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Abstract

The organization of HTML into a tag tree structure, which
is rendered by browsers as roughly rectangular regions with
embedded text and HREF links, greatly helps surfers locate
and click on links that best satisfy their information need.
Can an automatic program emulate this human behavior
and thereby learn to predict the relevance of an unseen
HREF target page w.r.t. an information need, based on
information limited to the HREF source page? Such a
capability would be of great interest in focused crawling and
resource discovery, because it can fine-tune the priority of
unvisited URLs in the crawl frontier, and reduce the number
of irrelevant pages which are fetched and discarded.

We show that there is indeed a great deal of usable
information on a HREF source page about the relevance
of the target page. This information, encoded suitably, can
be exploited by a supervised apprentice which takes online
lessons from a traditional focused crawler by observing
a carefully designed set of features and events associated
with the crawler. Once the apprentice gets a sufficient
number of examples, the crawler starts consulting it to
better prioritize URLs in the crawl frontier. Experiments on
a dozen topics using a 482-topic taxonomy from the Open
Directory (Dmoz) show that online relevance feedback can
reduce false positives by 30% to 90%.

Categories and subject descriptors:
H.5.4 [Information interfaces and presentation]:
Hypertext/hypermedia; I.5.4 [Pattern recognition]:
Applications, Text processing; I.2.6 [Artificial
intelligence]: Learning; I.2.8 [Artificial intelligence]:
Problem Solving, Control Methods, and Search.

General terms: Algorithms, performance,
measurements, experimentation.

Keywords: Focused crawling, Document object model,
Reinforcement learning.

1 Introduction

Keyword search and clicking on links are the dominant
modes of accessing hypertext on the Web. Support for
keyword search through crawlers and search engines is very
mature, but the surfing paradigm is not modeled or assisted
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Figure 1: A basic focused crawler controlled by one topic
classifier/learner.

as well. Support for surfing is limited to the basic interface
provided by Web browsers, except for a few notable research
prototypes.

While surfing, the user typically has a topic-specific
information need, and explores out from a few known
relevant starting points in the Web graph (which may be
query responses) to seek new pages relevant to the chosen
topic/s. While deciding for or against clicking on a specific
link (u, v), humans use a variety of clues on the source
page u to estimate the worth of the (unseen) target page
v, including the tag tree structure of u, text embedded in
various regions of that tag tree, and whether the link is
relative or remote. “Every click on a link is a leap of faith”
[19], but humans are very good at discriminating between
links based on these clues.

Making an educated guess about the worth of clicking
on a link (u, v) without knowledge of the target v is
central to the surfing activity. Automatic programs which
can learn this capability would be valuable for a number
of applications which can be broadly characterized as
personalized, topic-specific information foragers.

Large-scale, topic-specific information gatherers are
called focused crawlers [1, 9, 14, 28, 30]. In contrast to giant,
all-purpose crawlers which must process large portions of
the Web in a centralized manner, a distributed federation of
focused crawlers can cover specialized topics in more depth
and keep the crawl more fresh, because there is less to cover
for each crawler.

In its simplest form, a focused crawler consists of a
supervised topic classifier (also called a ‘learner’) controlling
the priority of the unvisited frontier of a crawler (see
Figure 1). The classifier is trained a priori on document
samples embedded in a topic taxonomy such as Yahoo!
or Dmoz. It thereby learns to label new documents as
belonging to topics in the given taxonomy [2, 5, 21]. The
goal of the focused crawler is to start from nodes relevant
to a focus topic c∗ in the Web graph and explore links to
selectively collect pages about c∗, while avoiding fetching
pages not about c∗.

Suppose the crawler has collected a page u and



encountered in u an unvisited link to v. A simple crawler
(which we call the baseline) will use the relevance of u
to topic c∗ (which, in a Bayesian setting, we can denote
Pr(c∗|u)) as the estimated relevance of the unvisited page
v. This reflects our belief that pages across a hyperlink
are more similar than two randomly chosen pages on the
Web, or, in other words, topics appear clustered in the
Web graph [11, 23]. Node v will be added to the crawler’s
priority queue with priority Pr(c∗|u). This is essentially a
“best-first” crawling strategy. When v comes to the head
of the queue and is actually fetched, we can verify if the
gamble paid off, by evaluating Pr(c∗|v). The fraction of
relevant pages collected is called the harvest rate. If V
is the set of nodes collected, the harvest rate is defined
as (1/|V |)

∑
v∈V Pr(c∗|v). Alternatively, we can measure

the loss rate, which is one minus the harvest rate, i.e., the
(expected) fraction of fetched pages that must be thrown
away. Since the effort on relevant pages is well-spent,
reduction in loss rate is the primary goal and the most
appropriate figure of merit.

For focused crawling applications to succeed, the “leap
of faith” from u to v must pay off frequently. In other words,
if Pr(c∗|v) is often much less than the preliminary estimate
Pr(c∗|u), a great deal of network traffic and CPU cycles
are being wasted eliminating bad pages. Experience with
random walks on the Web show that as one walks away
from a fixed page u0 relevant to topic c0, the relevance of
successive nodes u1, u2, . . . to c0 drops dramatically within
a few hops [9, 23]. This means that only a fraction of out-
links from a page is typically worth following. The average
out-degree of the Web graph is about 7 [29]. Therefore, a
large number of page fetches may result in disappointment,
especially if we wish to push the utility of focused crawling
to topic communities which are not very densely linked.

Even w.r.t. topics that are not very narrow, the
number of distracting outlinks emerging from even fairly
relevant pages has grown substantially since the early
days of Web authoring [4]. Template-based authoring,
dynamic page generation from semi-structured databases,
ad links, navigation panels, and Web rings contribute many
irrelevant links which reduce the harvest rate of focused
crawlers. Topic-based link discrimination will also reduce
these problems.

