Cohomology of certain moduli spaces of vector bundles

V BALAJI
The Institute of Mathematical Sciences, Madras 600 113, India

MS received 26 October 1987; revised 20 December 1987

Abstract. Let X be a smooth irreducible projective curve of genus g over the field of complex numbers. Let M_g be the moduli space of semi-stable vector bundles on X of rank two and trivial determinant. A canonical desingularization N_0 of M_g has been constructed by Seshadri [17]. In this paper we compute the third and fourth cohomology groups of N_0. In particular we give a different proof of the theorem due to Nitsure [12], that the third cohomology group of N_0 is torsion-free.

Keywords. Stable bundles; semi-stable bundles; parabolic bundles; conic bundles; Gysin map; Hecke correspondence; Brauer group.

1. Introduction

Let X be a smooth irreducible projective curve of genus g over the field of complex numbers. Non-singular models of the moduli space of semi-stable vector bundles on X of rank two and degree zero have been constructed by Narasimhan–Ramanan [7] and Seshadri [17]. In this paper, we propose to compute some of the Betti numbers of the non-singular model due to Seshadri. In particular we prove the following theorems.

Theorem (A). The third cohomology group of the non-singular model N_0 of [17] is torsion-free, $g \geq 2$.

Theorem (B). Let B_i denote the Betti numbers of N_0. Then we have:

$$B_3 = 2g, \quad B_4 = \binom{2g}{2} + 4, \quad g \geq 4.$$

Theorem (A) is due to Nitsure [11]. He proved this for the non-singular model of [7]. By Artin–Mumford [1], the torsion subgroup of the third cohomology group of a smooth projective variety is a birational invariant. Therefore any non-singular model has torsion-free third cohomology.

We present here a considerably simpler proof of Theorem (A) using the model of [17]; in fact, this was the initial motivation for this work. However we should point out that the general line of attack is as in Nitsure [11]. An extension of the ideas involved in the proof also yields Theorem (B). For computing B_4 and B_5 we make use of the results of Kirwan [5].

Nitsure showed independently that $B_3 = 2g$ for the model of [7] (cf [12]).
In Appendix 1 we present a proof of Theorem (A) due to Coliot-Thélène which is independent of the non-singular model chosen.

Theorems (A) and (B) are of interest in understanding the rationality of these non-singular models of the moduli space of vector bundles.

The layout of the paper is as follows. Section 2 of this paper gives various properties of the non-singular model constructed in [17]. In §3 we construct a canonical generalized conic bundle on the non-singular model N_0. In §4 by using a result of [9], we prove Theorem (A) and show how to compute the Betti numbers of the open subset Z of N_0 lying over the stable bundles and the bundles in the non-nodal part of the Kummer variety. In this section, we also give a description of the Hecke correspondence in terms of parabolic bundles as mentioned in (*). This facilitates the computation of the Betti numbers. In §5 we compute explicitly the codimension of the complement of Z in N_0 and thereby compute its Betti numbers.

The author is grateful to Prof C S Seshadri for suggesting this approach and for many fruitful discussions. He thanks A J Parameshwaran for many an interesting discussion. He also thanks Prof. J Coliot Thélène for communicating his proof.

2. Preliminaries

In this section we shall recall very briefly the definitions and terminologies of [17]. The proofs of most of the statements made in this section can be found in [17] or [18]. We state at the outset that for us the ground field of all our varieties is the field of complex numbers.

(i) X is a smooth irreducible projective curve of genus $g \geq 3$.

(ii) Let V be a vector bundle on X. A parabolic structure at a point $P \in X$ gives

(a) a quasi-parabolic structure i.e. a flag $V_p = F^1 V_p \supseteq F^2 V_p \supseteq \ldots \supseteq F^r V_p.$

(b) weights $\alpha_1, \ldots, \alpha_r$ attached to $F^1 V_p, \ldots, F^r V_p$ such that $0 \leq \alpha_1 < \alpha_2 < \cdots < \alpha_r < 1.$

Call $k_i = \dim F^i V_p - \dim F^2 V_p, \ldots, k_r = \dim F^r V_p$.

the multiplicities of $\alpha_1, \alpha_2, \ldots, \alpha_r$.

The parabolic degree of V is defined by

$$\text{par deg } V = \deg V + \sum_i k_i \alpha_i$$

and write $\text{par } \mu(V) = \text{par deg } V / \text{rk } V$.

If W is a subbundle of V, it acquires, in an obvious way, a quasi-parabolic structure. To make it a parabolic subbundle, we attach weights as follows:

Given $i_0, F^{i_0} W \subset F^i V$ for some; let j_0 be such that $F^{j_0} W \subset F^i V$ and $F^{j_0} W \not\subset F^{j_0 + 1} V$; then the weight of $F^{j_0} V = F^{j_0} W$. Define V to be parabolic stable (resp. semistable) if for every proper subbundle W of V, one has $\text{par } \mu(W) < \text{par } \mu(V)$ (resp. \leq).

Cohomology of certain moduli spaces of vector bundles

If \(V \) be the category of semistable vector bundles on \(X \) of rank \(n \) and degree 0, then we denote by \(PV \) the category of parabolic semistable vector bundles at a fixed point \(P \in X \) and fixed parabolic structure. Recall that, one can choose the weights \((\alpha)\) small enough so as to have the condition 'parabolic semistable' equivalent to 'parabolic stable'.

(iii) \(N \) is the set of isomorphism classes of \((V, \Delta) \in PV\) (\(\Delta \) a parabolic structure), such that \(\text{End} \ V \) is a 'specialization' of \(\mathcal{M}_2 \) — the \(2 \times 2 \) matrix algebra.

In fact, if \((V_1, \Delta_1) \) and \((V_2, \Delta_2) \) belong to \(N \), they represent the same element of \(N \) (i.e. isomorphic in \(PV \)) if and only if the underlying bundles \(V_1 \) and \(V_2 \) are isomorphic (cf [17]). Hence we often simply write \(V \in N \).

(iv) \(\mathcal{A} \) is the variety of all algebra structures on a fixed 4-dimensional vector space which are specializations of \(\mathcal{M}_2 \) and admit a fixed identity element. We have a canonical group of automorphisms acting on \(\mathcal{A} \), namely the subgroup of \(GL(4) \), fixing this identity element.

(v) \(M \) denotes the normal projective variety of equivalence classes of semistable vector bundles of rank 2 and degree 0 under the equivalence relation \(V \sim V' \) if and only if \(\text{gr} \ V = \text{gr} \ V' \).

(vi) \(M^s \) will be the open subset of \(M \) consisting of the stable bundles.

It is known that \(M - M^s \) is precisely the singular locus of \(M \) (cf [6]). The main theorem of [17] is stated below.

Theorem 1. (Seshadri) There is a natural structure of a smooth projective variety on \(N \) and there exists a canonical morphism \(p : N \to M \), which is an isomorphism over \(M^s \). More precisely, if \(V \in N \), then \(\text{gr} \ V = D \oplus D \), with \(\text{rk} \ D = 2 \), \(D \) is a direct sum of stable line bundles of degree 0 and the morphism \(p : N \to M \) is given by \(V \mapsto D \). Further \(V \in p^{-1}(M^s) \) if and only if \(\text{End} \ V \cong \mathcal{M}_2 \) or equivalently (which is easily seen) \(V = W \oplus W \), where \(W \) is stable.

In the course of proving the smoothness of \(N \), Seshadri defined a morphism from a neighbourhood \(U \) of a given point of \(N \) into \(A \) which we shall denote by

\[\phi^U : U \to A. \]

We shall briefly indicate the construction of \(\phi^U \). The functor defining the moduli space \(N \) being representable, we have a defining vector bundle \(E \) on \(X \times N \) of rank 4. Let \(f : X \times N \to N \) be the canonical projection and \(\text{End} \ E \) the vector bundle associated to the sheaf of endomorphisms of \(E \). Set

\[B = f_*(\text{End} \ E). \]

\(B \) is the canonical family of specializations of \(\mathcal{M}_2 \), parametrized by \(N \) (see Prop. 5 [17] for details). Consider any given point \(u \in N \); then choosing a neighbourhood \(U \) of \(u \), which trivialises \(B \), we get a natural morphism

\[\phi^U : U \to A \quad \text{by} \quad V \mapsto \text{End} \ V, \quad V \in U. \]

This morphism exists by the so-called versal property of \(A \). Further, let \(A_u = \text{End} \ V_u \) the vector bundle corresponding to the point \(u \in U \), i.e. \(A_u = \phi^U(u) \). Then, if \(A_u \) is the
mini-versal deformation space of A_0, the morphism
\[\varphi_U^V: U \to A_u \]
induced by the versality of A_u from φ^V is in fact smooth.

Note 1. By an abuse of notation, in the course of this work, we shall suppress U and the mini-versal deformation space corresponding to each point, and simply denote by $\varphi: N \to A$ the smooth local morphism defined above. In fact, we will be using it only in this form in this work.

Note further that these φ_U^V are uniquely determined modulo automorphism coming from the canonical group of automorphisms acting on A.

PROPOSITION 1

The restriction of the local morphism φ to the subvariety N_0 remains smooth.

Proof. Let J denote the Jacobian variety of line bundles of degree zero on X. Then we have a natural morphism
\[\psi: N_0 \times J \to N \]
\[(E, L) \mapsto E \otimes L \]
(that this map is a morphism follows from the universal property of N and the fact that $E \otimes L$ gives a family on X parametrized by $N_0 \times J$).

