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ABSTRACT 
With over 800 million pages covering most areas of human 
endeavor, the World-wide Web is a fertile ground for data 
mining research to make a difference to the effectiveness 
of information search. Today, Web surfers access the Web 
through two dominant interfaces: clicking on hyperlinks and 
searching via keyword queries. This process is often tenta- 
tive and unsatisfactory. Better support is needed for ex- 
pressing one's information ,heed and dealing with a search 
result in more structured ways than available now. Data 
mining and machine learning have significant roles to play 
towards this end. 

In this paper we will survey recent advances in learning 
and mining problems related to hypertext in general and the 
Web in particular. We will review the continuum of super- 
vised to semi-supervised to unsupervised learning problems, 
highlight the specific challenges which distinguish data min- 
ing in the hypertext domain from data mining in the context 
of data warehouses, and summarize the key areas of recent 
and ongoing research. 

1 Introduction 
The volume of unstructured text and hypertext data ex- 
ceeds that of structured data. Text and hypertext are used 
for digital libraries, product catalogs, reviews, newsgroups, 
medical reports, customer service reports, and homepages 

• . , ~ , . 

for individuals, orgamzatxons, and projects. Hypertext has 
been widely used long before the popularization of the Web. 
Communities such as the A C M  t Special Interest Groups on 
In format ion  Ret r i eva l  (S IGIR)  2, H y p e r t e x t ,  H y p e r -  
m e d i a  and  W e b  ( S I G L I N K / S I G W E B )  3 and Dig i ta l  
Librar ies  4 have been engaged in research on effective search 
and retrieval from text and hypertext databases. 

The spectacular ascent in the size and popularity of the 
Web has subjected traditional information retrieval (IR) 
techniques to an intense stress-test. The Web exceeds 800 
million HTML pages, or six terabytes of data on about three 
million servers. Almost a million pages are added daily, a 
typical page changes in a few months, and several hundred 
gigabytes change every month. Even the largest search en- 

lhttp://~ncw, acm. org 
2http://www. acm. org/sigir 
3http://www. acm. org/siglink 
4http ://www. acm. org/dl 

gines, such as A l t a  V i s t a  5 and H o t B o t  6 index less than 
18% of the accessible Web as of February 1999 [49], down 
from 35% in late 1997 [6]. 

Apart from sheer size and flux, the Web and its users dif- 
fer significantly from traditional IR. corpora and workloads. 
The Web is populist hypermedia at its best: there is no 
consistent standard or style of authorship dictated centrally; 
content is created autonomously by diverse people. Misrep- 
resentation of content by 'spamming' the page with mean- 
ingless terms is rampant so that keyword indexing search 
engines rank pages highly for many queries. Hyperlinks are 
created for navigation, endorsement, citation, criticism, or 
plain whim. 

Search technology inherited from the world of IR is evolv- 
ing slowly to meet these new challenges. As mentioned be- 
fore, search engines no longer attempt to index the whole 
Web. But apart from this deficiency of scale, search engines 
are also known for poor accuracy: they have both low re- 
call (fraction of relevant documents that are retrieved) and 
low precision (fraction of retrieved documents that are rele- 
vant). The usual problems of text search, such as synonymy, 
polysemy (a word with more than one meaning), and con- 
text sensitivity become especially severe on the Web. More- 
over, a new dimension is added because of extant partial 
structure: whereas IR research deals predominantly with 
documents, the Web offers semistructured data in the form 
of directed graphs where nodes are primitive or compound 
objects and edges are field labels• 

Apart from the IR community, documents and the use of 
natural language (NL) have been studied also by a large 
body of linguists and computational linguists. NL tech- 
niques can now parse relatively well-formed sentences in 
many languages [36, 71, 28, 68], disambiguate polysemous 
words with high accuracy [3, 62, 11], tag words in running 
text with part-of-speech information [3, 32], represent NL 
documents in a canonical machine-usable form [67, 40, 65], 
and perform NL translation [39, 5, 4]. A combination of NL 
and IR techniques have been used for creating hyperlinks 
automatically [9, 2, 35, 46, 12] and expanding brief queries 
with related words for enhanced search. For reasons unclear 
to us, popular Web search engines have been slow to embrace 
these capabilities. Although we see the progression towards 
better semantic understanding as inevitable, NL techniques 
are outside the scope of this survey. 

5ht tp: / /www.al tavis ta .com 
6http://wT,~w.hotbot.com 
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Outline: In this survey we will concentrate on statistical 
techniques for learning structure in various forms from text,  
hypertext  and semistructured data. 

Models: In §2 we describe some of the  models used to rep- 
resent hypertext  and semistructured data. 

S u p e r v i s e d  l e a r n i n g :  In §3 we discuss techniques for su- 
pervised learning or classification. 

U n s u p e r v i s e d  l e a r n i n g :  The  other  end of the spectrum, 
unsupervised learning or clustering is discussed in §4. 

S e m i - s u p e r v l s e d  l e a r n i n g :  Real-life applications fit some- 
where in between fully supervised or unsupervised learn- 
ing, and are discussed in §5. 

Soc i a l  n e t w o r k  ana lys i s :  A key feature which distinguishes 
hypertext  mining from warehouse mining and much of 
IR is the analysis of s t ructural  information in hyper- 
links. This is discussed in §6. 