1.1 Our contribution: Leaping with more faith

In this paper we address the following questions:

How much information about the topic of the HREF
target is available and/or latent in the HREF source page,
its tag-tree structure, and its text? Can these sources be
exploited for accelerating a focused crawler?

Our basic idea is to use two classifiers. Earlier, the regular
baseline classifier was used to assign priorities to unvisited
frontier nodes. This no longer remains its function. The role
of assigning priorities to unvisited URLs in the crawl frontier
is now assigned to a new learner called the apprentice, and
the priority of v is specific to the features associated with
the (u, v) link which leads to it1. The features used by the
apprentice are derived from the Document Object Model or

1If many u’s link to a single v, it is easiest to freeze the priority of
v when the first-visited u linking to v is assessed, but combinations
of scores are also possible.
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Figure 2: The apprentice is continually presented with
training cases (u, v) with suitable features. The apprentice
is interposed where new outlinks (u, v) are registered with
the priority queue, and helps assign the unvisited node v a
better estimate of its relevance.

DOM (http://www.w3.org/DOM/) of u. Meanwhile, the role
of the baseline classifier becomes one of generating training
instances for the apprentice, as shown in Figure 2. We may
therefore regard the baseline learner as a critic or a trainer,
which provides feedback to the apprentice so that it can
improve “on the job.”

The critic-apprentice paradigm is related to reinforce-
ment learning and AI programs that learn to play games
[26, §1.2]. We argue that this division of labor is natural
and effective. The baseline learner can be regarded as
a user specification for what kind of content is desired.
Although we limit ourselves to a generative statistical model
for this specification, this can be an arbitrary black-box
predicate. For rich and meaningful distinction between
Web communities and topics, the baseline learner needs
to be fairly sophisticated, perhaps leveraging off human
annotations on the Web (such as topic directories). In
contrast, the apprentice specializes in how to locate pages
to satisfy the baseline learner. Its feature space is more
limited, so that it can train fast and adapt nimbly to
changing fortunes at following links during a crawl. In
Mitchell’s words [27], the baseline learner recognizes “global
regularity” while the apprentice helps the crawler adapt
to “local regularity.” This marked asymmetry between
the classifiers distinguishes our approach from Blum and
Mitchell’s co-training technique [3], in which two learners
train each other by selecting unlabeled instances.

Using a dozen topics from a topic taxonomy derived
from the Open Directory, we compare our enhanced crawler
with the baseline crawler. The number of pages that are
thrown away (because they are irrelevant), called the loss
rate, is cut down by 30–90%. We also demonstrate that
the fine-grained tag-tree model, together with our synthesis
and encoding of features for the apprentice, are superior to
simpler alternatives.

1.2 Related work

Optimizing the priority of unvisited URLs on the crawl
frontier for specific crawling goals is not new. FishSearch

by De Bra et al. [12, 13] and SharkSearch by Hersovici
et al. [16] were some of the earliest systems for localized
searches in the Web graph for pages with specified keywords.

http://www.w3.org/DOM/


In another early paper, Cho et al. [10] experimented with a
variety of strategies for prioritizing how to fetch unvisited
URLs. They used the anchor text as a bag of words to
guide link expansion to crawl for pages matching a specified
keyword query, which led to some extent of differentiation
among out-links, but no trainer-apprentice combination was
involved. No notion of supervised topics had emerged at
that point, and simple properties like the in-degree or the
presence of specified keywords in pages were used to guide
the crawler.

Topical locality on the Web has been studied for a few
years. Davison made early measurements on a 100000-
node Web subgraph [11] collected by the DiscoWeb system.
Using the standard notion of vector space TFIDF similarity
[31], he found that the endpoints of a hyperlink are much
more similar to each other than two random pages, and that
HREFs close together on a page link to documents which are
more similar than targets which are far apart. Menczer has
made similar observations [23]. The HyperClass hypertext
classifier also uses such locality patterns for better semi-
supervised learning of topics [7], as does IBM’s Automatic
Resource Compilation (ARC) and Clever topic distillation
systems [6, 8].

Two important advances have been made beyond the
baseline best-first focused crawler: the use of context graphs
by Diligenti et al. [14] and the use of reinforcement learning
by Rennie and McCallum [30]. Both techniques trained
a learner with features collected from paths leading up to
relevant nodes rather than relevant nodes alone. Such paths
may be collected by following backlinks.

Diligenti et al. used a classifier (learner) that regressed
from the text of u to the estimated link distance from u to
some relevant page w, rather than the relevance of u or an
outlink (u, v), as was the case with the baseline crawler.
This lets their system continue expanding u even if the
reward for following a link is not immediate, but several
links away. However, they do favor links whose payoffs
are closest. Our work is specifically useful in conjunction
with the use of context graphs: when the context graph
learner predicts that a goal is several links away, it is crucial
to offer additional guidance to the crawler based on local
structure in pages, because the fan-out at that radius could
be enormous.

Rennie and McCallum [30] also collected paths leading
to relevant nodes, but they trained a slightly different
classifier, for which:

• An instance was a single HREF link like (u, v).

• The features were terms from the title and headers
(<h1>...</h1> etc.) of u, together with the text
in and ‘near’ the anchor (u, v). Directories and
pathnames were also used. (We do not know the
precise definition of ‘near’, or how these features were
encoded and combined.)

• The prediction was a discretized estimate of the
number of relevant nodes reachable by following (u, v),
where the reward from goals distant from v was
geometrically discounted by some factor γ < 1/2 per
hop.

Rennie and McCallum obtained impressive harvests of
research papers from four Computer Science department
sites, and of pages about officers and directors from 26
company Websites.

Lexical proximity and contextual features have been
used extensively in natural language processing for disam-
biguating word sense [15]. Compared to plain text, DOM
trees and hyperlinks give us a richer set of potential features.