We claim that ψ is smooth. In fact, ψ is étale. For, let $\Gamma \subset J$ be the finite subgroup of J consisting of the elements of order 2. Then there is a natural diagonal action of Γ on $N_0 \times J$ which is obviously fixed point free. It is not difficult to see that N is actually the quotient of $N_0 \times J$ by Γ and $\psi: N_0 \times J \to N$ the quotient morphism (note that our ground field is \mathbb{C} and if A and B are smooth complex manifolds and G a finite group acting on A such that B is the set theoretic quotient of A by G, then B is A/G).

This Γ-action being fixed point free, ψ is étale.

For $b \in N_0 \times J$, choosing a neighbourhood U of $\psi(b) = u$ in N, we get the following diagram
\[
\begin{array}{ccc}
\psi^{-1}(U) & \xrightarrow{\varphi_U^V} & U \\
\downarrow & & \downarrow \\
A_u & \xrightarrow{\varphi} & A
\end{array}
\]
where A_u is the mini-versal deformation space of the algebra $A_0 = \varphi^V(u)$ in A.

Since φ_U^V, ψ are smooth, so is $\varphi_U^V \psi$. In other words the local morphism (again by abuse of notation)
\[\varphi \circ \psi: N_0 \times J \to A \]
is smooth. If $L \in J$, then $\text{End}(E \otimes J) = \text{End} E$ and hence $\varphi \circ \psi$ clearly factors through N_0 to give the smoothness of the restriction of φ from $N_0 \to A$. Q.E.D.
Remark 1. Because of Prop. 1, by the same arguments as in [17], we see that \(N_0 \) is a smooth-projective variety. We then get an obvious generalization of Theorem 1 namely that \(p: N_0 \rightarrow M_0 \) which is a desingularization of \(M_0 \), and that it is an isomorphism over \(M_0^* \) etc.

3. Conic bundles

DEFINITION 1

Let \(S \) be a variety. A generalized conic bundle \(\mathcal{C} \) on \(S \) gives

(a) a vector bundle \(V \) on \(S \) of rank 3 and
(b) a closed subscheme \(\mathcal{C} \) of \(\mathbb{P}(V) \) over \(S \), such that, given \(s \in S \), there exists a
neighbourhood \(U \) of \(s \), where \(\mathcal{C} \cap p^{-1}(U) \) is defined by \(\theta = 0 \), \(\theta \in \Gamma(p^{-1}(U), H^{2}, H) \) being the tautological line bundle for \(\mathbb{P}(V) \rightarrow S \); i.e. \(p_*(H) \cong V^* \) and therefore \(p_*(V^*) = S^2 V^* \), etc.

By definition, \(\mathcal{C} \) is an effective Cartier divisor and is therefore defined by a section of a line bundle \(\theta \) on \(\mathbb{P}(V) \). Now locally over \(S \), \(\theta \) and \(H^2 \) coincide and therefore by the "see-saw" theorem (cf. Mumford's Abelian varieties) there exists a line bundle \(L \) on \(S \) such that \(\theta = H^2 \otimes p^*(L) \). Since \(p_*(\mathcal{C}) = p_*(H^2) \otimes L = S^2(V^*) \otimes L \), the condition (b) above is equivalent to an element \(q \) of \(\Gamma(S^2(V^*) \otimes L) \) or that is to say a quadratic form

\[q: V \rightarrow \mathbb{L}. \]

The discriminant \(\Delta \) of \(q \) can be defined as a section of \(L^2 \otimes (\Lambda^3(V^*))^2 \) and locally as the usual discriminant of a quadratic form. The equation \(\Delta = 0 \) gives locally the degeneracy locus of \(\mathcal{C} \).

We now introduce subschemes on \(S \), namely for \(i = 1, 2, 3 \), set

\[S_i = \{ s \in S | q \text{ restricted to } V_s, \text{ the fibre at } s, \text{ has rank } \leq 3 - i \}. \]

Then \(S_3 \subset S_2 \subset S_1 \subset S = S_0 \). If \(g: \mathcal{C} \rightarrow S \) be the projection, let \(\mathcal{C}_i = g^{-1}(S_i), i = 1, 2, 3 \). Then we have \(S_1 \) to be the degeneracy locus of \(\mathcal{C} \), i.e. given by \(\Delta = 0 \), and \(S_2 \subset S_1 \) is the singular locus of \(S_1 \). The space \(\mathcal{C} \) can be described as follows: \(\mathcal{C} \setminus \mathcal{C}_1 \) consists of non-degenerate conics; \(\mathcal{C}_1 \setminus \mathcal{C}_2 \) of pairs of lines intersecting transversally; \(\mathcal{C}_2 \setminus \mathcal{C}_3 \) of repeated lines and \(\mathcal{C}_3 \) of the whole plane. We call \(S_1 \) the canonical subschemes associated to the degenerate loci of the conic bundle \(\mathcal{C} \) on \(S \). Accordingly we make the following.

DEFINITION 2

A generalized conic bundle \(\mathcal{C} \) is of type I if \(\mathcal{C}_1 = \phi \); of type II if \(\mathcal{C}_2 = \phi \) and of type III if \(\mathcal{C}_3 = \phi \).

DEFINITION 3 (cf p. 164 [17])

Let \(T \) be an algebraic scheme and \(\{ G_t \}_{t \in T} \) a family of algebras parametrized by \(T \) and defined by a locally free \(\mathcal{O}_T \)-module \(G \) of rank 4. We say that this is a family of specializations of \(\mathcal{M}_2 \) if, given \(t \in T \), there is a neighbourhood \(T_t \) of \(t \) and a morphism
Let $f: T \to \mathcal{A}$, such that $\{G_i\}_{i \in T}$ is the base change of $\{A_y\}_{y \in \mathcal{A}}$ by f, where A_y is the algebra structure corresponding to $y \in \mathcal{A}$.

Remark 2. By Remark 3 [17], the above definition has an equivalent formulation as follows: Let $T = \text{Spec } R$, and G be an R-algebra with identity e_0 such that the underlying R-module is free of rank 4. Let $J = G/R e_0$. Consider the canonical Lie algebra structure on J induced by the associative algebra structure on G. This gives a canonical skew-symmetric bilinear map $J \times J \to J$ or equivalently (in our case) an element of $J \otimes J$. Then we say the algebra G gives a family of specializations of \mathcal{M}_2 parametrized by T, if this Lie algebra structure is defined by a symmetric element of $J \otimes J$. Further, the algebra G is isomorphic to C^*_q, q being the corresponding quadratic form. This definition generalizes, in an obvious way, when T is any scheme, and G a vector bundle of rank 4 on T; however, the quadratic form q on J takes values in a line bundle on T.

Note 2. We shall use this reformulation in the course of this work.

Remark 3

(i) Restrict the canonical family B of specialization of \mathcal{M}_2 parametrized by N to the subvariety N_0. Call this family B_0.

(ii) For $y \in \mathcal{A}$, let A_y be the corresponding algebra structure; then $\{A_y\}_{y \in \mathcal{A}}$ gives an obvious family of specializations of \mathcal{M}_2.

(iii) Let $T = \text{Spec } R$ and G an R-algebra giving a family of specializations of \mathcal{M}_2. Then by Remark 2, we get a symmetric element of $J \otimes J = G/R e_0$. This symmetric element naturally gives rise to a symmetric bilinear form on J^* (the R-dual of J) and therefore a quadratic form on J^*. Now J^* being a projective R-module of rank 3, it defines a vector bundle of rank 3 on T. More generally, if we are given an algebraic scheme T, a family $\{G_i\}_{i \in T}$ of specializations of \mathcal{M}_2, then we have a canonical vector bundle V of rank 3 on T together with a C^*_T-valued quadratic form $q: V \to C^*_T$, and thus a conic bundle on T.

(iv) The families B_0 on N_0 and $\{A_y\}_{y \in \mathcal{A}}$ on \mathcal{A} give generalized conic bundles on N_0 and \mathcal{A} respectively.

Notation 1. Denote these conic bundles by P on N_0 and Q on \mathcal{A}.

PROPOSITION 2

The conic bundle P on N_0 is locally the base change of Q on \mathcal{A} by the local morphism $\varphi: N_0 \to \mathcal{A}$ of §2.

Proof. This is an immediate consequence of the definitions of φ, B_0 and $\{A_y\}_{y \in \mathcal{A}}$.

Remark 4. Following §3, we introduce the canonical subschemes

$$\mathcal{A}_3 \subset \mathcal{A}_2 \subset \mathcal{A}_1 \subset \mathcal{A} \quad \text{and} \quad N_3 \subset N_2 \subset N_1 \subset N_0$$

associated to the degeneracy locus of Q and P respectively. Then, by Prop. 2, φ
Cohomology of certain moduli spaces of vector bundles

locally maps $N_0 - N_2$ into $\mathcal{A} - \mathcal{A}_2$ in such a way that $N_1 - N_2 \to \mathcal{A}_1 - \mathcal{A}_2$, $N_0 - N_1 \to \mathcal{A} - \mathcal{A}_1$.

