiazole scaffold (Figure 5) lead to derive a topological model (common pharmacophoric feature) that includes the presence of aryl groups at either end of the molecule and a hydrophobic aryl group in the middle. This topology mimics the natural ligand phosphoribosyl ATP (PRATP) of HisG. In the newly found 5bf the benzothiazole moiety represents the adenosine ring system of ATP and the benzylamine moiety resembles the ribose ring of PRATP. suggesting HisG as putative target in Mtb for the compound 5bf .	ledicinal Ch

5bz	30.94	12.5
5ca	40.08	6.25
5cd	38.74	12.5

^a % inhibition at 50 µg/mL concentration determined against HEK 293T cells lines. ^b Against Mycobacterium tuberculosis H₃₇Rv strain.

Figure 3. Graphical representation of the antitubercular activity and 5 cytotoxicity profile of the compounds with MIC \leq 12.5 µg/mL in comparison with the standard drugs.

A complete SAR can be drawn taking into account the MIC values (Tables 2 and 4) and the cytotoxicity data of the selected compounds (Table 5). The presence of the chloro group in the

- 10 benzene ring of the benzothiazole scaffold increases the potency. Better anti-TB activity is exhibited by the benzylamides than the corresponding phenethyl amides (5ap vs 5az and 5bp vs 5bz). The detrimental effect of the increase in the amide chain length on the anti-TB activity was also observed for compounds that did
- 15 not have the chloro substitution in the benzene ring of the benzothiazole scaffold.

The antimycobacterial activity of C-2 N-carboxamide substituted benzothiazoles have been demonstrated due to their interaction with ATP phosphoribosyl transferase (HisG) that catalyzes the

- 20 first step in the biosynthesis of histidine,¹⁵ the putative drug target. As the designed molecules resemble the reverse amide scaffold we planned to correlate/rationalise the biological activity of the best active compound (5bf) on its binding affinity with HisG through molecular docking (PDB structure 1NH8).
- 25 To obtain an in-depth understanding on the interaction of 5bf on to the HisG active site, we docked compound 5bf utilizing PDB 1NH8, centered about Tyr116. An automated docking analysis of all compounds was performed into the crystallographic structure of HisG, using AutoDock Vina 4.2.40 These molecules were
- 30 found to fit reasonably well into the catalytic site, with the ligand mainly locating into the ATP binding site. The predicted binding mode for compound 5bf is shown in (Figure 4a). The benzothiazole ring was found to interact with the same hydrophobic pocket next to Leu12, Leu71 and Pro50 as observed
- 35 by Huang et. al.¹⁶ The H-bond interactions is formed between carbonyl oxygen of the amide and the backbone amide of Ala11. Figure 4b shows the favourable lock and key model of the 5bf into the active cavity. Figure 4c shows two previously identified HisG inhibitors in complex with 1NH8 as taken from ref 15.

Thus, this modelling study suggests that the compounds of the 45 benzothiazole-2-carboxamide series might be acting on Mtb HisG.

Figure 5. Comparative analysis of pharmacophoric features between natural ligand of HisG: Phosphoribosyl ATP (PRATP) and literature reported Mtb inhibitors.

Conclusion

- ¹⁰ The present work reveals *N*-arylmethylbenzo[*d*]thiazole-2carboxamide as a new anti-TB scaffold. Forty one compounds in the series have been prepared by three newly developed synthetic methods and evaluated in vitro for their potential as anti-TB drug candidate. Twelve compounds displayed good in vitro 15 antimycobacterial activity, with MIC in low micromolar range against replicating TB and are, in general, non-toxic to HEK 293T cell lines (< 50% inhibition at 50 μ g/mL). The most potent compound **5bf** exhibits MIC of 0.78 μ g/mL (therapeutic index > 60), more than that of the standard drugs E, Z and Cfx. The
- 20 significant increase in anti-TB activity with the 5-Cl substituted benzothiazole derivatives shows further scope for improvement in anti-TB activity. The molecular docking study with 5bf suggests that the anti-TB benzothiazole-2-carboxamides might be acting on Mtb HisG. The docking information may provide
- 25 valuable guiding principle for future design to evolve more potent anti-TB molecules. In fine, this study has provided novel anti-TB lead and can be a useful starting point for further exploration in this area.