2 Basic models 
In its full generality, a model  for text  must build machine 
representations of world knowledge, and must  therefore in- 
volve a NL grammar.  Since we restrict our scope to statis- 
tical analyses, we need to find suitable representations for 
text,  hypertext ,  and semistructured data. which will suffice 
for our learning applications. We discuss some such models 
in this section. 

2.1 Models for text 
In the IR  domain, documents  have been traditionally rep- 
resented in the v e c t o r  s p a c e  m o d e l  [63, 29]. Documents  
are tokenized using simple syntactic rules (such as whites- 
pace delimiters in English) and tokens stemmed to canonical 
form (e.g., ' reading'  to ' read, '  'is,' 'was, '  'are '  to 'be') .  Each 
canonical token represents an axis in a Euclidean space. 
Documents  are vectors in this space. In the crude form, 
if a term t occurs n(d, t) t imes in document  d, the t - th  coor- 
dinate of d is simply n(d, t). One may choose to normalize 
the length of the document  to 1, typically in the L1, L2, or 
Loo norms: Ildl[1 = ~tn(d , t ) ,  [[dl[2 = ~/~tn(d, t)2,  and 
Ildll~ = maxt n(d, t). 

These representations do not capture  the fact that  some 
terms (like 'algebra')  are more impor tant  than  others (like 
' the '  and 'is') in determining document  content. If t occurs 
in Nt out of N documents,  Nt /N gives a sense of the rarity, 
hence, importance, of the term. The "inverse document  
frequency" IDF(t)  = 1 + log -~- is used to stretch the axes 
of the vector space differentially. (Many variants of this 
formula exist; our form is merely illustrative.) Thus the t - th  
coordinate of d may be chosen as ~ x IDF(t) ,  popularly Itdlh 
called the ' T F I D F '  ( term frequency t imes inverse document  
frequency) weighted vector space model. 

Alternatively, one may construct  probabilstic models for 
document  generation. Once again, we should start  with the 
disclaimer tha t  these models have no bearing on grammar  
and semantic coherence. The  simplest statistical model  is 
t h e  b i n a r y  model. In this model,  a document  is a set of 
terms, which is a subset of the lexicon (the universe of pos- 
sible terms). Word counts are not  significant. In the  m u l t i -  
n o m i a l  model, one imagines a die with as many faces as 

there are words in the lexicon, each face t having an associ- 
a ted probabili ty 0t of showing up when tossed. To compose 
a document  the author  fixes a total  word count (arbitrar- 
ily or by generat ing it from a distribution), and then tosses 
the  die as many times, each t ime writing down the te rm 
corresponding to the face that  shows up. 

In spite of being extremely crude and not  capturing any 
aspect of language or semantics, these models often perform 
well for their  intended purpose. In spite of minor variations 
all these models regard documents as multisets of terms,  
without  paying at tent ion to ordering between terms. There-  
fore they are collectively called b a g - o f - w o r d s  models. 

2.2 Models  for hypertext 
Hyper text  has hyperlinks in addition to text.  These are 
modeled with varying levels of detail, depending on the ap- 
plication. In the simplest model, hyper text  can be regarded  
as a directed graph (D, L) where D is the set of nodes, doc- 
uments,  or pages, and L is the set of links. Crude models 
may not need to include the text  models at the nodes. More 
refined models will characterize some sort of joint distribu- 
tion between the te rm distribution of a node with those in 
a certain neighborhood. One may also wish to recognize 
tha t  the source document  is in fact a sequence of terms in- 
terspersed with outbound hyperlinks. This may be used to 
establish specific relations between certain links and terms 
(§6). 

On occasion we will regard documents  as being gener- 
ated from topic-specific te rm distributions. For example, 
the t e rm distr ibution of documents  related to 'bicycling' is 
quite different from tha t  of documents  related to 'archae- 
ology.' Unlike journals on archaeology and magazines on 
bicycling, the Web is not  isolated: nodes related to diverse 
topics link to each other. (We have found recreational bicy- 
cling pages to link to pages about first-aid significantly more 
often than  a typical page.) If the application so warrants (as 
in §6.2) one needs to model  such coupling among topics. 

2.3 Models  for semistructured data 
Apart  from hyperlinks, other  structures exist on the Web~ 
bo th  across and within documents. One prominent  kind of 
inter-document  structure are topic directories like the O p e n  
Directory P r o j e c t  7 and Y a h o o !  s. Such services have con- 
structed,  through human effort, a giant taxonomy of topic 
directories. Each directory has a collection of hyperlinks to 
relevant (and often popular or" authori tat ive)  sites related 
to the  specific topic. One may model  t ree-s t ructured hierar- 
chies with an i s - a ( s p e c i f i c - t o p i c ,  g e n e r a l - t o p i c )  rela- 
tion, and an example ( topic ,  u r l )  relation to assign URLs 
to topics. Al though topic taxonomies are a special case of 
semistructured data, it is impor tant  and frequent enough to 
mention separately. 

Semistructured da ta  is a point of convergence [25] for the 
W e b  9 and d a t a b a s e  1° communities: the  former deals with 
documents, the  lat ter  with data. The form of tha t  da ta  is 
evolving from rigidly s t ructured relational tables with num- 
bers and strings to enable the natural  representation of com- 
plex real-world objects like books, papers,  movies, je t  engine 

7h t tp  : / / dmoz .  org  
Shttp://www. yahoo, com 
9ht tp : / /wm~9.  org  
l°http : / /~n~.  acm. org/sigmod 
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components,  and  chip designs without sending the applica- 
tion writer into contortions. Emergent representations for 
semistructured data  (such as X M L  11) are variations on the 
O b j e c t  E x c h a n g e  M o d e l  ( O E M )  12 [54, 33]. In OEM, 
data  is in the form of atomic or compound objects: atomic 
objects may be integers or strings; compound objects refer 
to other objects through labeled edges. HTML is a special 
case of such ' in t ra-document '  structure. 