Remark 5. By Theorem 1 [17] we know that $\mathcal{A} \cong \Phi \times \Lambda$, where Λ is the 3-dimensional affine space and Φ the 6-dimensional affine space whose points are identified with the set of quadratic forms on a fixed 3-dimensional vector space (or algebras of the form $C_q^+\text{—the even degree elements of the Clifford algebra associated to the quadratic form } q$). Therefore we have for $i = 1, 2, 3$

$$\mathcal{A}_i = \{ q \in \Phi | \text{rank } q \leq 3 - i \} \times \Lambda^3.$$

Note that

$$\mathcal{A}_0 - \mathcal{A}_1 = \{ q | q \in \Phi, C_q^+ \cong \mathcal{M}_2 \} \times \Lambda^3$$

or equivalently

$$\mathcal{A}_0 - \mathcal{A}_1 = \{ y | A_y \cong \mathcal{M}_2 \}.$$

Notation 2. We denote the subsets $N_0 - N_2$ and $N_1 - N_2$ of N_0 by Z and Y respectively.

Let $K = M_5 - M_0$, be the singular locus of M_0. The bundles here are of the form $L \oplus L^{-1}$, where L is a line bundle of degree 0. Let K_0 be the 'nodes' of K (i.e. consisting of bundles of the type $L \oplus L$ with L^2 trivial). Then

$$K - K_0 = L \oplus L^{-1}, \quad \text{let } J - \Gamma,$$

J and Γ as in §2. It may be noted that K is a Kummer variety of dim q (cf [6]).

PROPOSITION 3

The subsets Z and Y of N_0 are precisely $N_0 - p^{-1}(K_0)$ and $p^{-1}(K - K_0)$ respectively, where $p: N_0 \to M_0$ is the desingularization morphism. In particular, $Z - Y = p^{-1}(M_0^*)$.

Proof. By Remark 3, it is enough to show that the subsets $p^{-1}(M_0^*)$ and $p^{-1}(K - K_0)$ of N_0 are mapped locally by φ into the subsets $\mathcal{A}_0 - \mathcal{A}_1$ and $\mathcal{A}_1 - \mathcal{A}_2$ of \mathcal{A}_1 respectively. We know that $V \in p^{-1}(M_0^*)$ if and only if $\text{End } V \cong \mathcal{M}_2$, which shows $p^{-1}(M_0^*)$ maps to $\mathcal{A}_0 - \mathcal{A}_1$.

Therefore it is enough to show that, for $E \in p^{-1}(K - K_0)$, $\text{End } E$ has the same defining relations as that of the algebra C_q^+, for a quadratic form q of rank 2 on a 3-dimensional vector space.

By definition of the desingularization, the endomorphism algebras of any two points in a fibre $p^{-1}(L \oplus L^{-1})$ are isomorphic. So we consider a point E in $p^{-1}(L \oplus L^{-1})$ where $E = V \oplus W, V \in \text{Ext}(L, L^{-1})W \in \text{Ext}(L^{-1}, L), L \in J - \Gamma$. i.e.

$$0 \to L \to V \to L^{-1} \to 0,$$

$$0 \to L^{-1} \to W \to L \to 0.$$

(1)

It is clear that points of this type are actually in $p^{-1}(K - K_0)$. Using (1), it is easy to see that $\text{End}(V \oplus W)$ has four generators, which in terms of block matrices can
be described as

\[x = \begin{pmatrix} 0 & 0 \\ \gamma_2 & 0 \end{pmatrix}, \quad w = \begin{pmatrix} 0 & \gamma_1 \\ 0 & 0 \end{pmatrix}, \quad u = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, \quad v = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}, \]

where \(I = 2 \times 2 \) identity matrix, and \(\gamma_1, \gamma_2 \) coming from identification of the line bundles in the exact sequence (1). The defining relations can be given as

\[u^2 = u, \quad v^2 = v, \quad uv = 0, \quad u + v = I, \]
\[w^3 = wx = 0, \quad uv = w, \quad wu = 0, \]
\[u = 0, \quad xu = x, \quad vw = 0, \quad wv = w \]
\[w = x, \quad xv = 0. \]

(2)

If \(q \) is a quadratic form of rank 2 on a 3-dimensional vector space over an algebraically closed field \(k \) then it is easily seen that \(C_q^+ \) is the even degree elements of the Clifford algebra of \(q \) is a 4-dimensional \(k \)-algebra with

\[C_q^+ = k + k\alpha + k\beta + k\gamma \quad \text{such that} \]
\[\alpha^2 = -1, \quad \alpha\beta = -\gamma, \quad \alpha\gamma = \beta \]
\[\beta\alpha = \gamma, \quad \gamma\alpha = -\beta. \]

Now put \(a = \frac{1}{2}(1 + i\alpha), \ b = \frac{1}{2}(1 - i\alpha), \ c = i\beta + \gamma, \ d = i\beta - \gamma \), where \(i = \sqrt{-1} \in k \). Then \(a, b, c, d \) are new generators of \(C_q^+ \) with the following defining relations

\[a^2 = a, \quad b^2 = b, \quad ab = 0, \quad a + b = 1, \]
\[c^2 = d^2 = cd = 0, \quad ac = c, \quad ca = 0, \]
\[ad = 0, \quad da = d, \quad bc = 0, \quad cb = c, \]
\[bd = d, \quad db = 0. \]

(3)

A glance at (2) and (3) proves our claim.

Q.E.D.

COROLLARY 1

\(Y \overset{p}{\rightarrow} K - K_0 \) is a \(\mathbb{P}^{s-2} \times \mathbb{P}^{s-2} \) fibration associated to a vector bundle on \(K - K_0 \).

Proof. Indeed; we claim that, if \(E \in Y = p^{-1}(K - K_0) \) then \(E = V \oplus W \), for some \(V \in \mathbb{P}(\text{Ext}(L, L^{-1})), \ W \in \mathbb{P}(\text{Ext}(L^{-1}, L)) \ L \in I - \Gamma \).

Let \(E \in p^{-1}(K - K_0) \); then, \(\text{End } W \) has four generators \(x, w, u, v \) with defining relations (2) as in Prop. 3. Consider \(u \in \text{End } E \), and let \(V = \ker u \). Then \(V \) is a subbundle of \(E \) and we have an exact sequence

\[0 \rightarrow V \rightarrow E \rightarrow W \rightarrow 0. \]

It is clear then that \(W \) is in fact \(\ker v, v \in \text{End } E \) and therefore we get a splitting of the exact sequence, implying \(E = V \oplus W \).
Now using Prop. 1 of [17], V and W cannot be of the type \(L \oplus L \) or \(L^{-1} \oplus L^{-1} \). For the same reason, since \(E \in P(V) \), we rule out \(V = L \oplus L^{-1}, W = L^{-1} \oplus L \). Hence we are left with \(V \in \mathcal{P}(\text{Ext}(L, L^{-1})), W \in \mathcal{P}(\text{Ext}(L^{-1}, L)) \) or vice versa.

Note that for \(L \to K - K_0, \text{Ext}(L, L^{-1}) = H^1(X, L^{-2}) \) has dimension \(g - 1 \) and therefore \(Y \) is a \(\mathbb{P}^{g-2} \times \mathbb{P}^{g-2} \) fibration over \(K - K_0 \). The vector bundle to which this is associated has fibre at any \(L \in K - K_0 \) to be \(\text{Ext}(L, L^{-1}) \oplus \text{Ext}(L^{-1}, L) \).

COROLLARY 2

The fibration \(Y \to K - K_0 \) is locally trivial in the Zariski topology.

Proof. This follows from Cor. 1 and Serre (cf [15]).

PROPOSITION 4

Let \(P - P_2 \) be the restriction of the conic bundle \(P \) over points of \(N_0 - N_2 \) (i.e. \(Z \)). Then the total space of \(P - P_2 \) is smooth.

Proof. By Prop. 2, \(P - P_2 \) is locally the base change of \(Q - Q_2 \) (the restriction of \(Q \) over points of \(\mathcal{A} - \mathcal{A}_2 \)). Since \(\varphi: N_0 \to \mathcal{A} \) is a smooth local morphism, the total space of \(P - P_2 \) is smooth if and only if the total space of \(Q - Q_2 \) is so.

Consider any point \((a_1, a_2, a_3, a_4, a_5, a_6) \in \mathbb{A}^6 \). This defines a quadratic form

\[
q = a_1 X^2 + a_2 XY + a_3 Y^2 + a_4 XZ + a_5 YZ + a_6 Z^2.
\]

We therefore have a conic bundle \(C \) over \(\mathbb{A}^6 \) by considering the conics defined by the quadratic forms. By Remark 4 it is clear that the conic bundle \(Q \) on \(\mathcal{A} \) is 'essentially' the conic bundle \(C \). Thus we would have proved our claim if we show that the total space of \(C \to \mathbb{A}^6 - S^1 \) is smooth, where \(S \) is the degeneracy locus of \(C \) and \(S' \subset S \) its singular locus. We have in fact more.

Lemma 1. Let \(\theta: C \to \mathbb{A}^6 \) be the canonical morphism. Then \(\theta^{-1}(\mathbb{A}^6 - \{0\}) \) is smooth.

Proof. Let \(P \in C \) be any point. Then \(P \) can be given by \((a_1, a_2, a_3, a_4, a_5, a_6, X, Y, Z) \) where not all \(a_i = 0 \) and not all \(X, Y, Z = 0 \). \(P \) lying on the conic defined by \(q = a_1 X^2 + a_2 XY + a_3 Y^2 + a_4 XZ + a_5 YZ + a_6 Z^2 \). Taking partial derivatives of \(q \) with respect to \(a_i, i = 1, \ldots, 6 \), we have

\[
\frac{\partial q}{\partial a_i} = 0, \quad i = 1, \ldots, 6 \Rightarrow X = Y = Z = 0.
\]

Q.E.D.

