Proc. Indian Acad. Sci. (Math. Sci.), Vol. 98, No. 1, June 1988, pp. 1-24. © Printed in India.

Cohomology of certain moduli spaces of vector bundles

V BALAJI

The Institute of Mathematical Sciences, Madras 600 113, India

MS received 26 October 1987; revised 20 December 1987

Abstract. Let X be a smooth irreducible projective curve of genus g over the field of complex numbers. Let M_0 be the moduli space of semi-stable vector bundles on X of rank two and trivial determinant. A canonical desingularization N_0 of M_0 has been constructed by Seshadri [17]. In this paper we compute the third and fourth cohomology groups of N_0 . In particular we give a different proof of the theorem due to Nitsure [12], that the third cohomology group of N_0 is torsion-free.

Keywords. Stable bundles; semi-stable bundles; parabolic bundles; conic bundles; Gysin map; Hecke correspondence; Brauer group.

1. Introduction

Let X be a smooth irreducible projective curve of genus g over the field of complex numbers. Non-singular models of the moduli space of semi-stable vector bundles on X of rank two and degree zero have been constructed by Narasimhan-Ramanan [7] and Seshadri [17]. In this paper, we propose to compute some of the Betti numbers of the non-singular model due to Seshadri. In particular we prove the following theorems.

Theorem (A). The third cohomology group of the non-singular model N_0 of [17] is torsion-free, $g \ge 2$.

Theorem (B). Let B_1 denote the Betti numbers of N_0 . Then we have:

$$B_3 = 2g$$
, $B_4 = \binom{2g}{2} + 4$, $g \geqslant 4$.

Theorem (A) is due to Nitsure [11]. He proved this for the non-singular model of [7]. By Artin-Mumford [1], the torsion subgroup of the third cohomology group of a smooth projective variety is a birational invariant. Therefore any non-singular model has torsion-free third cohomology.

We present here a considerably simpler proof of Theorem (A) using the model of [17]; in fact, this was the initial motivation for this work. However we should point out that the general line of attack is as in Nitsure [11]. An extension of the ideas involved in the proof also yields Theorem (B). For computing B_4 and B_5 we make use of the results of Kirwan [5].

Nitsure showed independently that $B_3 = 2g$ for the model of [7] (cf [12]).

In Appendix 1 we present a proof of Theorem (A) due to Coliot-Thélène which is independent of the non-singular model chosen.

Theorems (A) and (B) are of interest in understanding the rationality of these non-singular models of the moduli space of vector bundles.

The layout of the paper is as follows. Section 2 of this paper gives various properties of the non-singular model constructed in [17]. In §3 we construct a canonical generalized conic bundle on the non-singular model N_0 . In §4 by using a result of [9], we prove Theorem (A) and show how to compute the Betti numbers of the open subset Z of N_0 lying over the stable bundles and the bundles in the non-nodal part of the Kummer variety. In this section, we also give a description of the Hecke correspondence in terms of parabolic bundles as mentioned in (*). This facilitates the computation of the Betti numbers. In §5 we compute explicitly the codimension of the complement of Z in N_0 and thereby compute its Betti numbers.

The author is grateful to Prof C S Seshadri for suggesting this approach and for many fruitful discussions. He thanks A J Parameshwaran for many an interesting discussion. He also thanks Prof. J Coliot Thélène for communicating his proof.

2. Preliminaries

In this section we shall recall very briefly the definitions and terminologies of [17]. The proofs of most of the statements made in this section can be found in [17] or [18]. We state at the outset that for us the ground field of all our varieties is the field of complex numbers.

- (i) X is a smooth irreducible projective curve of genus $g \ge 3$.
- (ii) Let V be a vector bundle on X. A parabolic structure at a point $P \in X$ gives
 - (a) a quasi-parabolic structure i.e. a flag $V_P = F^1 V_P \supseteq F^2 V_P \supseteq \cdots \supseteq F^r V_P$.
 - (b) weights $\alpha_1, \ldots, \alpha_r$ attached to $F^1 V_P, \ldots, F^r V_P$ such that $0 \le \alpha_1 < \alpha_2 < \cdots < \alpha_r < 1$.

$$\operatorname{Call} k_1 = \dim F^1 V_P - \dim F^2 V_P, \dots, k_r = \dim F^r V_P$$

the multiplicities of $\alpha_1, \alpha_2, \dots, \alpha_r$.

The parabolic degree of V is defined by

$$par \deg V = \deg V + \sum_{i} k_i \alpha_i$$

and write par $\mu(V) = \text{par deg } V/\text{rk } V$.