The above forms of irregular structures natural ly encour- 
age data  mining techniques from the domain of ' s tandard '  
s tructured warehouses to be applied, adapted, and extended 
to discover useful pat terns from semistructured sources as 
well. 

3 Supervised learning 
In supervised learning, also called classification, the learner 
first receives t raining data  in which each item is marked with 
a label or class from a discrete finite set. The algorithm is 
trained using this data, after which it is given unlabeled data  
and has to guess the label. 

Classification has numerous applications in the hyper- 
text and semistructured data  domains. Surfers use topic 
directories because they help structure and restrict keyword 
searches, making it easy, for example, to ask for documents 
with the word socks which are about  garments, not  the se- 
e u r l t y  proxy protocol 13. (socks AND NOT ne tvo rk  will 
drop garment  sites boasting of a large distr ibution network.) 
Robust hypertext classification is useful for email and news- 
group management  and maint ining Web directories. 

As another example, a campus search engine that  can cat- 
egorize faculty, s tudent  and project pages can answer queries 
that  select on these at t r ibutes in addition to keywords (find 
faculty interested in cycling). Furthermore, learning rela- 
tions between these types of pages (advised-by, investigator- 
of) can enable powerful searches such as "find faculty su- 
pervising more than  the departmental  average of Masters 
students." 

3.1 Probabilistie models  for text learning 
Suppose there are m classes or topics c l , . . .  , cm, with some 
training documents Dc associated with each class c. The 
prior probability of a class is usually estimated as the frac- 
tion of documents in it, i.e., IDol/~o IDol. Let T be the 
universe of terms, or the vocabulary, in all the t raining doc- 
uments.  

3.1.1 Naive Bayes classification 
The bag-of-words models readily enable naive Bayes classifi- 
cation [13] ( 'naive'  indicates the assumption of independence 
between terms). 

One may assume that  for each class c, there is a binary 
text generator model. The model parameters are ~b~,t which 
indicates the probability that  a document in class c will 
mention term t at least once. With this definition, 

Pr(dlc) = H ¢~,t r I  (1- the , t ) .  (1) 
t6d tET, t~d 

l l h t t p  : / / ~ .  wS. org/XHI.,/ 
12http://m~-db. s t a n f o r d ,  edu/-widem/xml-wh:i. tepaper.  
html 

13hl;tp : / / ~ .  socks.nec, com/ 

Since typically IT[ >> [d[, short documents are discouraged 
by this model. Also, the second product makes strong in- 
dependence assumptions and is likely to greatly distort the 
estimate of Pr(dlc). 

In the mult inomial  model, each class has an associated 
die with T faces. The ¢ parameters are replaced with 0c,t, 
the probability of the face t E T turning up on tossing the 
die (§2.1). The conditional probabili ty of document d being 
generated from a class c is 

Vr(dlc ) _-- ( Ildll 1 ~ l-l'n=(d, t) \{n(d, t ) } ]  x • ' o , ,  ' (:") 
t e d  

where [ IIdlh ~ Ildl[~! is the multinomial coef- ~{n(d,t)}) ~- n(d,tl)!n(d,t2)!'" 
ficient. Note that  short documents  are encouraged, in par- 
ticular, the empty document  is most likely. Not only is 
inter-term correlation ignored, bu t  each occurrence of term 
t results in a multiplicative O~,t 'surprise' factor. The multi- 
nomial model is usually prefered to the binary model be- 
cause the additional term count information usually leads 
to higher accuracy [51, 14]. 

Both models are surprisingly effective given their crude- 
ness; although their estimate of Pr(dlc ) must be terrible, 
their real task is to pick argmaxe Pr(cld), and the poor es- 
t imate  of Pr(dlc) appears to mat ter  less than one would 
expect [31, 26]. 

3.1.2 Parameter smoothing and feature selection 
Many of the terms t E T will occur in only a few classes. 
The maximum likelihood (ML) estimates of 0c,t (defined as 
~deDe n(d, t ) / ~  ~dEDe n(d, ~-)) will be zero for all classes 
c where t does not occur, and  so Pr(cld ) will also be zero 
even if a test document  d contains even one such term. 'Ib 
avoid this in practice, the ML estimate is often replaced by 
the Laplace corrected est imate [47, 61]: 

1 + ~dEDe n(d,t) 
Oc,t = ITI + E ,  EdeD, n(d,v)" (3) 

Since in the binary case there are two outcomes instead of 
T outcomes, the corresponding correction is 

~b~,~ = l + [ { d E D ~ : t E d } [  (4) 
2 + IDol 

Unfortunately the second form often leads to a gross over- 
estimation of Pr(tlc) for sparse classes (small D~). Other 
techniques for parameter  smoothing, which use information 
from related classes (e.g., parent  or sibling in a topic hier- 
archy) are discussed in §3.1.5. 