Aggarwal et al. have proposed an “intelligent crawling”
framework [1] in which only one classifier is used, but similar
to our system, that classifier trains as the crawl progresses.
They do not use our apprentice-critic approach, and do not
exploit features derived from tag-trees to guide the crawler.

The “intelligent agents” literature has brought forth
several systems for resource discovery and assistance to
browsing [19]. They range between client- and site-level
tools. Letizia [18], Powerscout, and WebWatcher [17] are
such systems. Menczer and Belew proposed InfoSpiders
[24], a collection of autonomous goal-driven crawlers without
global control or state, in the style of genetic algorithms. A
recent extensive study [25] comparing several topic-driven
crawlers including the best-first crawler and InfoSpiders
found the best-first approach to show the highest harvest
rate (which our new system outperforms).

In all the systems mentioned above, improving the
chances of a successful “leap of faith” will clearly reduce
the overheads of fetching, filtering, and analyzing pages.
Furthermore, whereas we use an automatic first-generation
focused crawler to generate the input to train the apprentice,
one can envisage specially instrumented browsers being used
to monitor users as they seek out information.

We distinguish our work from prior art in the following
important ways:

Two classifiers: We use two classifiers. The first one is
used to obtain ‘enriched’ training data for the second one.
(A breadth-first or random crawl would have a negligible
fraction of positive instances.) The apprentice is a simplified
reinforcement learner. It improves the harvest rate, thereby
‘enriching’ the data collected and labeled by the first learner
in turn.

No manual path collection: Our two-classifier frame-
work essentially eliminates the manual effort needed to
create reinforcement paths or context graphs. The input
needed to start off a focused crawl is just a pre-trained topic
taxonomy (easily available from the Web) and a few focus
topics.

Online training: Our apprentice trains continually, ac-
quiring ever-larger vocabularies and improving its accuracy
as the crawl progresses. This property holds also for the
“intelligent crawler” proposed by Aggarwal et al., but they
have a single learner, whose drift is controlled by precise
relevance predicates provided by the user.

No manual feature tuning: Rather than tune ad-hoc
notions of proximity between text and hyperlinks, we encode
the features of link (u, v) using the DOM-tree of u, and
automatically learn a robust definition of ‘nearness’ of a
textual feature to (u, v). In contrast, Aggarwal et al
use many tuned constants combining the strength of text-
and link-based predictors, and Rennie et al. use domain
knowledge to select the paths to goal nodes and the word
bags that are submitted to their learner.



2 Methodology and algorithms

We first review the baseline focused crawler and then
describe how the enhanced crawler is set up using the
apprentice-critic mechanism.

2.1 The baseline focused crawler

The baseline focused crawler has been described in detail
elsewhere [9, 14], and has been sketched in Figure 1. Here
we review its design and operation briefly.

There are two inputs to the baseline crawler.

• A topic taxonomy or hierarchy with example URLs
for each topic.

• One or a few topics in the taxonomy marked as the
topic(s) of focus.

Although we will generally use the terms ‘taxonomy’ and
‘hierarchy’, a topic tree is not essential; all we really need is
a two-way classifier where the classes have the connotations
of being ‘relevant’ or ‘irrelevant’ to the topic(s) of focus.
A topic hierarchy is proposed purely to reduce the tedium
of defining new focused crawls. With a two-class classifier,
the crawl administrator has to seed positive and negative
examples for each crawl. Using a taxonomy, she composes
the ‘irrelevant’ class as the union of all classes that are not
relevant. Thanks to extensive hierarchies like Dmoz in the
public domain, it should be quite easy to seed topic-based
crawls in this way.

The baseline crawler maintains a priority queue on the
estimated relevance of nodes v which have not been visited,
and keeps removing the highest priority node and visiting it,
expanding its outlinks and checking them into the priority
queue with the relevance score of v in turn. Despite its
extreme simplicity, the best-first crawler has been found to
have very high harvest rates in extensive evaluations [25].

Why do we need negative examples and negative classes
at all? Instead of using class probabilities, we could maintain
a priority queue on, say, the TFIDF cosine similarity
between u and the centroid of the seed pages (acting as an
estimate for the corresponding similarity between v and the
centroid, until v has been fetched). Experience has shown
[32] that characterizing a negative class is quite important to
prevent the centroid of the crawled documents from drifting
away indefinitely from the desired topic profile.

In this paper, the baseline crawler also has the implicit
job of gathering instances of successful and unsuccessful
“leaps of faith” to submit to the apprentice, discussed next.

2.2 The basic structure of the apprentice
learner

In estimating the worth of traversing the HREF (u, v), we
will limit our attention to u alone. The page u is modeled
as a tag tree (also called the Document Object Model or
DOM). In principle, any feature from u, even font color and
site membership may be perfect predictors of the relevance
of v. The total number of potentially predictive features will
be quite staggering, so we need to simplify the feature space
and massage it into a form suited to conventional learning
algorithms. Also note that we specifically study properties
of u and not larger contexts such as paths leading to u,
meaning that our method may become even more robust and

useful in conjunction with context graphs or reinforcement
along paths.

Initially, the apprentice has no training data, and passes
judgment on (u, v) links according to some fixed prior
obtained from a baseline crawl run ahead of time (e.g., see
the statistics in §3.3). Ideally, we would like to train the
apprentice continuously, but to reduce overheads, we declare
a batch size between a few hundred and a few thousand
pages. After every batch of pages is collected, we check if any
page u fetched before the current batch links to some page
v in the batch. If such a (u, v) is found, we extract suitable
features for (u, v) as described later in this section, and add
〈(u, v),Pr(c∗|v)〉 as another instance of the training data for
the apprentice. Many apprentices, certainly the simple naive
Bayes and linear perceptrons that we have studied, need not
start learning from scratch; they can accept the additional
training data with a small additional computational cost.