4. Cohomology computations

4.1 The Gysin map

Let \(W \) be a conic bundle of type I (cf Def. 2) on a variety \(S \). This gives rise to a topological Brauer class \(b_W \in H^3(S, \mathbb{Z})_{\text{tors}} \) (i.e. the torsion subgroup of \(H^3(S, \mathbb{Z}) \)).
Let W be a conic bundle of type II (cf Def. 2). Then if W degenerates to a pair of lines over an irreducible divisor $S_1 \subset S$, the restriction W_1 of W over S_1 gives rise in a natural way to a double cover of S_1 (cf Lemma on p. 29 of [8]) and $W-W_1$ is a conic bundle of type I over $S-S_1$. We shall denote by α the element in $H^3(S_1, \mathbb{Z})$ coming from this double cover. Consider the part of the Gysin sequence for $S_1 \subset S$ which involves $H^3(S, \mathbb{Z})$, i.e.

$$H^1(S_1, \mathbb{Z}) \to H^3(S, \mathbb{Z}) \to H^3(S-S_1, \mathbb{Z}) \xrightarrow{\alpha} H^2(S_1, \mathbb{Z}).$$

Then we have here the

Theorem 2. (Nitsure [9],[11]) Let W be a conic bundle of type II on S. If the total space of W is smooth, then the image of $b_{w-W_1} \in H^3(S-S_1, \mathbb{Z}_{\text{tors}})$ under the Gysin map g, is precisely $\alpha \in H^2(S_1, \mathbb{Z})$. In particular if $\alpha \neq 0$, then $b_{W-W_1} \neq 0$.

PROPOSITION 5

Let W be a conic bundle of type I over S where $H^1(S, \mathbb{Z}) = 0$ and with $b_W \neq 0$ in $H^3(S, \mathbb{Z}_{\text{tors}})$. Suppose that there exists another topological $\mathbb{P}^1 - \text{bundle } U \to S$ with the property that $H^2(U, \mathbb{Z}_{\text{tors}}) = 0$. Then $b_W = \pm b_U$ and $H^3(S, \mathbb{Z}_{\text{tors}})$ is generated by b_W.

Proof. To prove this proposition, we shall appeal to the following well-known (cf[11]).

Lemma 2. Let $U \to S$ be a \mathbb{P}^1-bundle over a path connected space S with $H^1(S) = 0$. Then the kernel of the induced homomorphism $H^1(S, \mathbb{Z}) \to H^1(U, \mathbb{Z})$ is generated by b_U.

We now apply the lemma to $U \to S$. Since we have $H^2(U, \mathbb{Z}_{\text{tors}}) = 0$, we get $H^3(S, \mathbb{Z}_{\text{tors}})$ to be generated by b_U, which is a 2-torsion element. Also b_W lies in $H^3(S, \mathbb{Z}_{\text{tors}})$, and $b_W \neq 0$ which implies $b_W = \pm b_U$. This proves Prop. 5.

The next step is to construct explicitly a \mathbb{P}^1-bundle on the subspace $Z - Y$ which satisfies the property of Prop. 5. For this purpose, we elaborate in some detail, what is called the 'Hecke correspondence' of [7], in terms of parabolic bundles as remarked in (*).

Let V be a vector bundle on X of rank 2 and degree 0. Suppose we are given a parabolic structure at a point $x \in X$, defined by a 1-dimensional subspace

$$F^2V_x \subset F^1V_x = V_x$$

and weights (α_1, α_2) such that

(i) parabolic stable = parabolic semi-stable,
(ii) parabolic stable \Rightarrow underlying bundle is semi-stable, and
(iii) underlying bundle stable \Rightarrow any parabolic structure is stable.

Let T be the torsion \mathcal{O}_x-module given by

$$T_x = V_x/F^2V_x, \quad T_y = 0, \quad x \neq y.$$

Then we have a homomorphism of V onto T (as O_X-modules). If W is the kernel of this map, we have $0 \to W \to V \to T \to 0$ and W is locally free of rank 2 and degree -1.

Let \tilde{M} be the moduli space of parabolic stable bundles of rank 2, degree 0 on X and M_{-1} the moduli space of stable bundles of rank 2, degree -1, $f: \tilde{M} \to M$, the canonical morphism, and $M_0 = f^{-1}(M_0)$.

Proposition 6

If $V \in \tilde{M}$ then W defined above, is in M_{-1} and the map $\psi: \tilde{M} \to M_{-1}, V \mapsto W$ is a \mathbb{P}^1-bundle, locally trivial in the Zariski topology. In fact it is the dual projective Poincaré bundle on M_{-1}.

Proof. We first claim that if V is parabolic stable then W is stable. To see this, let $F \subseteq W$ be a line subbundle. We need to show that $\deg F < 0$. Suppose this is not the case i.e. $\deg F \geq 0$.

Let G be the line subbundle of V generated by the image of F in V. Then $\deg G \leq \deg F$. Since the underlying bundle of V is certainly semi-stable, we have $\deg G \leq 0$. By our assumption $\deg F \geq 0$ and hence we have $\deg F = \deg G = 0$. This implies that the canonical homomorphism $F \to G$ is an isomorphism. We also see that by the definition of T

$$G_\xi = F^2 V_\xi,$$

but V being parabolic stable with weights $0 < x_1 < x_2$ we get

$$\text{par } \deg G = x_2 < \frac{1}{2}(x_1 + x_2) = \text{par } \deg V/\text{rk } V$$

which leads to a contradiction. Hence W is stable. Conversely, we claim that \tilde{M} is isomorphic to the dual projective Poincaré bundle of M_{-1} restricted to M_{-1}. To see this, we start with a $W \in M_{-1}$, then, given a point in $P(W^*_x), x \in X$, one can easily obtain a vector bundle V of rank 2 and degree 0 and an injection $W \to V$ as O_ξ-modules. The cokernel then gives a 1-dimensional subspace $F^2 V_\xi$ of V_x and therefore a 'quasi-parabolic structure'. The stability of W together with an argument as above, makes V parabolic stable. That this map is an isomorphism is a consequence of the universal property of the moduli space of parabolic stable bundles.

That $\tilde{M} \to M_{-1}$ is locally trivial in the Zariski topology, now follows from Serre [15].

Q.E.D.

Proposition 7

Consider the canonical morphism $f: \tilde{M}_0 \to M_0$. Then f is a \mathbb{P}^1-fibration over M_0 and $f^{-1}(K)$ has codimension $q-1$ in \tilde{M}_0.

Proof. That f is a \mathbb{P}^1-fibration over M_0 is immediate by the property (3) mentioned before Prop. 6. Let $L \oplus L^{-1} \subseteq K - K_0$. Then the points of \tilde{M}_0 lying over $L \oplus L^{-1}$ are of the following form:

Case 1. V is a non-trivial extension of L^{-1} by L (or L by L^{-1})

We claim that a parabolic structure on V which is equivalent to giving a subspace $F^2 V_\xi$ of V_ξ of dimension one, is stable if and only if $L_\phi \not\subseteq F^2 V_\phi$. This is necessary to
ensure parabolic stability, for otherwise if \(L_p \neq F^2 V_p \), then per deg \(L = \deg L + \alpha_2 = \alpha_2 \) and \(\alpha_2 \neq \text{par deg} V/rk V = \frac{1}{2}(\alpha_1 + \alpha_2) \), since \(\alpha_1 < \alpha_2 \).

Case 2. \(V = L \oplus L^{-1} \)

We claim that a parabolic structure \(F^2 V_p \) such that \(F^2 V_p \neq L_p \) or \(L^{-1} \) is stable. This is easily checked as above. In fact we see by an argument as in Prop. 1 of [17] all the parabolic structures of Case 2 are isomorphic and hence give one point of \(M \). Hence the total dimension of the fibre at \(L \oplus L^{-1} = \dim \text{Ext}(L, L^{-1}) + 1 = g - 1 \). Therefore, \(\dim f^{-1}(K - K_0) = 2g - 1 \).

In fact, it is not difficult to see that for \(x \in K - K_0 \), \(f^{-1}(x) \) is the union of two projective spaces of dimension \(g - 1 \) meeting at a point.

Finally, let \(V \in M_0 \) be such that \(\text{gr} V = L \oplus L \) (\(L \) of order two). Then the following can easily be checked.

(i) \(V \) has a parabolic stable structure if and only if \(V \) is a non-trivial extension of \(L \) by \(L \).

(ii) A parabolic structure given by \(F^2 V_p \) is stable iff \(F^2 V_p \neq L_p \) (where \(L \) is the unique line subbundle of \(V \)).

Once again by an argument as in Prop. 1 [17] we see that all the parabolic structures on a non-trivial extension \(V \) of \(L \) by \(L \) are isomorphic. Hence the fibre of \(f \) over \(L \oplus L \) is isomorphic to \(\mathbb{P}(H^1(X, E)) \) which has dimension \(g - 1 \), implying \(\text{codim} (f^{-1}(K), M_0) = g - 1 \).

Remark 6. Thus we have the following diagram

\[\begin{array}{ccc}
\bar{M} & \xleftarrow{\psi} & M \\
\downarrow f & & \downarrow \\
M_{-1} & \xleftarrow{\beta} & M
\end{array} \]

which gives a correspondence between \(M_{-1} \) and \(M \).