Many terms in T are quite useless and even potentially 
harmful for classification. 'Stopwords' such as 'a, '  'an, '  ' the, '  
are likely candidates, although one should exercise caution in 
such judgement:  'can '  (verb) is often regarded as a stopword, 
but  'can'  (noun) is hardly a stopword in the context of h t t p :  
//dmoz. org/Science/Environment/Pollut ion_Prevention_ 
and_Recycling/, which may specialize into subtopics re- 
lated to cans, bottles, paper, etc. (and therefore 'can '  might 
be an excellent feature at this level). Thus, stopwords are 
best determined by statistical testing on the corpus at hand 
w.r.t, the current topic context. 

Various techniques can be used to grade terms on their 
"discriminating power" [72]. One option is to use mutual  
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information [19]. Another  option is to use class-preserving 
projections such as the Fisher index [27]. 

Ranking the terms gives some guidance on which to retain 
in T and which to throw out as 'noise.'  One idea commonly 
used is to order the terms best first and retain a prefix. This 
option can be made near-linear in the number of initial fea- 
tures and I / O  efficient [14]. However this static ranking does 
not recognize that  selecting (or discarding) a term may lead 
to a change in the desirability score of another term. More 
sophisticated (and more t ime-consuming) feature selection 
techniques based on finding Markov blankets in Bayesian 
networks [38] have been proposed [44]. 

Experiments suggest tha t  feature selection yields a signif- 
icant improvement for the binary naive Bayes classifier and 
a moderate  improvement  for the multinomial naive Bayes 
classifier [44, 72, 13, 14, 51]. Performing some form of fea- 
ture selection is important ;  the results are not  too sensitive 
to the exact term scoring measures used. 

3.1.3 Limited dependence modeling 

The most general model  of te rm dependence tha t  can be 
used in this context  is a Bayesian network [38] of the fol- 
lowing form: there is a single node tha t  encodes the class 
of the document; edges from this node go to ' feature '  terms 
chosen from T,  these t e rm nodes are arbitrarily connected 
with each other (but there are no directed cycles); and there 
are no other edges in the Bayesian network. Deriving the  
edges among T from training data  is made difficult by the  
enormous dimensionality of the problem space. IT I is usu- 
ally large, in the range of tens of thousands of terms. One 
approach to cut  down the complexity (to slightly worse than  
IT] 2) is to insist tha t  each node in T has at most d ancestors, 
and pick them greedily based on pre-est imated pairwise cor- 
relation between terms [44]. As in simple greedy approaches, 
it is possible to discard a large fraction (say over 2/3) of T 
and yet maintain classification accuracy; in some cases, dis- 
carding noisy features improved accuracy by 5%. However, 
further experimental  analyses on larger text  da ta  sets are 
needed to assess the impact  of modeling term dependence 
on classification. 

3.1.4 Other advanced models 

Two other techniques have emerged in recent research that  
capture term dependence. The  maximum entropy technique 
regards individual te rm occurrence rates as marginal prob- 
abilities that  constrain the  cell probabilities of a gigantic 
contingency table pg~tentiaily involving any subset of terms. 
Operationally there are similarities with Bayesian networks 
in the sense tha t  one has to choose which regions of thiS 
rather large contingency table to est imate for subsequent 
use in classification. In experiments,  improvements in accu- 
racy over naive Bayes have been varied and dependent  on 
specific data  sets [57]. 

Thus far we have been discussing distribution-based clas- 
sifters which characterize class-conditional term distributions 
to est imate likely generators for test  documents. Another  
approach is to use separator-based classifiers that  learn sep- 
arating surfaces between the classes. Decision trees and per- 
ceptrons are examples of separator-based classifiers. Sup- 
port  vector machines (SVMs) [69] have yielded some of the 
best accuracy to date. SVMs seek to find a separator sur- 
face between classes such tha t  a band of maximum possible 

thickness of the region (also called the margin) around the 
separator is empty, i.e., has no training points. This leads 
to bet ter  generalization [59, 42]. 

3.1.5 Hierarchies over class labels 

In the tradit ional warehouse mining domain, class labels 
are drawn from a small discrete set, e.g., "fraudulent credit 
card transaction" vs. "normal transaction." Sometimes a 
mild ordering between the labels is possible, e.g., "low risk," 
"medium risk" and "high risk" patients. Topic directories 
such as Yahoo! provide a more complex scenario: the class 
labels have a large hierarchy defined on them, with the com- 
mon interpretat ion that  if c i s - a  co, all training documents  
belonging to c are also examples of co. (The Yahoo! is a 
directed acyclic graph, not a tree; but  we restrict our dis- 
cussion to trees only for simplicity.) The  role of the classifier 
in this sett ing is open to some discussion; a common goal 
is to find the leaf node in the class hierarchy which has the 
highest posterior probability. 

The  common formulation in this sett ing is tha t  Pr(root ld ) ---- 
1 for any document  d, and if co is the parent  of c l , . . .  , cm, 
then Pr(cold) = ~ i  Pr(c~ Id). Using the chain rule, Pr(cild) -- 
Pr(cold)Pr(cilco,d), one starts at the root and computes 
posterior probabilities for all classes in the hierarchy via a 
best-first search, always expanding tha t  c with the highest 
Pr(cld ) and collecting unexpanded nodes in a priority queue 
until  sufficiently many leaf classes are obtained. An approxi- 
mat ion to this is the 'Pachinko machine '  [45] which, start ing 
at the root, selects in each step the most likely child of the 
current class until it reaches a leaf. 