2.2.1 Preprocessing the DOM tree

First, we parse u and form the DOM tree for u. Sadly,
much of the HTML available on the Web violates any
HTML standards that permit context-free parsing, but
a variety of repair heuristics (see, e.g., HTML Tidy,
available at http://www.w3.org/People/Raggett/tidy/)
let us generate reasonable DOM trees from bad HTML.
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Figure 3: Numbering of DOM leaves used to derive offset
attributes for textual tokens. ‘@’ means “is at offset”.

Second, we number all leaf nodes consecutively from left
to right. For uniformity, we assign numbers even to those
DOM leaves which have no text associated with them. The
specific <a href...> which links to v is actually an internal
node av, which is the root of the subtree containing the
anchor text of the link (u, v). There may be other element
tags such as <em> or <b> in the subtree rooted at av. Let
the leaf or leaves in this subtree be numbered `(av) through
r(av) ≥ `(av). We regard the textual tokens available from
any of these leaves as being at DOM offset zero w.r.t. the
(u, v) link. Text tokens from a leaf numbered µ, to the left of
`(av), are at negative DOM offset µ− `(av). Likewise, text
from a leaf numbered µ to the right of r(av) are at positive
DOM offset µ− r(av). See Figure 3 for an example.

2.2.2 Features derived from the DOM and text
tokens

Many related projects mentioned in §1.2 use a linear notion
of proximity between a HREF and textual tokens. In the
ARC system, there is a crude cut-off distance measured

http://www.w3.org/People/Raggett/tidy/


in bytes to the left and right of the anchor. In the
Clever system, distance is measured in tokens, and the
importance attached to a token decays with the distance.
In reinforcement learning and intelligent predicate-based
crawling, the exact specification of neighborhood text is not
known to us. In all cases, some ad-hoc tuning appears to be
involved.

We claim (and show in §3.4) that the relation between
the relevance of the target v of a HREF (u, v) and the
proximity of terms to (u, v) can be learnt automatically. The
results are better than ad-hoc tuning of cut-off distances,
provided the DOM offset information is encoded as features
suitable for the apprentice.

One obvious idea is to extend the Clever model: a page
is a linear sequence of tokens. If a token t is distant x from
the HREF (u, v) in question, we encode it as a feature 〈t, x〉.
Such features will not be useful because there are too many
possible values of x, making the 〈t, x〉 space too sparse to
learn well. (How many HREFS will be exactly five tokens
from the term ‘basketball’?)

Clearly, we need to bucket x into a small number of
ranges. Rather than tune arbitrary bucket boundaries by
hand, we argue that DOM offsets are a natural bucketing
scheme provided by the page author. Using the node
numbering scheme described above, each token t on page u
can be annotated w.r.t. the link (u, v) (for simplicity assume
there is only one such link) as 〈t, d〉, where d is the DOM
offset calculated above. This is the main set of features
used by the apprentice. We shall see that the apprentice
can learn to limit |d| to less than dmax = 5 in most cases,
which reduces its vocabulary and saves time.

A variety of other feature encodings suggest themselves.
We are experimenting with some in ongoing work (§4),
but decided against some others. For example, we do not
expect gains from encoding specific HTML tag names owing
to the diversity of authoring styles. Authors use <div>,
<span>, <layer> and nested tables for layout control in
non-standard ways; these are best deflated to a nameless
DOM node representation. Similar comments apply to
HREF collections embedded in <ul>, <ol>, <td> and
<dd>. Font and lower/upper case information is useful
for search engines, but would make features even sparser
for the apprentice. Our representation also flattens two-
dimensional tables to their “row-major” representation.

The features we ignore are definitely crucial for other
applications, such as information extraction. We did not
see any cases where this sloppiness led to a large loss rate.
We would be surprised to see tables where relevant links
occurred in the third column and irrelevant links in the fifth,
or pages where they are rendered systematically in different
fonts and colors, but are not otherwise demarcated by the
DOM structure.

2.2.3 Non-textual features

Limiting d may lead us to miss features of u that may be
useful at the whole-page level. One approach would be to use
“d =∞” for all d larger in magnitude than some threshold.
But this would make our apprentice as bulky and slow to
train as the baseline learner.

Instead, we use the baseline learner to abstract u for
the apprentice. Specifically, we use a naive Bayes baseline
learner to classify u, and use the vector of class probabilities

returned as features for the apprentice. These features can
help the apprentice discover patterns such as

“Pages about /Recreation/Boating/Sailing often
link to pages about /Sports/Canoe_and_Kayaking.”

This also covers for the baseline classifier confusing between
classes with related vocabulary, achieving an effect similar
to context graphs.

Another kind of feature can be derived from co-citation.
If v1 has been fetched and found to be relevant and HREFS
(u, v1) and (u, v2) are close to each other, v2 is likely to
be relevant. Just like textual tokens were encoded as 〈t, d〉
pairs, we can represent co-citation features as 〈ρ, d〉, where
ρ is a suitable representation of relevance.

Many other features can be derived from the DOM tree
and added to our feature pool. We discuss some options
in §4. In our experience so far, we have found the 〈t, d〉
features to be most useful. For simplicity, we will limit our
subsequent discussion to 〈t, d〉 features only.

2.3 Choices of learning algorithms for the
apprentice

Our feature set is thus an interesting mix of categorical,
ordered and continuous features:

• Term tokens 〈t, d〉 have a categorical component t and
a discrete ordered component d (which we may like to
smooth somewhat). Term counts are discrete but can
be normalized to constant document length, resulting
in continuous attribute values.

• Class names are discrete and may be regarded as
synthetic terms. The probabilities are continuous.