PROPOSITION 8

The fibration \(Y \to K - K_0 \) with fibre \(F = \mathbb{P}^{g-2} \times \mathbb{P}^{g-2} \) satisfies the conditions of the Leray–Hirsch theorem and consequently we have

\[H^*(Y, \mathbb{R}) \simeq H^*(K - K_0, \mathbb{R}) \otimes H^*(F, \mathbb{R}) \].

Proof. The following form of the Leray–Hirsch theorem will suit our purposes.

Leray–Hirsch. Let \(E \) be a fibre bundle over \(B \) and compact fibre \(F \). Suppose \(B \) has a finite good cover. If there are global cohomology classes \(e_1, \ldots, e_s \) on \(E \) which, when restricted to each fibre freely, generate the cohomology of the fibre, then \(H^*(E, \mathbb{R}) \) is a free module over \(H^*(B, \mathbb{R}) \) with basis \(e_1, \ldots, e_s \); or more precisely, if the canonical map \(j: H^*(E, \mathbb{R}) \to H^*(F, \mathbb{R}) \), is surjective, then for any subspace \(W \) of \(H^*(E, \mathbb{R}) \) such that \(j|W: W \to H^*(F, \mathbb{R}) \) is an isomorphism, one has

\[H^*(E, \mathbb{R}) = H^*(B, \mathbb{R}) \otimes W. \]
Cohomology of certain moduli spaces of vector bundles

Since F in our case is $\mathbb{P}^{s-2} \times \mathbb{P}^{s-2}$, $H^*(F, \mathbb{R})$ is generated by line bundles on F. Therefore it is enough to check that any line bundle on F can be extended to a line bundle on Y.

By Cor. 2, $Y \to K - K_0$ is locally trivial in the Zariski topology. Let L be a line bundle on F, and $U \subset K - K_0$ be the trivializing Zariski open subset. Then L can be obviously extended to a line bundle on $U \times F$, which we continue to denote by L. Since Y is smooth, the bundle L on the open subset $U \times F$ of Y can be extended to a line bundle on Y.

Q.E.D.

PROPOSITION 9

The element $x \in H^2(Y, \mathbb{Z})$, associated to the double cover on Y arising from the conic bundle P is non-zero.

Proof. We claim that this double cover on Y is in fact the pull-back of the covering

$$J - \Gamma \to K - K_0,$$

J being the Jacobian of line bundles of deg 0 on X [for notations cf. §2]. Since this covering is non-split, it follows from Prop. 3, that the double cover on Y is non-split and the covering element in $H^1(Y, \mathbb{Z}/(2))$ is non-zero.

By Prop. 8 and Spanier [19], $H^1(Y, \mathbb{Z}) = 0$. Hence if we consider the cohomology exact sequence for

$$0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/(2) \to 0$$

we get

$$H^1(Y, \mathbb{Z}/(2)) \subset H^2(Y, \mathbb{Z}).$$

Since $x \in H^2(Y, \mathbb{Z})$ is the image of the covering element in $H^1(Y, \mathbb{Z}/(2))$, it is non-zero. Thus to complete the proof of Prop. 9, it is enough to prove the claim.

Fix $t_0 \in X$. Then if $E \in N_0$, one can easily see that E_{t_0} can be identified with right regular representation of $A = \text{End} E$ (see for e.g. Prop. 5 [17]).

Let $E = V \oplus W$ be an element of Y as in Prop. 3. It is easy to see that the scalars in A do not meet V_{t_0} and W_{t_0} under the above identification. So if we consider the projective space $\mathbb{P}(A')$, $A' = A/\text{(scalars)}$, then V_{t_0} and W_{t_0} give a pair of lines in $\mathbb{P}(A')$. By Prop. 3, identifying the algebra A with a $\mathbb{C}^*_+ \text{ associated to a quadratic form } q \in \Phi$, it is clear that this pair of lines is indeed the ones in the conic bundle over Y.

Then the one-dimensional subspaces L_{t_0} and $L_{t_0}^{-1}$ give a pair of points L_{t_0} and $L_{t_0}^{-1}$ in $\mathbb{P}(A')$. Then the correspondence

$$E \mapsto (\bar{L}_{t_0}, \bar{L}_{t_0}^{-1})$$

gives a double covering on Y since we have a defining family of vector bundles $E_y = \{V_y \oplus W_y\}_{y \in Y}$. Obviously, this is the canonical double cover associated to the conic bundle on Y.

Note that $\{L_y \oplus L_y^{-1}\}_{y \in Y}$ gives a family on Y which is clearly the pull-back $p^*\{L_{t_0} \oplus L_{t_0}^{-1}\}_{y \in K - K_0}$, under $p: Y \to K - K_0$.

The double cover of Y given above is therefore the pull-back of the double cover of $K - K_0$ given by $J - \Gamma \to K - K_0$.

Q.E.D.
PROPOSITION 10

(a) Let Z and Y be as in §3. Then there exists a topological \mathbb{P}^1-bundle D on $Z - Y$ with $H^*(D, \mathbb{Z})$ torsion free. In fact $D = f^{-1}(M_0^*)$.

(b) The topological Brauer class $b_D \neq 0$.

Proof. (a) By Prop. 7, $f^{-1}(K)$ has codimension $g - 1$ in M_0 and $D = M_0 - f^{-1}(K)$.

Consider $\psi: \tilde{M}_0 \to M_{-1,x}, M_{-1,x}$ being bundles in M_{-1} with determinant L_x. Since the \mathbb{P}^1 fibration ψ is locally trivial in the Zariski topology, a line bundle L on the fibre \mathbb{P}^1 can be extended obviously to $\mathbb{P}^1 \times U$, where U is a Zariski open subset of $M_{-1,x}$. Since \tilde{M}_0 is smooth, the closure of L in M_0 gives a line bundle on \tilde{M}_0. Now, the cohomology of \mathbb{P}^1 is generated by line bundles and therefore we can apply Leray–Hirsch theorem to conclude that the cohomology groups of \tilde{M}_0 are those of $\mathbb{P}^1 \times M_{-1,x}$.

By Atiyah–Bott [2], all the cohomology groups of $M_{-1,x}$ are torsion-free and therefore all the cohomology groups of \tilde{M}_0 are also torsion-free.

Since $g = 3$, the complex codimension of $f^{-1}(k)$ in $\tilde{M}_0 = g - 1 \geq 2$. This implies $\text{Codim}_g f^{-1}(K) \subset \tilde{M}_0 \geq 4 = g - 1 \geq 2$.

Consider the homology sequence of the pair (\tilde{M}_0, D)

$$
\tilde{M}_0 : H_k(\tilde{M}_0, D, \mathbb{Z}) \to H_{k-1}(D, \mathbb{Z}) \to H_k(\tilde{M}_0, \mathbb{Z}) \to H_{k-1}(\tilde{M}_0, D, \mathbb{Z})
$$

By Alexander duality to the pair (\tilde{M}_0, D) to get

$$
H_k(\tilde{M}_0, D, \mathbb{Z}) \cong H^{n-k}(\tilde{M}_0 - D, \mathbb{Z})
= H^{n-k}(f^{-1}(K), \mathbb{Z})
= n = \dim_{\mathbb{R}} \tilde{M}_0.
$$

Since $\dim_{\mathbb{R}} f^{-1}(K) \leq n - 4$, we therefore get

$$
H_2(\tilde{M}_0, D, \mathbb{Z}) = H^{n-2}(f^{-1}(K), \mathbb{Z}) = 0
$$

and similarly $H_3(\tilde{M}_0, D, \mathbb{Z}) = 0$.

$$
H_2(D, \mathbb{Z}) = H_2(\tilde{M}_0, \mathbb{Z}).
$$

By the ‘universal coefficient theorem’ one has torsion subgroup of $H_4(T, \mathbb{Z})$ to be that of $H^{k+1}(T, \mathbb{Z})$, T any topological space, and therefore we conclude that

$$
H^3(D, \mathbb{Z})_{\text{tors}} = H^3(\tilde{M}_0, \mathbb{Z})_{\text{tors}} = (0).
$$

Note that $Z - Y = M_0^*$ and this completes the proof. Q.E.D.

The claim (b) is due to Ramanan (p. 52 [18]).

Theorem 3. $H^3(Z, \mathbb{Z})$ is torsion free.
Cohomology of certain moduli spaces of vector bundles

\textit{Proof.} Consider the Gysin sequence for \((Z, Z - Y)\),

\[H^1(Y, Z) \to H^3(Z, Z) \to H^3(Z - Y, Z) \xrightarrow{g} H^2(Y, Z) \]

Now by Cor. 2, \(Y\) is a \(\mathbb{P}^{p-2} \times \mathbb{P}^{q-2}\) fibration over \(K - K_0\) and by (\((19)\) p.159) \(H^1(K - K_0, Z) = 0\) implying by standard arguments \(H^1(Y, Z) = 0\) (note that \(H^1(Y, Z)\) is torsion-free by the universal coefficient theorem).