Another  issue tha t  arises with a taxonomy is tha t  of context- 
dependent  feature selection. As ment ioned before in §3.1.2, 
the  set of features useful for discrimination between classes 
may vary significantly, depending on co. This has been 
observed in a set of experiments [13, 45] across different 
da ta  sets. Surprisingly few terms (tens to hundreds) suffice 
at each node in the topic hierarchy to build models which 
are as good (or slightly bet ter)  as using the whole lexicon. 
Bayesian classifiers in this domain tend to have high bias 
and rarely overfit the  data; they are quite  robust to mod- 
erate excesses in parameters.  Therefore the major  benefit 
is in storage cost and speed [14]. For a da ta  set such as 
Yahoo!, feature selection may make the  difference between 
being able to hold the classifier model  da ta  in memory  or 
not. 

Yet another utility of a class hierarchy is in improved 
model  estimation. Sparsity of data  is always a problem 
in the text  domain, especially for rare classes. Informa- 
tion gleaned indirectly from the class models of bet ter  pop- 
ulated ancestors and siblings in the  taxonomy may be used 
to 'pa tch '  local te rm distributions. One such approach is 
s h r i n k a g e  [53]. Given a topic tree,  hierarchy, its root is 
made the only child of a special 'class' co where all terms 
are equally likely (Oco,~ = 1/T for all t E T). Consider a 
path  co,c1,... ,ck up to a leaf Ck and suppose we need to 
est imate the 0-parameters of the classes on this path. The 
set of training documents Dc~ for leaf ck is used as is. For 
ck-1, the  training set used is Dc~_l \ Dc~, i.e., documents  
in Dck are discarded so tha t  the est imates become inde- 
pendent.  This process is continued up the path. From the 
training data, the maximum likelihood est imates of 0c,t are 
computed;  this is similar to equation (3), after dropping 
the ' 1 + '  and 'IT[+' terms. Shrinkage involves est imating a 
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weight vector A = (Ao,. . .  , Ak) such that  the 'corrected'  a 
parameters  for Ck are 

= ( 5 )  
o_<i<k 

A is est imated empirically by maximizing the likelihood of a 
held-out portion of the training data  using an Expectat ion 
Maximization (EM) framework [24] (also see §5.1). 

3.2 Learning relations 
Classifying documents into topics can be extended into learn- 
ing relations between pages. For example, in trying to clas- 
sify pages at a college into faculty, student,  project,  and 
course pages, one may wish to learn relations like 

teaches(faculty, course), 
advises(faculty, student), 
enrolled(student, course), 

etc. In turn, learning such relations may improve the accu- 
racy of node classification. 

Learning relations between hypertext  pages involve a com- 
bination of statistical and relational learning. The  former 
component  can analyze textual  features while the latter can 
exploit hyperlinks. The idea is to augment FOIL-based 
learner [50] with the ability to invent predicates, using a 
naive Bayes text  classifier. Due to its relational compo- 
nent, it can represent hyperlink graph structure and the 
word statistics of the neighbouring documents.  At the same 
time, using a statistical method for text  implies tha t  the 
learned rules will not be dependent on the presence or ab- 
sence of specific keywords as would be the case with a purely 
relational method  [50]. 

4 Unsupervised learning 
In unsupervised learning [41] of hypertext ,  the  learner is 
given a set of hypertext  documents, and is expected to dis- 
cover a hierarchy among the documents  based on some no- 
tion of similarity, and organize the documents  along that  
hierarchy. A good clustering will collect similar documents  
together near the leaf levels of the hierarchy and defer merg- 
ing dissimilar subsets until near the root of the hierarchy. 
Clustering is used to enhance search, browsing, and visual- 
ization [37]. 

4.1 Basic clustering techniques 
Clustering is a fundamental  operation in s t ructured da ta  do- 
mains, and has been intensely studied. Some of the existing 
techniques, such as k-means [41] and hierarchical agglomer- 
ative clustering [21] can be applied to documents.  Typically, 
documents  are represented ill unweighted or T F I D F  vector 
space, and the similarity between two documents  is the co- 
sine of the angle between their corresponding vectors, or 
the distance between the vectors, provided their lengths are 
normalized. 

4.1.1 k-means clustering 

The number k of clusters desired is input  to the k-means al- 
gorithm, which then picks k 'seed documents '  whose coordi- 
nates in vector space are initially set arbitrarily. Iteratively, 
each input document is 'assigned to '  the  most similar seed. 
The coordinate of the seed in the vector space is recomputed 

to be the centroid of all the documents assigned to that  seed. 
This process is repeated until the  seed coordinates stabilize. 

The extreme high dimensionality of text  creates two prob- 
lems for the  top-down k-meaus approach. Even if each of 
30000 dimensions has only two possible values, the number 
of input documents  will always be too small to populate each 
of the 230000 possible cells in the vector space. Hence most 
dimensions are unreliable for similarity computations. But  
since this is not  a supervised problem, it is hard to detect 
them a priori. There exist bot tom-up techniques to deter- 
mine orthogonal subspaces of the original space (obtained by 
projecting out  other  dimensions) such that  the clustering in 
those subspaces can be characterized as 'strong' [1]. How- 
ever these techniques cannot deal with the tens of thousands 
of dimensions. 