The output we desire is an estimate of Pr(c∗|v), given all the
observations about u and the neighborhood of (u, v) that
we have discussed. Neural networks are a natural choice
to accommodate these requirements. We first experimented
with a simple linear perceptron, training it with the delta
rule (gradient descent) [26]. Even for a linear perceptron,
convergence was surprisingly slow, and after convergence,
the error rate was rather high. It is likely that local
optima were responsible, because stability was generally
poor, and got worse if we tried to add hidden layers or
sigmoids. In any case, convergence was too slow for use
as an online learner. All this was unfortunate, because the
direct regression output from a neural network would be
convenient, and we were hoping to implement a Kohonen
layer for smoothing d.

In contrast, a naive Bayes (NB) classifier worked very
well. A NB learner is given a set of training documents,
each labeled with one of a finite set of classes/topic. A
document or Web page u is modeled as a multiset or bag
of words, {〈τ, n(u, τ)〉} where τ is a feature which occurs
n(u, τ) times in u. In ordinary text classification (such as
our baseline learner) the features τ are usually single words.
For our apprentice learner, a feature τ is a 〈t, d〉 pair.

NB classifiers can predict from a discrete set of classes,
but our prediction is a continuous (probability) score. To
bridge this gap, We used a simple two-bucket (low/high
relevance) special case of Torgo and Gama’s technique of
using classifiers for discrete labels for continuous regression
[33], using “equally probable intervals” as far as possible.



Torgo and Gama recommend using a measure of centrality,
such as the median, of each interval as the predicted value of
that class. Rennie and McCallum [30] corroborate that 2–3
bins are adequate. As will be clear from our experiments, the
medians of our ‘low’ and ‘high’ classes are very close to zero
and one respectively (see Figure 5). Therefore, we simply
take the probability of the ‘high’ class as the prediction from
our naive Bayes apprentice.

The prior probability of class c, denoted Pr(c) is the
fraction of training documents labeled with class c. The NB
model is parameterized by a set of numbers θc,τ which is
roughly the rate of occurrence of feature τ in class c, more
exactly,

θc,τ =
1 +

∑
u∈Vc

n(u, τ)

|T |+
∑

u,τ ′ n(u, τ ′)
, (1)

where Vc is the set of Web pages labeled with c and T is the
entire vocabulary. The NB learner assumes independence
between features, and estimates

Pr(c|u) ∝ Pr(c) Pr(u|c) ≈ Pr(c)
∏
τ∈u

θn(u,τ)
c,τ . (2)

Nigam et al. provide further details [22].

3 Experimental study

Our experiments were guided by the following requirements.
We wanted to cover a broad variety of topics, some ‘easy’ and
some ‘difficult’, in terms of the harvest rate of the baseline
crawler. Here is a quick preview of our results.

• The apprentice classifier achieves high accuracy in
predicting the relevance of unseen pages given 〈t, d〉
features. It can determine the best value of dmax to
use, typically, 4–6.

• Encoding DOM offsets in features improves the
accuracy of the apprentice substantially, compared
to a bag of ordinary words collected from within the
same DOM offset window.

• Compared to a baseline crawler, a crawler that is
guided by an apprentice (trained offline) has a 30%
to 90% lower loss rate. It finds crawl paths never
expanded by the baseline crawler.

• Even if the apprentice-guided crawler is forced to
stay within the (inferior) Web graph collected by the
baseline crawler, it collects the best pages early on.

• The apprentice is easy to train online. As soon as it
starts guiding the crawl, loss rates fall dramatically.

• Compared to 〈t, d〉 features, topic- or cocitation-based
features have negligible effect on the apprentice.

To run so many experiments, we needed three highly
optimized and robust modules: a crawler, a HTML-to-DOM
converter, and a classifier.

We started with the w3c-libwww crawling library from
http://www.w3c.org/Library/, but replaced it with our
own crawler because we could effectively overlap DNS
lookup, HTTP access, and disk access using a select over
all socket/file descriptors, and prevent memory leaks visible
in w3c-libwww. With three caching DNS servers, we could

achieve over 90% utilization of a 2Mbps dedicated ISP
connection.

We used the HTML parser libxml2 library to extract
the DOM from HTML, but this library has memory leaks,
and does not always handle poorly written HTML well. We
had some stability problems with HTML Tidy (http://www.
w3.org/People/Raggett/tidy/), the well-known HTML
cleaner which is very robust to bad HTML. At present we
are using libxml2 and are rolling our own HTML parser and
cleaner for future work.

We intend to make our crawler and HTML parser code
available in the public domain for research use.

For both the baseline and apprentice classifier we used
the public domain BOW toolkit and the Rainbow naive
Bayes classifier created by McCallum and others [20]. Bow
and Rainbow are very fast C implementations which let us
classify pages in real time as they were being crawled.

3.1 Design of the topic taxonomy

We downloaded from the Open Directory (http://dmoz.
org/) an RDF file with over 271954 topics arranged in a
tree hierarchy with depth at least 6, containing a total of
about 1697266 sample URLs. The distribution of samples
over topics was quite non-uniform. Interpreting the tree as
an is-a hierarchy meant that internal nodes inherited all
examples from descendants, but they also had their own
examples. Since the set of topics was very large and many
topics had scarce training data, we pruned the Dmoz tree
to a manageable frontier by following these steps:

1. Initially we placed example URLs in both internal and
leaf nodes, as given by Dmoz.

2. We fixed a minimum per-class training set size of k =
300 documents.

3. We iteratively performed the following step as long
as possible: we found a leaf node with less than k
example URLs, moved all its examples to its parent,
and deleted the leaf.

4. To each internal node c, we attached a leaf
subdirectory called Other. Examples associated
directly with c were moved to this Other subdirectory.

5. Some topics were populated out of proportion, either
at the beginning or through the above process. We
made the class priors more balanced by sampling
down the large classes so that each class had at most
300 examples.