If W is a subbundle of V, it acquires, in an obvious way, a quasi-parabolic structure. To make it a parabolic subbundle, we attach weights as follows:

Given $i_0, F^{i_0}W \subset F^jV$ for some; let j_0 be such that $F^{i_0}W \subset F^{j_0}V$ and $F^{i_0}W \not\subset F^{j_0+1}V$; then the weight of $F^{j_0}V = F^{i_0}W$. Define V to be parabolic stable (resp. semistable) if for every proper subbundle W of V, one has $par \mu(W) < par \mu(V)$ (resp. \leq).

^(*) Mehta V and Seshadri C S Math. Ann. 248 (1980) 205-239.

If V_n be the category of semistable vector bundles on X of rank n and degree 0, then we denote by PV_n the category of parabolic semistable vector bundles at a fixed point $P \in X$ and fixed parabolic structure. Recall that, one can choose the weights (α) small enough so as to have the condition 'parabolic semistable' equivalent to 'parabolic stable!

(iii) N is the set of isomorphism classes of $(V, \Delta) \in PV_4$ (Δ a parabolic structure), such that End V is a 'specialization' of \mathcal{M}_2 —the 2 × 2 matrix algebra.

In fact, if (V_1, Δ_1) and (V_2, Δ_2) belong to N, they represent the same element of N (i.e. isomorphic in PV_4) if and only if the underlying bundles V_1 and V_2 are isomorphic (cf [17]). Hence we often simply write $V \in N$.

- (iv) \mathscr{A} is the variety of all algebra structures on a fixed 4-dimensional vector space which are specializations of \mathscr{M}_2 and admit a fixed identity element. We have a canonical group of automorphisms acting on \mathscr{A} , namely the subgroup of GL(4), fixing this identity element.
- (v) M denotes the normal projective variety of equivalence classes of semistable vector bundles of rank 2 and degree 0 under the equivalence relation $V \sim V'$ if and only if gr $V = \operatorname{gr} V'$.
- (vi) M^s will be the open subset of M consisting of the stable bundles.

It is known that $M - M^s$ is precisely the singular locus of M (cf [6]). The main theorem of [17] is stated below.

Theorem 1. (Seshadri) There is a natural structure of a smooth projective variety on N and there exists a canonical morphism $p: N \to M$, which is an isomorphism over M^s . More precisely, if $V \in N$, then $\operatorname{gr} V = D \oplus D$, with $\operatorname{rk} D = 2$, D is a direct sum of stable line bundles of degree 0 and the morphism $p: N \to M$ is given by $V \mapsto D$. Further $V \in p^{-1}(M^s)$ if and only if $\operatorname{End} V \simeq \mathcal{M}_2$ or equivalently (which is easily seen) $V = W \oplus W$, where W is stable.

In the course of proving the smoothness of N, Seshadri defined a morphism from a neighbourhood U of a given point of N into A which we shall denote by

$$\varphi^U: U \to A$$
.

We shall briefly indicate the construction of φ^U : The functor defining the moduli space N being representable, we have a defining vector bundle E on $X \times N$ of rank 4. Let $f: X \times N \to N$ be the canonical projection and End E the vector bundle associated to the shear of endomorphisms of E. Set

$$B = f_* (\operatorname{End} E).$$

B is the canonical family of specializations of \mathcal{M}_2 , parametrized by N (see Prop. 5 [17] for details). Consider any given point $u \in N$; then choosing a neighbourhood U of u, which trivialises B, we get a natural morphism

$$\varphi^U: U \to A$$
 by $V \mapsto \text{End } V$, $V \in U$.

This morphism exists by the so-called versal property of A. Further, let $A_0 = \text{End } V_u$, V_u the vector bundle corresponding to the point $u \in U$, i.e. $A_0 = \varphi^U(u)$. Then, if A_u is the

mini-versal deformation space of A_0 , the morphism

$$\varphi_1^U: U \to A_u$$

induced by the versality of A_u from φ^U is in fact smooth.

Note 1. By an abuse of notation, in the course of this work, we shall suppress U and the mini-versal deformation space corresponding to each point, and simply denote by $\varphi: N \to A$ the smooth local morphism defined above. In fact, we will be using it only in this form in this work.

Note further that these φ^U are uniquely determined modulo automorphism coming from the canonical group of automorphisms acting on A.

PROPOSITION 1

The restriction of the local morphism φ to the subvariety N_0 remains smooth.