Thus we have from the Gysin sequence an injection

\[H^3(Z, Z) \hookrightarrow H^3(Z - Y, Z). \quad \text{(*)} \]

Now note that \(H^1(Z - Y, Z) = 0\). (This follows for example from the Gysin sequence. For, note that \(H^1(Z - Y, Z) \cong H^1(Z, Z)\). Also we will be seeing in §5 that the codimension of \(N_0 - Z\) in \(N_0\) is actually 6. But \(N_0\) is unirational and is therefore simply connected, being smooth projective (cf. Serre [16]). Hence \(H^1(N_0, Z) = 0\) implying \(H^1(Z, Z) = 0 = H^1(Z - Y, Z)\).

Thus we can now apply Prop. 5 and Prop. 10 to see that \(H^3(Z - Y, Z)_{\text{tors}}\) is generated by \(b_{p - p_1}\), the Brauer element coming from the conic bundle \(P - P_1\) over \(N_0 - N_1 = Z - Y\). By Prop. 4 the total space of \(P - P_1\) is smooth and hence the theorem due to Nitsure mentioned in §41 is applicable. Thus we have

\[g(b_{p - p_1}) = \alpha \neq 0 \quad (\alpha \neq 0 \text{ by Prop. 9}). \]

This together with (*) and the exactness of the Gysin sequence gives \(H^3(Z, Z)_{\text{tors}} = 0\). Q.E.D.

\textbf{Lemma 3.} Pic\(Z\) is generated by Pic\((Z - Y)\) and the element \([Y]\) coming from the irreducible divisor \(Y \subset Z\).

\textit{Proof.} This follows from the following general fact:

If \(X\) is a smooth variety, \(U \subset X\) open with \(Y = X - U\) an irreducible divisor, then

\[\text{Pic} X \to \text{Pic} U \]

is a surjection and the kernel of this homomorphism is generated by \([Y]\).

\textbf{Lemma 4.} Let \(N_1 \subset N_0\) be as in §3. Then Pic\(N_0\) is generated by Pic\(M_0\) and \([N_1]\) over \(\mathbb{Q}\)(*).

\textit{Proof.} Firstly, we remark that \(N_1\) is precisely \(\overline{Y}\) in \(N_0\). Actually, we will be showing in §5 that \(Y \subset N_1\) is precisely the set of non-singular points of \(N_1\). Let us assume this. Suppose \(N_1\) is not irreducible and let \(A, B\) be subvarieties such that \(N_1 = A \cup B\). Then \(A \cap B \subset N_1 - Y\) and hence \(A \cap Y\) and \(B \cap Y\) will disconnect \(Y\) which

\[(*) \text{ In fact, over } \mathbb{Z} \text{ see Remark in Appendix 2).} \]
is false since Y is connected. Thus N_1 is irreducible. Also since Y is irreducible it follows that $\overline{Y} = N_1$.

An application of Lemma 4 and the result of Appendix 2 yields our result.

Remark 7. Thus by the above lemma, any $L \in \text{Pic } N_0$ can be expressed as $L = aL_1 + bL_2$, $L_1 = [N_1]$ and $L_2 \in \text{Pic } M_0$, $a, b \in \mathbb{Q}$.

In particular, let L be chosen ample. Then if F is the fibre of $Y \to K - K_0$, L when restricted to F is $(aL_1 + bL_2)|F$. But since $L_2 \in \text{Pic } M_0$, which is trivial on F, we have

$$L|F = (aL_1)|F$$

F is $\mathbb{P}^2 \times \mathbb{P}^2$ and L is ample, therefore we have the restriction of L_1 to each \mathbb{P}^2 to be either ample or negatively ample.

Let $e \in H^2(Y, \mathbb{R})$ be the Euler class of the irreducible divisor Y in Z. Then by the 'adjunction formula', we have

$$e = [Y],$$

where $[Y]$ is the class of $Y \subset Z$. Now $L_1 = [N_1]$ and $N_1 = \overline{Y}$, hence it follows from the above reasoning that the Euler class e when restricted to the factors of F is ample or negatively ample.

PROPOSITION 11.

Let E be the normal bundle of Y in Z and E_0 be the compliment of the zero section. Consider the Gysin sequence for the 2-plane bundle (E, E_0)

$$H^i(Y, \mathbb{R}) \to H^{k+2}(Y, \mathbb{R}) \to H^{k+2}(E_0, \mathbb{R}) \to H^{k+1}(Y, \mathbb{R}) \to H^{k+3}(Y, \mathbb{R}).$$

Then the Gysin homomorphism

$$h: H^k(Y, \mathbb{R}) \to H^{k+2}(Y, \mathbb{R}),$$

given by 'wedging' with the Euler class $e \in H^2(Y, \mathbb{R})$ is an injection for $k \leq \dim R \mathbb{P}^2 - 2 = 2g - 6$.

Proof. By Prop. 8 we have

$$H^{k}(Y) \simeq \sum_{i+m=k} H^i(K - K_0) \otimes H^m(F)$$

or using the subspace W of $H^*(Y)$ as in Prop. 3.8, we have, any $u \in H^k(Y) u \neq 0$ and $k \leq \dim R F$, to be expressible as

$$v = \sum_i u_i \otimes w_i, \quad u_i \in H^*(K - K_0), \quad w_i \in W,$$

where not all $w_i = 0$ (this is so since $k \leq \dim R F$). Without loss of generality, the u_i's can be chosen linearly independent.

Now consider $u \otimes e$, e the Euler class in $H^2(Y, \mathbb{R})$

$$u \otimes e = \sum_i u_i \otimes (w_i \otimes e).$$
Cohomology of certain moduli spaces of vector bundles

Consider the class $w_i \otimes e$. This when restricted to the fibre F is non-zero, since by Remark 7, the class e restricted to the factors of F is ample or negatively ample and w_i by definition lies in W and so $w_i \wedge e$ is non-zero on F for $w_i \in H^4(F, \mathbb{R})$, $k \leq \dim \mathbb{P}^{n-2} - 2$. Hence by the linear independence of the u_i's we get

$$u \otimes e = \sum_i u_i \otimes (w_i \otimes e) \neq 0$$

Thus $h: H^k(Y, \mathbb{R}) \to H^{k+2}(Y, \mathbb{R})$ is an injection for $k \leq \dim \mathbb{P}^{n-2} - 2 = 2g - 6$.

Corollary 3

The Gysin map considered in Theorem 3 i.e.

$$h^1: H^k(Y, \mathbb{R}) \to H^{k+2}(Z, \mathbb{R})$$

is also an injection for $k \leq 2g - 6$.

Proof. In fact, the Gysin sequences for (E, E_0) and $(Z, Z - Y)$ are related as follows.

$$\xymatrix{ H^k(Y, \mathbb{R}) \ar[r]^k \ar[dr]^{k'} \ar[d]_{\text{Res}} & H^{k+2}(Y, \mathbb{R}) \ar[d]_{\text{Res}} \ar[dl]_{\text{Res}} \ar[r] & H^{k+2}(Z, \mathbb{R}) }$$

and therefore, since h is an injection by Prop. 11, so is h^1...

Corollary 4

$H^k(Z, \mathbb{R}) = H^{k-2}(Y, \mathbb{R}) \oplus H^k(Z - Y, \mathbb{R})$ for $k \leq 2g - 4$.

Proof. Consider the Gysin sequence for $(Z, Z - Y)$.

$$\cdots \to H^{k-2}(Y, \mathbb{R}) \to H^k(Z, \mathbb{R}) \to H^k(Z - Y, \mathbb{R}) \to H^{k-1}(Y, \mathbb{R}) \to H^{k+1}(Z, \mathbb{R})$$

Since k' is an injection for $k \leq 2g - 6$, we get

$$0 \to H^{k-2}(Y, \mathbb{R}) \to H^k(Z, \mathbb{R}) \to H^k(Z - Y, \mathbb{R}) \to 0$$

for $k \leq 2g - 4$ and this proves the corollary.

Remark 8. By Kirwan [5], the Betti numbers of M_0 are known if genus $g \geq 4$, for $i < 2g - 3$. This together with Prop. 8, Cor. 4 and Spanier [19], yields the Betti numbers of Z for $i < 2g - 3$.

Remark 9. Let us assume $g \geq 4$ and recall from Prop. 10, we had a topological \mathbb{P}^1-bundle D on $Z - Y$. By the proof of Prop. 10 we see that if $g \geq 4$, then $\text{codim}_n f^{-1}(K)$ in $M_0 \geq 6$ and hence

$$H_k(D, \mathbb{Z}) = H_k(\tilde{M}_0, \mathbb{Z})$$

for $k \leq 4$.

The homology groups of \tilde{M}_0 are known by [10] or by using Atiyah–Bott [2] for $M_{-1,x}$. In particular, rank of $H_3(\tilde{M}_0, \mathbb{Z})$ is $2g$ and hence rank of $H_3(D, \mathbb{Z})$ is $2g$.