The resulting taxonomy had 482 leaf nodes and a total
of 144859 sample URLs. Out of these we could successfully
fetch about 120000 URLs. At this point we discarded the
tree structure and considered only the leaf topics. Training
time for the baseline classifier was about about two hours
on a 729MHz Pentium III with 256kB cache and 512MB
RAM. This was very fast, given that 1.4GB of HTML text
had to be processed through Rainbow. The complete listing
of topics can be obtained from the authors.

3.2 Choice of topics

Depending on the focus topic and prioritization strategy,
focused crawlers may achieve diverse harvest rates. Our

http://www.w3c.org/Library/
http://www.w3.org/People/Raggett/tidy/
http://www.w3.org/People/Raggett/tidy/
http://dmoz.org/
http://dmoz.org/


early prototype [9] yielded harvest rates typically between
0.25 and 0.6. Rennie and McCallum [30] reported recall
and not harvest rates. Diligenti et al. [14] focused on very
specific topics where the harvest rate was very low, 4–6%.
Obviously, the maximum gains shown by a new idea in
focused crawling can be sensitive to the baseline harvest
rate.

To avoid showing our new system in an unduly positive
or negative light, we picked a set of topics which were fairly
diverse, and appeared to be neither too broad to be useful
(e.g., /Arts, /Science) nor too narrow for the baseline
crawler to be a reasonable adversary. We list our topics
in Figure 4. We chose the topics without prior estimates of
how well our new system would work, and froze the list
of topics. All topics that we experimented with showed
visible improvements, and none of them showed deteriorated
performance.

3.3 Baseline crawl results

We will skip the results of breadth-first or random crawling
in our commentary, because it is known from earlier work
on focused crawling that our baseline crawls are already
far better than breadth-first or random crawls. Figure 5
shows, for most of the topics listed above, the distribution
of page relevance after running the baseline crawler to
collect roughly 15000 to 25000 pages per topic. The
baseline crawler used a standard naive Bayes classifier on
the ordinary term space of whole pages. We see that the
relevance distribution is bimodal, with most pages being
very relevant or not at all. This is partly, but only partly, a
result of using a multinomial naive Bayes model. The naive
Bayes classifier assumes term independence and multiplies
together many (small) term probabilities, with the result
that the winning class usually beats all others by a large
margin in probability. But it is also true that many outlinks
lead to pages with completely irrelevant topics. Figure 5
gives a clear indication of how much improvement we can
expect for each topic from our new algorithm.

3.4 DOM window size and feature selection

A key concern for us was how to limit the maximum window
width so that the total number of synthesized 〈t, d〉 features
remains much smaller than the training data for the baseline
classifier, enabling the apprentice to be trained or upgraded
in a very short time. At the same time, we did not want
to lose out on medium- to long-range dependencies between
significant tokens on a page and the topic of HREF targets
in the vicinity. We eventually settled for a maximum DOM
window size of 5. We made this choice through the following
experiments.

The easiest initial approach was an end-to-end cross-
validation of the apprentice for various topics while
increasing dmax. We observed an initial increase in the
validation accuracy when the DOM window size was
increased beyond 0. However, the early increase leveled
off or even reversed after the DOM window size was
increased beyond 5. The graphs in Figure 6 display these
results. We see that in the Chess category, though the
validation accuracy increases monotonically, the gains are
less pronounced after dmax exceeds 5. For the AI category,
accuracy fell beyond dmax = 4.

Topic #Good #Bad
/Arts/Music/Styles/Classical/Composers 24000 13000
/Arts/Performing_Arts/Dance/Folk_Dancing 7410 8300
/Business/Industries.../Livestock/Horses... 17000 7600
/Computers/Artificial_Intelligence 7701 14309
/Computers/Software/Operating_Systems/Linux 17500 9300
/Games/Board_Games/C/Chess 17000 4600
/Health/Conditions_and_Diseases/Cancer 14700 5300
/Home/Recipes/Soups_and_Stews 20000 3600
/Recreation/Outdoors/Fishing/Fly_Fishing 12000 13300
/Recreation/Outdoors/Speleology 6717 14890
/Science/Astronomy 14961 5332
/Science/Earth_Sciences/Meteorology 19205 8705
/Sports/Basketball 26700 2588
/Sports/Canoe_and_Kayaking 12000 12700
/Sports/Hockey/Ice_Hockey 17500 17900

Figure 4: We chose a variety of topics which were neither
too broad nor too narrow, so that the baseline crawler
was a reasonable adversary. #Good (#Bad) show the
approximate number of pages collected by the baseline
crawler which have relevance above (below) 0.5, which
indicates the relative difficulty of the crawling task.
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Figure 5: All of the baseline classifiers have harvest rates
between 0.25 and 0.6, and all show strongly bimodal
relevance score distribution: most of the pages fetched are
very relevant or not at all.

It is important to notice that the improvement in
accuracy is almost entirely because with increasing number
of available features, the apprentice can reject negative
(low relevance) instances more accurately, although the
accuracy for positive instances decreases slightly. Rejecting
unpromising outlinks is critical to the success of the
enhanced crawler. Therefore we would rather lose a little
accuracy for positive instances rather than do poorly on the
negative instances. We therefore chose dmax to be either 4
or 5 for all the experiments.

We verified that adding offset information to text tokens
was better than simply using plain text near the link [8].
One sample result is shown in Figure 7. The apprentice
accuracy decreases with dmax if only text is used, whereas
it increases if offset information is provided. This highlights
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features boosts the accuracy of the apprentice substantially.

the importance of designing proper features.
To corroborate the useful ranges of dmax above, we

compared the value of average mutual information gain for
terms found at various distances from the target HREF.
The experiments revealed that the information gain of terms
found further away from the target HREF was generally
lower than those that were found closer, but this reduction
was not monotonic. For instance, the average information
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Figure 8: Information gain variation plotted against
distance from the target HREF for various DOM window
sizes. We observe that the information gain is insensitive to
dmax.

gain at d = −2 was higher than that at d = −1; see Figure 8.
For each DOM window size, we observe that the information
gain varies in a sawtooth fashion; this intriguing observation
is explained shortly. The average information gain settled
to an almost constant value after distance of 5 from the
target URL. We were initially concerned that to keep the
computation cost manageable, we would need some cap on
dmax even while measuring information gain, but luckily,
the variation of information gain is insensitive to dmax, as
Figure 8 shows. These observations made our final choice of
dmax easy.