Notes and references

- 30 * Corresponding author ^a Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160 062, Punjab, India. Fax: 91-(0)-172 2214692; Tel: 91-(0)-172 2214683;
- 35 E-mail: akchakraborti@niper.ac.in; akchakraborti@rediffmail.com. ^b Department of Pharmacy, Birla Institute of Technology & Science -Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India.

† Electronic Supplementary Information (ESI) available: [Procedure for 40 the synthesis, molecular modelling, spectral characterization and biological evaluation is described]. See DOI: 10.1039/b000000x/

A. Zumla, M. Raviglione, R. Hafner and C. F. von Reyn, New 1 Engl. J. Med., 2013, 368, 745.

- 2 World Health Organization (WHO), Global tuberculosis report 2013,http://www.who.int/tb/publications/global_report/gtbr13 main text.pdf
- R. Diel, R. Loddenkemper, J. P. Zellweger, G. Sotgiu, L. 3. D'Ambrosio, R. Centis, M. J. van der Werf, M. Dara, A. Detjen, P. Gondrie, L. Reichman, F. Blasi and G. B Migliori, Eur. Respir. J., 2013, 42, 785.
- 4 M. Raviglione, B. Marais, K. Floyd, K. Lönnroth, H. Getahun, G. B. Migliori, A. D. Harries, P. Nunn, C. Lienhardt, S. Graham, J. Chakaya, K. Weyer, S. Cole, S. H. Kaufmann and A. Zumla, Lancet, 2012, 379, 1902. 5.
 - D. Falzon et al. Eur. Respir. J., 2011, 38, 516.
- K. R. Jacobson, D. B. Tierney, C. Y. Jeon, C. D. Mitnick and 6. M. B. Murray Clin. Infect. Dis., 2010, 51, 6.
- 7. Z. F. Udwadia, R. A. Amale, K. K. Ajbani and C. Rodrigues, Clin. Infect. Dis., 2012, 54, 579.
- 8. D. J. Pepper, G. A. Meintjes, H. Mcilleron and R. J Wilkinson, Drug. Disc. Today, 2007, 12, 980.
- 9 N. R. Gandhi et al. Lancet, 2006, 368, 1575. 10 S. Janssen, R. Jayachandran, L. Khathi, J. Zinsstag, M. P.
- Grobusch and J. Pieters, Drug Des. Dev. Ther., 2012, 6, 217. 11. A. Zumla, P. Nahid and S. T. Cole, Nat. Rev. Drug Disc.,
- 2013, 12, 388.
- L. Katz, J. Am. Chem. Soc., 1953, 75, 712. 12
- 13 J. Kocí, V. Klimesová, K. Waisser, J. Kaustová, H.-M. Dahse and U. Möllmann, Bioorg. Med. Chem. Lett., 2002, 12, 3275.
- 14. K. P. Bhusari, N. D. Amnerkar, P. B. Khedekar, M. K. Kale and R. P. Bhole, Asian J. Res. Chem., 2008, 1, 53.
- Y. Cho, T. R. Ioerger and J. C. Sacchettini, J. Med. Chem., 15 2008, 51, 5984.
- 16 Q. Huang, J. Mao, B. Wan, Y. Wang, R. Brun, S. G. Franzblau and A. P. Kozikowski, J. Med. Chem., 2009, 52, 6757.
- 17. N. B. Patel, I. H. Khan and S. D. Rajani, Eur. J. Med. Chem., 2010, 45, 4293.
- K. Hazra et al. Arch. Pharm. Chem. Life Sci., 2012, 345, 137. 18
- 19 A. Kamal, R. V. Shetti, P. Swapna, A. Shaik, A. M. Reddy, I. A. Khan, T. A. Sheikh, S. Sharma and N. P. Kalia, US 2012/0095021 A1, 2012.
- 20. V. Purohit and A. K. Basu, Chem. Res. Toxicol., 2000, 13, 673
- 21. a) S. Bhagat, P. Shah, S. K. Garg, S. Mishra, P. K. Kaur, S Singh and A. K. Chakraborti, Med. Chem. Commun., 2014, 5, 665. (b) K. Seth, S. K. Garg, R. Kumar, P. Purohit, V. S. Meena, R. Goyal, U. C. Banerjee and A. K. Chakraborti, ACS Med Chem. Lett. 2014, 5, 512. For review (c) H. Sun, G. Tawa and A. Wallqvist, Drug Discov. Today, 2012, 17, 310.
- 22 Scaffold hopping through the reverse amide staretgy generated more potent COX-2 selective agents [A. S. Kalgutkar, B. C. Crews, S. Saleh, D. Prudhomme and L. J. Marnett, Bioorg. Med. Chem., 2005, 13, 6810].
- 23. M. L Mitchell, P. A. Roethle, L. Xu, H. Yang, R. McFadden, and K. Babaoglu, WO Patent 2012/145728 A1, 2012.
- 24 A. Mckillop, A. Henderson, P. S. Ray, C. Avendano and E. G. Molinero, Tetrahedron Lett., 1982, 23, 3357.
- 25. J. H. Musser, T. T. Hudec and K. Bailey, Synth. Commun., 1984, 14, 947.
- 26 G. Liso, G. Trapani and A. Latrofa, J. Heterocycl. Chem., 1987, 24, 1683.
- 27. A. K. Chakraborti, S. Rudrawar, K. B. Jadhav, G. Kaur and S. V. Chankeshwara, Green Chem., 2007, 9, 1335.
- 28 N. Parikh, D. Kumar, S. R. Roy and A. K. Chakraborti, Chem. Comm., 2011, 47, 1797.
- 29. S. Rudrawar, A. Kondaskar and A. K. Chakraborti, Synthesis, 2005, 2521
- 30 D. Kumar, S. Rudrawar and A. K. Chakraborti, Aust. J. Chem., 2008, 61, 881.
- A. K. Chakraborti, C. Selvam, G. Kaur and S. Bhagat, Synlett, 31 2004 851
- 32 R. Kumar, C. Selvam, G. Kaur and A. K. Chakraborti, Synlett, 2005, 1401
- 33. J. Potoski, Drug Disc. Today, 2005, 10, 115.