We have already seen that $H^1(Z - Y, \mathbb{R}) = 0$. Now D is a \mathbb{P}^1-fibration over $Z - Y$ and $H^1(\mathbb{P}^1, \mathbb{R}) = 0$, $H^1(Z - Y, \mathbb{R}) = 0$. Therefore by the Serre sequence of this fibration (see for example Spanier Algebraic topology pp. 519) we get an exact sequence

$$H_3(\mathbb{P}^1, \mathbb{R}) \rightarrow H_3(D, \mathbb{R}) \rightarrow H_3(Z - Y, \mathbb{R}) \rightarrow H_2(\mathbb{P}^1, \mathbb{R}) \rightarrow H_2(D, \mathbb{R}) \rightarrow H_2(Z - Y, \mathbb{R}) \rightarrow H_1(\mathbb{P}^1, \mathbb{R}).$$

Now, $H_3(\mathbb{P}^1, \mathbb{R}) = H_1(\mathbb{P}^1, \mathbb{R}) = 0$, $H_2(\mathbb{P}^1, \mathbb{R}) = \mathbb{R}$ Thus we have

$$0 \rightarrow H_3(D, \mathbb{R}) \rightarrow H_3(Z - Y, \mathbb{R}) \rightarrow H_2(\mathbb{P}^1, \mathbb{R}) \rightarrow H_2(D, \mathbb{R})$$

$H_2(Z - Y, \mathbb{R}) = 0$. By the Picard group computations it follows that, $H_2(D, \mathbb{R}) = \mathbb{R}^2$ and $H_2(Z - Y, \mathbb{R}) = \mathbb{R}$, and therefore we have

rank of $H_3(Z - Y, \mathbb{R}) = \text{rank } H_3(D, \mathbb{R}) = 2g$.

Thus the rank of $H_3(Z - Y, \mathbb{R}) = 2g$ and hence the rank of $H^3(Z - Y, \mathbb{R})$ is $2g$.

Theorem 4. $H^3(Z, \mathbb{Z}) = \mathbb{Z}^{2g}$, when $g \geq 4$.

Proof. By Theorem 3 $H^3(Z, \mathbb{Z})$ is torsion-free. By Cor. 4

$$H^3(Z, \mathbb{R}) = H^1(Y, \mathbb{R}) \oplus H^3(Z - Y, \mathbb{R})$$

Since $H^1(Y, \mathbb{R}) = 0$, using Remark 9 we conclude that $H^3(Z, \mathbb{Z}) = \mathbb{Z}^{2g}$.

5. **The main theorem**

Consider the stratification of N_0 in terms of the degeneracy locus as in §3, $N_3 \subset N_2 \subset N_1 \subset N_0$.

PROPOSITION 12

The subvariety N_2 has codimension 3 in N_0.

Proof. Consider the local morphism

$$\varphi: N_0 \rightarrow \mathcal{A}$$

of §2. We have already seen that $\varphi: N_1 \rightarrow \mathcal{A}_1$ and $\varphi: N_2 \rightarrow \mathcal{A}_2$. Moreover, φ being a smooth local morphism, its fibres are equidimensional. Hence the codimension of N_2 in N_0 equals the codimension of \mathcal{A}_2 in \mathcal{A}. We have also seen that $\mathcal{A}_1 \subset \mathcal{A}$ is a hypersurface given by $\Delta = 0$ and $\mathcal{A}_2 \subset \mathcal{A}_1$ is precisely the singular locus of \mathcal{A}_1. So we would like to show that

$$\text{codim of } \mathcal{A}_2 \text{ in } \mathcal{A}_1 = 2.$$

Consider the natural conic bundle C on \mathbb{A}^6 as in Lemma 1. Let S be the hypersurface of \mathbb{A}^6 given by $\Delta = 0$ and let $S' \subset S$ be its singular locus. Then by Remark 5, it is
Cohomology of certain moduli spaces of vector bundles

enough to show that

\[\text{codim of } S^1 \text{ in } S = 2. \]

By definition, if

\[q = aX^2 + bY^2 + cZ^2 + fYZ + gXZ + hXY, \]

then \(\Delta \) is given by

\[\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}. \]

Thus, if \(\text{Sym}(\mathcal{A},3) \) is all \((3 \times 3)\)-symmetric matrices

\[S = \{ A \in \text{Sym}(\mathcal{A},3) | \text{rank } A < 2 \}, \]

The conditions \(\partial \Delta/\partial a = \partial \Delta/\partial b = \partial \Delta/\partial c = \partial \Delta/\partial f = \partial \Delta/\partial g = \partial \Delta/\partial h = 0 \), gives

\[bc = f^2, \quad ac = g^2, \quad ab = h^2, \quad af = hg, \quad fh = hg, \quad ch = fg. \]

\[a/h = h/b = g/f \quad \text{and} \quad a/g = h/f = g/c \]

i.e.

\[S^1 = \{ A \in \text{Sym}(\mathcal{A},3) | \text{rank } A < 1 \}. \]

From which we obtain the codim of \(S^1 \) in \(S \).

Q.E.D.

COROLLARY 5

\[H_k(N_0, \mathbb{Z}) = H_k(Z, \mathbb{Z}), k \leq 4. \]

Proof. Consider the homology sequence of the pair \((N_0, Z)\)

\[H_{k+1}(N_0, Z; \mathbb{Z}) \rightarrow H_k(Z, \mathbb{Z}) \rightarrow H_k(N_0, Z) \rightarrow H_k(N_0, Z; \mathbb{Z}). \]

Since \(N_0 \) is a compact complex manifold, the Alexander duality as in Theorem 3, gives

\[H_k(N_0, Z, \mathbb{Z}) \cong H^{n-k}(N_0 - Z, \mathbb{Z}) = H^{n-k}(N_2, \mathbb{Z}). \]

\[n = \dim_\mathbb{R} N_0. \]

By Prop. 12, \(\dim_\mathbb{R} N_2 = n - 6 \) since \(\text{codim}_C(N_2, N_0) = 3. \) Hence \(H^{n-k}(N_2, \mathbb{Z}) = 0 \) for \(k < 6. \)

\[\Rightarrow H_k(N_0, Z, \mathbb{Z}) = 0, \quad k < 6 \]

\[\Rightarrow H_k(N_0, Z) = H_k(Z, \mathbb{Z}), \quad k \leq 4. \]

Theorem 5. \(H^2(N_0, \mathbb{Z}) = \mathbb{Z}^{2g}. \)

Proof. Firstly, \(H^2(N_0, \mathbb{Z}) \) is torsion-free. For, by Cor. 5, \(H_2(N_0, \mathbb{Z}) = H_2(Z, \mathbb{Z}) \) and
therefore by the universal coefficient theorem, since
\[H^3(N_0, \mathbb{Z})_{\text{tors}} = H^2(N_0, \mathbb{Z})_{\text{tors}}, \]
we have
\[H^3(N_0, \mathbb{Z})_{\text{tors}} = H^3(\mathbb{Z}, \mathbb{Z})_{\text{tors}} = (0) \]
by Theorem 3.6.
Now using Theorem 4 and for Cor. 5 we get
\[H^3(N_0, \mathbb{Z}) = \mathbb{Z}^{2g}. \] Q.E.D.

Theorem 6. The Betti number \(B_4 \) of \(N_0 \) is \(B_4(N_0) = \binom{2g}{2} + 4. \)

Proof. To see this, we use Prop. 5.9 and Remark 5.11 of Kirwan [5] to get the Betti numbers of \(M_0^\bullet \) as \(B_0 = 1, B_1 = 0, B_2 = 1, B_3 = 2g, B_4 = 2, \) etc.
By Cor. 4,
\[B_4(Z) = B_2(Y) + B_4(Z - Y). \]
Now, by Prop. 8, \(B_2(Y) = B_2(K - K_0) + B_2(\mathbb{P}^{g-2} \times \mathbb{P}^{g-2}). \) Hence, by Spanier [19]
\[B_2(Y) = \binom{2g}{2} + 2. \]
Also, \(B_4(Y) = 0, \) since the odd Betti numbers of \(K - K_0 \) and \(\mathbb{P}^{g-2} \times \mathbb{P}^{g-2} \) are zero (cf. [19] again). Combining this with (*), we get
\[B_4(Z) = \binom{2g}{2} + 4. \]
Hence by Cor. 5 we get
\[B_4(N_0) = \binom{2g}{2} + 4. \] Q.E.D.

Appendix 1

We present here a proof due to Colliot–Thélène of Theorem (A) mentioned in the introduction. We shall make a few remarks before going into the proof.

Let \(X \) be a smooth variety over \(\mathbb{C} \). For the notations and properties of most of the facts mentioned below (cf. Grothendieck [4] and Saltman [13],[14]).

Define \(Br(X) \) to be the Brauer group of Azumaya algebras on \(X \). Let \(Br'(X) \) be the 'cohomological Brauer group' of \(X \) defined to be \(H^2_{\text{et}}(X, \mathbb{G}_{m, \text{et}}) \). Then the following facts are well known:
(i) \(Br X \) is contained in \(Br'(X) \).
(ii) If \(X \) is a unirational smooth proper variety, then \(Br'(X) = H^2(X(\mathbb{C}), \mathbb{Z})_{\text{tors}} \).
(iii) Define \(Br_{ur}(X) \), the unramified Brauer group of \(X \) to be \(Br_{ur}(X) = Br'(X), X \) any
Cohomology of certain moduli spaces of vector bundles

smooth compactification of \(X \). Then it is known that \(\text{Br}_m(X) \) is independent of the choice of \(\overline{X} \) since we are in characteristic 0.

(iv) Another way of defining \(\text{Br}_m(X) \) is as follows: Let \(C(X) \) be the function field of \(X \). Then for every discrete valuation ring \(A \), with \(C \subset A \subset C(X) \), and quotient field of \(A = C(X) \), there exists a natural homomorphism

\[
\delta_A: \text{Br} C(X) \to H^1(\mathbb{A}_A, \mathbb{Q}/\mathbb{Z}).
\]

\(\mathbb{A}_A \)-the residue class field of \(A \).