In a bid to explain the occurrence of the unexpected
saw-tooth form in Figure 8 we measured the rate θ〈t,d〉 at
which term t occurred at offset d, relative to the total count
of all terms occurring at offset d. (They are roughly the
multinomial naive Bayes term probability parameters.) For
fixed values of d, we calculated the sum of θ values of terms
found at those offsets from the target HREF. Figure 9(a)
shows the plot of these sums to the distance(d) for various
categories. The θ values showed a general decrease as the
distances from the target HREF increased, but this decrease,
like that of information gain, was not monotonic. The θ
values of the terms at odd numbered distances from the
target HREF were found to be lower than those of the
terms present at the even positions. For instance, the sum
of θ values of terms occurring at distance −2 were higher
than that of terms at position −1. This observation was
explained by observing the HTML tags that are present
at various distances from the target HREF. We observed
that tags located at odd d are mostly non-text tags, thanks
to authoring idioms such as <li><a...><li><a...> and
<a...><br><a...><br> etc. A plot of the frequency of
HTML tags against the distance from the HREF at which
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Figure 9: Variation of (a) relative term frequencies and
(b) frequencies of HTML tags plotted against d.

they were found is shown in Figure 9(b). (The <a...> tag
obviously has the highest frequency and has been removed
for clarity.)

These were important DOM idioms, spanning many
diverse Web sites and authoring styles, that we did not
anticipate ahead of time. Learning to recognize these
idioms was valuable for boosting the harvest of the enhanced
crawler. Yet, it would be unreasonable for the user-supplied
baseline black-box predicate or learner to capture crawling
strategies at such a low level. This is the ideal job of
the apprentice. The apprentice took only 3–10 minutes
to train on its (u, v) instances from scratch, despite a
simple implementation that wrote a small file to disk for
each instance of the apprentice. Contrast this with several
hours taken by the baseline learner to learn general term
distribution for topics.

3.5 Crawling with the apprentice trained
off-line

In this section we subject the apprentice to a “field test” as
part of the crawler, as shown in Figure 2. To do this we
follow these steps:

1. Fix a topic and start the baseline crawler from all
example URLs available from the given topic.

2. Run the baseline crawler until roughly 20000–25000
pages have been fetched.

3. For all pages (u, v) such that both u and v have
been fetched by the baseline crawler, prepare an
instance from (u, v) and add to the training set of
the apprentice.

4. Train the apprentice. Set a suitable value for dmax.
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Figure 10: Guidance from the apprentice significantly
reduces the loss rate of the focused crawler.

5. Start the enhanced crawler from the same set of pages
that the baseline crawler had started from.

6. Run the enhanced crawler to fetch about the same
number of pages as the baseline crawler.

7. Compare the loss rates of the two crawlers.

Unlike with the reinforcement learner studied by Rennie
and McCallum, we have no predetermined universe of URLs
which constitute the relevant set; our crawler must go
forth into the open Web and collect relevant pages from
an unspecified number of sites. Therefore, measuring recall
w.r.t. the baseline is not very meaningful (although we do
report such numbers, for completeness, in §3.6). Instead, we
measure the loss (the number of pages fetched which had to
be thrown away owing to poor relevance) at various epochs
in the crawl, where time is measured as the number of pages
fetched (to elide fluctuating network delay and bandwidth).
At epoch n, if the pages fetched are v1, . . . , vn, then the total
expected loss is (1/n)

∑
i
(1− Pr(c∗|vi)).

Figure 10 shows the loss plotted against the number of
pages crawled for two topics: Folk dancing and Ice hockey.
The behavior for Folk dancing is typical; Ice hockey is
one of the best examples. In both cases, the loss goes up
substantially faster with each crawled page for the baseline
crawler than for the enhanced crawler. The reduction of loss
for these topics are 40% and 90% respectively; typically, this
number is between 30% and 60%. In other words, for most



topics, the apprentice reduces the number of useless pages
fetched by one-third to two-thirds.

In a sense, comparing loss rates is the most meaningful
evaluation in our setting, because the network cost of
fetching relevant pages has to be paid anyway, and can be
regarded as a fixed cost. Diligenti et al. show significant
improvements in harvest rate, but for their topics, the loss
rate for both the baseline crawler as well as the context-
focused crawler were much higher than ours.

3.6 URL overlap and recall

The reader may feel that the apprentice crawler has an
unfair advantage because it is first trained on DOM-derived
features from the same set of pages that it has to crawl
again. We claim that the set of pages visited by the baseline
crawler and the (off-line trained) enhanced crawler have
small overlap, and the superior results for the crawler guided
by the apprentice are in large part because of generalizable
learning. This can be seen from the examples in Figure 11.

Baseline Apprentice Intersect
Basketball 27220 26280 2431
FolkDance 14011 8168 2199
IceHockey 34121 22496 1657
FlyFishing 19252 14319 6834
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Figure 11: The apprentice-guided crawler follows paths
which are quite different from the baseline crawler because
of its superior priority estimation technique. As a result
there is little overlap between the URLs harvested by these
two crawlers.