70

75

80

100

105

110

Page 8 of 9

- 34. S. D. Roughley and A. M. Jordan, J. Med. Chem., 2011, 54, 3451.
- Microwave-assisted aromatic nucleophilic substitution has been earlier demonstrated from this laboratory [H. F. Motiwala, R. Kumar and A. K Chakraborti, *Aust. J. Chem.*, 2007, 60, 369].
- 36. R. S. Varma and K. P. Naicker, *Tetrahedron Lett.*, 1999, 40, 6177.
- National Committee for Clinical Laboratory Standards. Antimycobacterial susceptibility testing for Mycobacterium tuberculosis, tentative standard M24-T. Wayne, PA: NCCLS, 1995.
- At the time of completion of this work we came across a patent application on the antimycobacterial activity of *N*arylethyl benzothiazole-2-carboxamides [A. Pellet, WO Patent 2012/069743, 2012].
- 39. J. H. Clark, Green Chem., 1999, 1, G1.
- 40. O. Trott and A. S. Olson, J. Comp. Chem., 2010, 31, 455.

20

5

10

15

Graphical Abstract

N-Arylalkylbenzo[*d*]thiazole-2-carboxamides as anti-mycobacterial agents: Design, new methods of synthesis and biological evaluation

Parth Shah,^a Tejas M. Dhameliya,^a Rohit Bansal,^a Manesh Nautiyal,^a Damodara N. Kommi,^a Pradeep S. Jadhavar,^a Jonnalagadda Padma Sridevi,^b Perumal Yogeeswari,^b Dharmarajan Sriram,^b and Asit K. Chakraborti^{a,*}

^a Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160 062, Punjab, India.

^b Department of Pharmacy, Birla Institute of Technology & Science – Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India.