Define

\[
\text{Br}_m C(X) = \bigcap_{\text{all such } A} (\text{Ker } \delta_A) \text{ and } \text{Br}_m X = \text{Br}_m C(X).
\]

(v) Let \(k \) be a field and \(C \) a conic over \(k \), i.e. a conic bundle coming from a quaternion algebra over \(k \). Then there is a canonical homomorphism

\[
\text{Br}'(k) \to \text{Br}'(C)
\]

and the kernel of this homomorphism is the 2-torsion element coming from the quaternion algebra over \(k \) associated to \(C \).

Note that for a field \(k \), \(\text{Br}'(k) = \text{Br}(k) \).

PROPOSITION 13

Let \(C \) be a conic bundle on \(X \) with \(\text{Br}'(C) = 0 \), and let \(\eta \) be the generic point of \(X \). Let \(C_\eta \) be the restriction of \(C \) over \(C(\eta) \). To \(C_\eta \) we associate an element \(x_\eta \in \text{Br} C(\eta) \). Suppose that for the conic bundle \(C \) on \(X \), there exists a discrete valuation ring \(A \), with quotient field of \(A = C(X), C \subset A \subset C(X) \), such that \(\delta_A(x_\eta \neq 0 \). Then \(\text{Br}_m(X) = 0 \).

Proof. Suppose that \(\text{Br}_m(X) \neq 0 \) and let \(x \in \text{Br}_m(X) = \text{Br}_m(C(X)) \) be a non-zero element. Consider the following commutative diagram

\[
\begin{array}{ccc}
\text{Br}_m X & \longrightarrow & \text{Br}_m C \\
\downarrow & & \downarrow \\
\text{Br}' C(\eta) & \longrightarrow & \text{Br}' C_\eta,
\end{array}
\]

where the map \(\text{Br}_m(X) \to \text{Br}_m(C) \) is the canonical map induced from \(C \to X \) and the vertical maps are

\[
\begin{align*}
\text{Br}_m C & \subset \text{Br} C \subset \text{Br}' C \to N \text{ Br}' C_\eta \\
\text{Br}_m X & \subset \text{Br} C(X) = \text{Br} C(\eta) = \text{Br}' C(\eta).
\end{align*}
\]

Consider the image of \(x \) in \(\text{Br}' C(\eta) \), call it \(x_\eta \). Then since \(\text{Br}' C = 0 \), the above diagram gives

\[
x_\eta \in \text{Ker } [\text{Br}' C(\eta) \to \text{Br}' C_\eta]
\]

and therefore by Remark (v), \(x_\eta \) is the element in \(\text{Br} C(\eta) \) associated to the conic \(C_\eta \). Now by the hypothesis of the proposition, there exists a discrete valuation ring
Let $A, \mathbb{C} < A < \mathbb{C}(X)$ with quotient field of $A = \mathbb{C}(X)$, such that
\[\partial_A(\pi) \neq 0. \] (\ast)

But $x \in \text{Br}_\mathbb{C}(\mathbb{C}(X))$ and $\text{Br}_\mathbb{C}(\mathbb{C}(X))$ is by definition equal to
\[\bigcap_{\text{all such } A} (\ker \partial_A), \]
implying
\[\partial_A(\pi) = 0 \]
which contradicts (\ast). Hence the proposition.

Q.E.D.

Now let us consider the variety M_0^s, the moduli space of stable vector bundles of rank 2 and trivial determinant. Then by Prop. 3, there is a conic bundle D on M_0^s with $H^1(D, \mathcal{O}_D) = (0)$ and therefore $\text{Br}(D) = 0$.

The existence of an A with the requisite properties of the Prop. 13 is precisely the theorem due to Nitsure [9]. Indeed, in the notation of §4, the irreducible divisor $Y \subset Z$ provides us with the discrete valuation ring A.

Hence by Prop. 13, $\text{Br}_\mathbb{C}(M_0^s) = 0$. This implies by Remark (3), that $\text{Br}^r(N_0) = 0$, since N_0 is a smooth compactification of M_0^s. Now N_0 is unirational, smooth-projective and therefore by Remark (ii), $\text{Br}^r(N_0) = H^3(N_0, \mathbb{Z}) = (0)$.

Appendix 2

Theorem (C S Seshadri). Let M be the moduli space of semi-stable vector bundles of rank 2^n and degree d. Then
\[\text{Pic } M^s \text{ (as well as Pic } M) \simeq \mathbb{Z}. \]

Proof. For simplicity we present the proof only for rank 2 and degree zero. Choose m such that for all stable bundles V of rank two and degree zero, $V(m)$ is generated by the global sections. Then if E denotes the trivial vector bundle of rank $r = \dim H^0(V(m))$, $V(m)$ is canonically a quotient of E and $V(m)$ represents a point of $Q = Q(E/P)$, the Quot scheme of quotients of E with Hilbert polynomial equal to P.

We then have an open subscheme Q' of Q representing quotient vector bundles W of E such that W is stable and the canonical homomorphism $H^0(E) \to H^0(W)$, is an isomorphism. Thus we have a canonical morphism
\[p: Q' \to M_1^s, \]
where M_1^s is the moduli space of stable vector bundles of rank 2 and $\det = \mathcal{O}_X(2m)$ and p is a G-principal fibre space with $G = PGL(H^0(E))$. Note that $M_1^s \simeq M_0^s$ of §2.

Let $q:B \to M_1^s$ be the fibre space associated to p with fibre the projective space of dimension $(r - 1)$. Hence if $W \in M_1^s$, the fibre $q^{-1}(W)$ can be canonically identified with $\mathbb{P}(H^0(W))$.

Let A denote the projective space $\mathbb{P}(\text{Ext}(L, I))$, the ‘Atiyah family’ on the vector
space of all extensions of the form

\[0 \to I \to W \to L \to 0, \]

where \(I \) is the trivial vector bundle of rank one and \(L \) the line bundle \(\mathcal{O}_X(2m) \). Let \(A^e \) denote the subset of \(A \) defined by

\[A^e = \{ 0 \to I \to W \to L \to 0 | W \text{ is stable} \}. \]

Then \(A^e \) is open and we have a canonical surjective morphism

\[\lambda: A^e \to M_1^e \]

which associates to an extension as above the vector bundle \(W \). Observe that giving an extension as above is equivalent to giving a section \(s \in H^0(W) \) which is non-vanishing at every point \(x \in X \). From this observation we deduce easily that \(A^e \) can be identified canonically as an open subset of the projective bundle \(B \) over \(M_1^e \); in fact we have a commutative diagram

\[
\begin{array}{ccc}
A^e & \xrightarrow{\iota} & B \\
\downarrow{\lambda} & & \downarrow{p} \\
M_1^e & & W_x
\end{array}
\]

Note that \(p^{-1}(W) = \lambda^{-1}(W) \) is irreducible in \(\mathbb{P}(H^0(W)) \) for \(p^{-1}(W) = \lambda^{-1}(W) \) is the canonical image in \(\mathbb{P}(H^0(W)) \) of the set \(S = \{ s | s \in H^0(W), s \text{ vanishes at least at one point of } X \} \) i.e.

\[S = \bigcup_{x \in X} \ker(H^0(W) \to W_x). \]

Since \(\lambda^{-1}(W) \) is the complement of an irreducible closed subset in a projective space, nonvanishing regular functions on \(\lambda^{-1}(W) \) reduce to constants. From this, we easily conclude that, if \(U \) is an open subset in \(M_1^e \) and \(f \) a regular nonvanishing function on \(\lambda^{-1}(U) \), then \(f \) is a pull-back of a regular nonvanishing function on \(U \).

From these properties, it follows easily that the canonical homomorphism

\[\lambda^*: \text{Pic } M_1^e \to \text{Pic } A^e \]

is injective. To see this, let \(L \in \ker \lambda^* \). Then if \(L \) is given by transition functions \(\{ \theta_{ij} \} \) on \(V_i \cap V_j \), we have nonvanishing regular functions \(\varphi_i \) on \(\lambda^*(V_i) \) such that \(\lambda^*(\theta_{ij}) = \varphi_i \varphi_j^{-1} \).

Now the \(\varphi_i \) are pull-backs of functions \(\theta_i \) on \(V_i \) and the required assertion follows.

Now \(A^e \) is an open subset of \(\mathbb{P}(\text{Ext}(L, I)) \) and therefore \(\text{Pic } A^e \) is either \(\mathbb{Z} \) or \(\mathbb{Z}/(m) \), \(m \neq 0 \). Consider the normal projective variety \(M_1 \). The ample line bundle on \(M_1 \) restricted to \(M_1^e \) shows that \(\text{Pic } M_1^e \) is not torsion. But \(\lambda^*: \text{Pic } M_1^e \to \text{Pic } A^e \) is injective implying, \(\text{Pic } A^e = \mathbb{Z} \) and also \(\text{Pic } M_1^e = \mathbb{Z} \). Since \(M_1 \) is normal, it follows that \(\text{Pic } M_1 \subset \text{Pic } M_1^e \) and hence \(\text{Pic } M_1 = \mathbb{Z} \).

Remark. A priori, \(\text{Pic } M_1 \) is just a proper subgroup of \(\text{Pic } M_1^e \). But if \(M_1 \) is locally
factorial then $\text{cl} M_1 = \text{Pic} M_1$ and we would have $\text{Pic} M_1 = \text{Pic} M_1$.

In fact, this is so and has been recently proved by J M Drezet and M S Narasimhan.

References