Given that the overlap between the baseline and the
enhanced crawlers is small, which is ‘better’? As per the
verdict of the baseline classifier, clearly the enhanced crawler
is better. Even so, we report the loss rate of a different
version of the enhanced crawler which is restricted to visiting
only those pages which were visited by the baseline learner.
We call this crawler the recall crawler. This means that in
the end, both crawlers have collected exactly the same set
of pages, and therefore have the same total loss. The test
then is how long can the enhanced learner prevent the loss
from approaching the baseline loss. These experiments are a
rough analog of the ‘recall’ experiments done by Rennie and
McCallum. We note that for these recall experiments, the
apprentice does get the benefit of not having to generalize,
so the gap between baseline loss and recall loss could be
optimistic. Figure 12 compares the expected total loss of
the baseline crawler, the recall crawler, and the apprentice-
guided crawler (which is free to wander outside the baseline
collection) plotted against the number of pages fetched, for a
few topics. As expected, the recall crawler has loss generally
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Figure 12: Recall for a crawler using the apprentice but
limited to the set of pages crawled earlier by the baseline
crawler.

somewhere between the loss of the baseline and the enhanced
crawler.

3.7 Effect of training the apprentice online

Next we observe the effect of a mid-flight correction when
the apprentice is trained some way into a baseline and
switched into the circuit. The precise steps were:

1. Run the baseline crawler for the first n page fetches,
then stop it.

2. Prepare instances and train the apprentice.

3. Re-evaluate the priorities of all unvisited pages v in
the frontier table using the apprentice.

4. Switch in the apprentice and resume an enhanced
crawl.

We report our experience with “Folk Dancing.” The baseline
crawl was stopped after 5200 pages were fetched. Re-
evaluating the priority of frontier nodes led to radical
changes in their individual ranks as well as the priority
distributions. As shown in Figure 13(a), the baseline learner
is overly optimistic about the yield it expects from the
frontier, whereas the apprentice already abandons a large
fraction of frontier outlinks, and is less optimistic about
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Figure 13: The effect of online training of the apprentice.
(a) The apprentice makes sweeping changes in the
estimated promise of unvisited nodes in the crawl frontier.
(b) Resuming the crawl under the guidance of the
apprentice immediately shows significant reduction in the
loss accumulation rate.

the others, which appears more accurate from the Bayesian
perspective.

Figure 13(b) shows the effect of resuming an enhanced
crawl guided by the trained apprentice. The new (u, v)
instances are all guaranteed to be unknown to the apprentice
now. It is clear that the apprentice’s prioritization
immediately starts reducing the loss rate. Figure 14 shows
an even more impressive example. There are additional mild
gains from retraining the apprentice at later points. It may
be possible to show a more gradual online learning effect
by retraining the classifier at a finer interval, e.g., every
100 page fetches, similar to Aggarwal et al. In our context,
however, losing a thousand pages at the outset because of
the baseline crawler’s limitation is not a disaster, so we need
not bother.

3.8 Effect of other features

We experimented with two other kinds of feature, which we
call topic and cocitation features.

Our limiting dmax to 5 may deprive the apprentice of
important features in the source page u which are far from
the link (u, v). One indirect way to reveal such features
to the apprentice is to classify u, and to add the names
of some of the top-scoring classes for u to the instance
(u, v). §2.2.3 explains why this may help. This modification
resulted in a 1% increase in the accuracy of the apprentice.
A further increase of 1% was observed if we added all
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Figure 14: Another example of training the apprentice
online followed by starting to use it for crawl guidance.
Before guidance, loss accumulation rate is over 30%, after,
it drops to only 6%.

prefixes of the class name. For example, the full name
for the Linux category is /Computers/Software/Operating_
Systems/Linux. We added all of the following to the
feature set of the source page: /, /Computers, /Computers/
Software, /Computers/Software/Operating_Systems and
/Computers/Software/Operating_Systems/Linux. We also
noted that various class names and some of their prefixes
appeared amongst the best discriminants of the positive and
negative classes.

Cocitation features for the link (u, v) are constructed by
looking for other links (u,w) within a DOM distance of dmax

such that w has already been fetched, so that Pr(c∗|w) is
known. We discretize Pr(c∗|w) to two values high and low

as in §2.3, and encode the feature as 〈low, d〉 or 〈high, d〉.
The use of cocitation features did not improve the accuracy
of the apprentice to any appreciable extent.

For both kinds of features, we estimated that random
variations in crawling behavior (because of fluctuating
network load and tie-breaking frontier scores) may prevent
us from measuring an actual benefit to crawling under
realistic operating conditions. We note that these ideas may
be useful in other settings.

4 Conclusion

We have presented a simple enhancement to a focused
crawler that helps assign better priorities to the unvisited
URLs in the crawl frontier. This leads to a higher rate of
fetching pages relevant to the focus topic and fewer false
positives which must be discarded after spending network,
CPU and storage resources processing them. There is no
need to manually train the system with paths leading to
relevant pages. The key idea is an apprentice learner which
can accurately predict the worth of fetching a page using
DOM features on pages that link to it. We show that the
DOM features we use are superior to simpler alternatives.
Using topics from Dmoz, we show that our new system can
cut down the fraction of false positives by 30–90%.

We are exploring several directions in ongoing work.
We wish to revisit continuous regression techniques for the
apprentice, as well as more extensive features derived from
the DOM. For example, we can associate with a token t the
length ` of the DOM path from the text node containing t to



the HREF to v, or the depth of their least common ancestor
in the DOM tree. We cannot use these in lieu of DOM offset,
because regions which are far apart lexically may be close
to each other along a DOM path. 〈t, `, d〉 features will be
more numerous and sparser than 〈t, d〉 features, and could
be harder to learn. The introduction of large numbers of
strongly dependent features may even reduce the accuracy
of the apprentice. Finally, we wish to implement some form
of active learning where only those instances (u, v) with the
largest |Pr(c∗|u)−Pr(c∗|v)| are chosen as training instances
for the apprentice.

Acknowledgments: Thanks to the referees for suggest-
ing that we present Figure 7.
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