4.1.2 Agglomerative clustering 

In agglomerative or bo t tom-up  clustering, documents are 
continually merged into super-documents or groups until 
only one group is left; the  merge sequence generates a hi- 
erarchy based on similarity. In one variant [21], the self- 
similarity of a group F is defined as 

1 
s ( r )  = i r l ( i r  I _  1) ~ s(dl,d2), (6) 

dl ,d2 E F,dl ~d 2 

where s(dl, d2) is the similarity between documents dl and 
d2, often defined as the cosine of the angle between the 
vectors corresponding to these documents in T F I D F  vec- 
tor space. (Many other measures of similarity have been 
used.) The algorithm initially places each document into 
a group by itself. While there is more than one group the 
algorithm looks for a F and a A such as s(F U •) is maxi- 
mized, and merges these two groups. This algorithm takes 
t ime tha t  is worse than  quadratic in the number of initial 
documents. To scale it up to large collections, a variety of 
sampling techniques exist [20]. 

4.2 Techniques from linear algebra 
The vector space model  and related representations sug- 
gest that  linear transformations to documents and terms, 
regarded as vectors in Euclidean space, may expose inter- 
esting structure.  We now discuss some applications of linear 
algebra to text  analysis. 

4.2.1 Latent semantic indexing 

The similarity between two documents in the vector space 
model is a syntactic definition involving those two docu- 
ments alone. (In T F I D F  weighted vector space other docu- 
ments do exert  some influence through IDF.) However, in- 
direct evidence often lets us build semantic connections be- 
tween documents  tha t  may not even share terms. For exam- 
ple, 'car '  and 'auto '  co-occurring in a document may lead us 
to believe they are related. This may help us relate a docu- 
ment  mentioning 'car '  and 'gearbox'  with another document  
mentioning 'auto '  and ' transmission, '  which may in turn lead 
us to believe 'gearbox'  and ' transmission'  are related. 

Latent Semantic Indexing (LSI) [23] formalizes this intu- 
ition using notions from linear algebra. Consider the term- 
by-document  matr ix  A where aij  is 0 if term i does not occur 
in document  j ,  and 1 otherwise (word counts and T F I D F  
weighting may also be used). Now if 'car '  and 'auto '  are 
related, we would expect  them to occur in similar sets of 
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documents, hence the rows corresponding to these words 
should have some similarity. Extending this intuition we 
might suspect that A may have a rank r far lower than its 
dimensions; many rows and/or columns may be somewhat 
'redundant. '  

Let the singular values [34] of A (the eigenvalues of AA T) 
be a l , . . .  ,a t ,  where Jail > .-- > ]ar[. The Singular Value 
Decomposition (SVD) [34] factorizes A into three matrices 
UDV T, where D = d iag(a l , . . .  ,a t) ,  and U and V are 
column-orthogonal matrices. LSI retains only some first 
k singular values together with the corresponding rows of 
U and V, which induce an approximation to A, denoted 
Ak = UkDkV[ (k is a tuned parameter). Each row of Uk 
represents a term as a k-dimensional vector; similarly each 
row of Vk represents a document as a k-dimensional vector. 

Among many things, this modified representation makes 
for a new search method: map a keyword query to a k- 
dimensional vector, and find documents which are nearby. 
(For multi-word queries one may take the centroid of the 
word vectors as the query.) Heuristically speaking, the hope 
is that  the rows in U corresponding to 'car' and 'auto' will 
look very similar, and a query on 'car' will have a nonzero 
match with a document containing the word 'auto.' Im- 
provement in query performance has indeed been observed [23]. 

In the Signal Processing community, SVD and truncation 
has been used for decades for robust model fitting and noise 
reduction [56]. Analogously for text, it has been shown that 
LSI extracts semantic clusters in spite of noisy mappings 
from clusters to terms [58]. Apart from search, LSI can 
also be used to preprocess the data (eliminating noise) for 
clustering and visualization of document collection in very 
low-dimensional spaces (2- or 3-d). 

4.2.2 Random projections 

In either k-means or agglomerative clustering, a significant 
fraction of the running time is spent in computing similari- 
ties between documents and document groups. Although in- 
dividual documents can be expected to have bounded length, 
cluster centroids and document groups become dense as they 
collect contributions from more and more documents during 
the execution of these algorithms. 

There is a theorem which establishes that a projection 
of a set of points to a randomly oriented subspace induces 
small distortions in most inter-point distances with high 
probability. More precisely, let v E I:L '~ be a unit vector 
and H a randomly oriented e-dimensional subspace through 
the origin, and let X be the square of the length of the 
projection of v on to ~ (X is thus a random variable). 
Then E[X] = £/n and ff £ is chosen between fl(log n) and 
O(v'B), Pr(IX- e/n[ > ee/n) < 2 v / ~ e x p ( - ( e -  1)e2/4), 
where 0 < e < 1/2 [30]. It is easy to see that this implies 
small distortion in inter-point distances and inner products. 

This theorem can be used to develop a technique for re- 
ducing the dimensionality of the points so as to speed up the 
distance computation inherent in clustering programs. It 
has been proven [58] that the quality of the resulting clus- 
tering is not significantly worse than a clustering derived 
from the points in the original space. In practice, simpler 
methods such as truncating the document or cluster cen- 
troid vectors to retain only the most frequent terms (i.e., 
the largest orthogonal components) perform almost as well 
as projection [20, 66]. 

5 Semi-supervised learning 
Supervised learning is a goal-directed activity which can be 
precisely evaluated, whereas unsupervised learning is open 
to interpretation. On the other hand, supervised learning 
needs training data which must be obtained through human 
effort. In real life, most often one has a relatively small 
collection of labeled training documents, hut a larger pool 
of unlabeled documents. 

5.1 Learning from labeled and unlabeled 
documents 

Clearly, term sharing and similarity between labeled and un- 
labeled documents is a source of information that may lead 
to increased classification accuracy. This has indeed been 
verified using a simple algorithm patterned after Expecta- 
tion Maximization (EM) [24]. The algorithm first trains a 
naive Bayes classifier using only labeled data. Thereafter 
each EM iteration consists of the E-step and M-step. We 
restrict the discussion to naive Bayesian classifiers. In the 
E-step one estimates 0c,t using a variant of equation (3): 

\ 1 + Ed n(d, t) Pr(c[d) 
Oe,t = [T[ + ~dPr(c[d)  ~ .n (d ,~- )"  (7) 

The modification is that documents do not belong determin- 
istically to a single class, but may belong probabilistically 
to many classes. (This distribution will be degenerate for 
the initial labeled documents.) In the M-step, the O¢,t es- 
timates are used to assign class probabilities Pr(cld ) to all 
documents not labeled as part of th input. These EM itera- 
tions continue until (near-) convergence. Results are mostly 
favorable compared to naive Bayes alone: error is reduced 
by a third in the best cases, but care needs to be taken in 
modeling classes as mixtures of term distributions. 

5.2 Relaxation labeling 
In supervised topic learning from text, distribution-based 
classifiers posit a class-conditional term distribution Pr(t]c) 
and use this to estimate the posterior class probabilities 
Pr(c]d) for a given document. Consider now the hypertext 
model in §2.2, where training and testing documents are 
nodes in a hypertext graph. It seems obvious that apart 
from terms in the training and testing documents, there are 
other sources of information induced by the links, but it is 
unclear how to exploit them. 

One can adopt the notion, motivated by spreading activa- 
tion techniques, that  a term 'diffuses' to documents in the 
local link neighborhood of the document where it belongs; 
this has been proved useful in hypertext IR [64]. In our con- 
text, it means upgrading our model to a class-conditional 
distribution over not only terms in the current document d, 
but also neighboring documents N(d) (~ome suitable radius 
can be chosen to determine N(d)), viz., Pr(t(d), ~N(d))lc ). 
Operationally, it means that terms in neighbors of a train- 
ing document dl contribute to the model for the class of 
dl, and terms in neighbors of testing document d2 may be 
used to estimate the class probabilities for d2. (One may 
apply a heuristic damping function which limits the radius 
of influence of a term.) 

Interestingly, this does not lead to better accuracy in ex- 
periments [16]. The reason, in hindsight, is that content ex- 
pansion is not the only purpose of citation; in other words, 
it is not always the case that with respect to a set of top- 
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its, hypertext forms very tightly isolated clusters. In the 
US Patents database, for example, one often finds citations 
from patents from the class 'amplifiers' to the class 'oscilla- 
tors' (but none to 'pesticides'). Thus one is led to refine the 
model of linkages to posit a class conditional joint distribu- 
tion on terms in a document and the classes of neighbors, 
denoted by Pr({(d),c~N(d))[c). Note that there is a circu- 
laxity involving class labels. 

One approach to resolve the circularity is to initially use a 
text-only classifier to assign initial class probabilities Pr(o)(c[d) 
to all documents in a suitable neighborhood of the test doc- 
ument, then iteratively compute, for each node at step r + 1, 

Pr (~+1)(c[d, N(d)) = 

Pr(~)c~N(d))Pr@)(c[d, ff(Y(d))), (8) 
eC~(d)) 

where the sum is over all possible neighborhood class assign- 
ments. (In practice one truncates this sum.) 

In the case where some of the nodes in N(d) are pre- 
classified, this becomes a partially supervised learning prob- 
lem. Relaxation labeling is able to smoothly improve its 
accuracy as this happens [16]. 

6 Social network analysis 
The web is an example of a social network. Social networks 
have been extensively researched [70]. Social networks are 
formed between academics by co-authoring, advising, serv- 
ing on committees; between movie personnel by directing 
and acting; between musicians, football stars, friends and 
relatives; between people by making phone calls and trans- 
mitting infection; between papers through citation, and be- 
tween web pages by hyperlinking to other web pages. 

Social network theory is concerned with properties related 
to connectivity and distances in graphs, with diverse appli- 
cations like epidemiology, espionage, citation indexing, etc. 
In the first two examples, one might be interested in iden- 
tifying a few nodes to be removed to significantly increase 
average path length between pairs of nodes. In citation anal- 
ysis, one may wish to identify influential or central papers; 
this turns out to be quite symmetric to finding good survey 
papers; this symmetry has been explored by Mizruchi and 
others [55]. IR literature includes insightful studies of cita- 
tion, co-citation, and influence of academic publication [48]. 

6.1 Applying social network analysis to the 
Web 

Starting in 1996, a series of applications of social network 
analysis were made to the web graph, with the purpose of 
identifying the most authoritative pages related to a user 
query. 

6.1.1 Google 

If one wanders on the Web fi)r infinite time, following a ran- 
dom link out of each page with probability 1 - p  and jumps to 
a random Web page with probability p, then different pages 
will be visited at different rates; popular pages with many 
in-links will tend to be visited more often. This measure of 
popularity is called PageRank [10], defined recursively as 

PageRank(u) 
Pageaank(v) = p/N + (1 - p) ~ OutDegree(u)'  (9) 

u - - t ~  

where '--+' means "links to" and N is the total number of 
nodes in the Web graph. (The artifice ofp is needed because 
the Web is not connected or known to be aperiodic, there- 
fore the simpler eigenequation is not guaranteed to have a 
fixed point.) The Goog le  14 search engine simulates such a 
random walk on the web graph in order to estimate PageR- 
ank, which is used as a score of popularity. Given a key- 
word query, matching documents are ordered by this score. 
Note that the popularity score is precomputed independent 
of the query, hence Google can be potentially as fast as any 
relevance-ranking search engine. 

6.1.2 Hyperlink induced topic search (HITS) 

Hyperlink induced topic search [43] is slightly different: it 
does not crawl or pre-process the web, but depends on a 
search engine. A query to HITS is forwarded to a search 
engine such as Alta Vista, which retrieves a subgraph of 
the web whose nodes (pages) match the query. Pages citing 
or cited by these pages are also included. Each node u in 
this expanded graph has two associated scores h~ and an, 
initialized to 1. HITS then iteratively assigns 

:=  and  ho :=  (10) 
u -:'+ v u--+v 

where ~, hu and ~v av are normalized to 1 after each it- 
eration. The a and h scores converge respectively to the 
measure of a page being an authority, and the measure of' a 
page being a hub (a compilation of links to authorities, or a 
"survey paper" in bibliometric terms). 
Because of the query-dependent graph construction, HITS 

is slower than Google. A variant of this technique has been 
used by Dean and Henzinger to find similar pages on the 
Web using link-based analysis alone [22]. They improve 
speed by fetching the Web graph from a connectivity server 
which has pre-crawled substantial portions of the Web [7). 

6.1.3 Adding text information to link-based 
popularity 

HITS's graph expansion sometimes leads to topic contami- 
nation or drift. E.g., the community of movie awards pages 
on the web is closely knit with highly cited (and to some 
extent relevant) home pages of movie companies. Although 
movie awards is a finer topic than movies, the top movie 
companies emerge as the victors upon running HITS. This 
is partly because in HITS (and Google) all edges in the graph 
have the same importance 15. Contamination can be reduced 
by recognizing that hyperlinks that contain award or awards 
near the anchor text are more relevant for this query them 
other edges. The Automatic Resource Compilation (ARC) 
and Clever systems incorporate such query-dependent mod- 
ification of edge weights [15, 17]. Query results are signifi- 
cantly improved. In user studies, the results compared fa- 
vorably with lists compiled by humans, such as Yahoo! and 
Infoseek 16. 

6.1.4 Outlier filtering 

Bharat and Henzinger have invented another way to inte- 
grate textual content and thereby avoid contamination of 

14http : I/google. com 
15Google might be using edge-weighting strategies which are 
not published. 
16http: I/~n~. infoseek, tom 
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the graph to be distilled. They model each page accord- 
ing to the "vector space" model [63]. During the graph 
expansion step, unlike HITS, they do not include all nodes 
at distance one from the preliminary query result. Instead 
they prune the graph expansion at nodes whose correspond- 
ing term vectors are outliers with respect to the set of vec- 
tors corresponding to documents directly retrieved from the 
search engine [8]. In the example above, one would hope 
that the response to the query movie award from the initial 
keyword search would contain a majority of pages related 
to awards and not companies; thus the distribution of key- 
words on these pages will enable the Bharat and Henzinger 
algorithm to effectively prune away as outliers nodes in the 
neighborhood that are about movie companies. Apart from 
speeding up their system by using the Connectivity Server 
[7], they describe several heuristics that cut down the query 
time substantially. 

It is possible to fabricate queries that demonstrate the 
strengths and weaknesses of each of these systems. ARC, 
Clever, and Outlier Filtering have been shown to be better 
(as judged by testers) than HITS. There has not been a sys- 
tematic comparison between Google and the HITS family. 
This would be of great interest given the basic difference in 
graph construction and consequent greater speed of Google. 

6.2 Resource discovery 
There is short-range topic locality on the Web, in at least 
two prominent forms. If the reader finds this paper inter- 
esting, there is reasonable chance that the reader will also 
find some significant fraction of citations in this paper to be 
interesting too. If this paper cites a paper that the reader 
thinks is interesting, that makes it more likely that another 
paper cited by this one is interesting (i.e., this paper is a 
suitable hub). 

Coupling the ability to find good hubs with the ability 
to judge how likely a given page is to be generated from a 
given topic of interest, one can devise crawlers that crawl 
the Web for selected topics [18]. The goal is to crawl as 
many relevant pages as fast as possible while crawling as 
few irrelevant pages as possible. The crawler can be guided 
by a text or hypertext classifier. Alternatively, one may use 
reinforcement learning techniques [60, 52]. 

7 Conclusion 
In this survey we have reviewed recent research on the appli- 
cation of techniques from machine learning, statistical pat- 
tern recognition, and data mining to analyzing hypertext. 
Starting from simple bulk models for documents and hyper- 
links, researchers have progressed towards document sub- 
structure and the interplay between link and content. Min- 
ing of semistructured data has followed a slightly different 
path, but it seems clear that a confluence will be valuable. 
Commercial search products and services are slowly adopt- 
ing the results of recent investigations. It seems inevitable 
that knowledge bases and robust algorithms from compu- 
tational linguistics will play an increasingly important role 
in hypertext content management and mining in the future. 
We will also likely see increased systems and tool building as 
the winning research ideas become more firmly established. 

Acknowledgements: Thanks to Pushpak Bhattacharya and 
Yusuf Batterywala for helpful discussions and references. 
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