Proof. Let J denote the Jacobian variety of line bundles of degree zero on X. Then we have a natural morphism

$$\psi: N_0 \times J \to N$$

$$(E, L) \mapsto E \otimes L$$

(that this map is a morphism follows from the universal property of N and the fact that $E \otimes L$ gives a family on X parametrized by $N_0 \times J$).

We claim that ψ is *smooth*. In fact, ψ is *étale*. For, let $\Gamma \subset J$ be the finite subgroup of J consisting of the elements of order 2. Then there is a natural diagonal action of Γ on $N_0 \times J$ which is obviously fixed point free. It is not difficult to see that N is actually the quotient of $N_0 \times J$ by Γ and $\psi: N_0 \times J \to N$ the quotient morphism (note that our ground field is $\mathbb C$ and if A and B are smooth complex manifolds and G a finite group acting on A such that B is the set theoretic quotient of A by G, then B is A/G).

This Γ -action being fixed point free, ψ is étale.

For $b \in N_0 \times J$, choosing a neighbourhood U of $\psi(b) = u$ in N, we get the following diagram

where A_u is the mini-versal deformation space of the algebra $A_0 = \varphi^U(u)$ in A. Since φ_1^U, ψ are smooth, so is $\varphi_1^{U_0}\psi$. In other words the *local morphism* (again by abuse of notation)

$$\varphi \circ \psi : N_0 \times J \to A$$

is smooth. If $L \in J$, then $\operatorname{End}(E \otimes J) = \operatorname{End} E$ and hence $\varphi \circ \psi$ clearly factors through N_0 to give the smoothness of the restriction of φ from $N_0 \to A$. Q.E.D.

Remark 1. Because of Prop. 1, by the same arguments as in [17], we see that N_0 is a smooth-projective variety. We then get an obvious generalization of Theorem 1 namely that $p: N_0 \to M_0$ which is a desingularization of M_0^s , and that it is an isomorphism over M_0^s etc.

3. Conic bundles

DEFINITION 1

Let S be a variety. A generalized conic bundle & on S gives

- (a) a vector bundle V on S of rank 3 and
- (b) a closed subscheme \mathscr{C} of $\mathbb{P}(V)$ over S, such that, given $s \in S$, there exists a neighbourhood U of s, where $\mathscr{C} \cap p^{-1}(U)$ is defined by q = 0, $q \in \Gamma(p^{-1}(U), H^2)$, H being the tautological line bundle for $\mathbb{P}(V) \stackrel{p}{\longrightarrow} S$; i.e. $p_*(H) \simeq V^*$ and therefore $p_*(H^2) = S^2 V^*$, etc.

By definition, $\mathscr C$ is an effective Cartier divisor and is therefore defined by a section of a line bundle θ on $\mathbb P(V)$. Now locally over S, θ and H^2 coincide and therefore by the "see-saw" theorem (cf. Mumford's Abelian varieties) there exists a line bundle L on S such that $\theta = H^2 \otimes p^*(L)$. Since $p_*(\theta) = p_*(H^2) \otimes L = S^2(V^*) \otimes L$, the condition (b) above is equivalent to an element q of $\Gamma(S^2(V^*) \otimes L)$ or that is to say a quadratic form

$$q: V \to L$$
.

The discriminant Δ of q can be defined as a section of $L^3 \otimes (\Lambda^3(V^*))^2$ and locally as the usual discriminant of a quadratic form. The equation $\Delta = 0$ gives locally the degeneracy locus of \mathscr{C} .

We now introduce subschemes on S, namely for i = 1, 2, 3, set

$$S_i = \{s \in S | q \text{ restricted to } V_s, \text{ the fibre at } s, \text{ has rank } \leq 3 - i\}.$$

Then $S_3 \subset S_2 \subset S_1 \subset S = S_0$. If $g: \mathscr{C} \to S$ be the projection, let $\mathscr{C}_i = g^{-1}(S_i)$, i = 1, 2, 3. Then we have S_1 to be the degeneracy locus of \mathscr{C} , i.e. given by $\Delta = 0$, and $S_2 \subset S_1$ is the singular locus of S_1 . The space \mathscr{C} can be described as follows: $\mathscr{C} - \mathscr{C}_1$ consists of non-degenerate conics; $\mathscr{C}_1 - \mathscr{C}_2$ of pairs of lines intersecting transversally; $\mathscr{C}_2 - \mathscr{C}_3$ of repeated lines and \mathscr{C}_3 of the whole plane. We call S_i the canonical subschemes associated to the degenerate loci of the conic bundle \mathscr{C} on S. Accordingly we make the following.

DEFINITION 2

A generalized conic bundle $\mathscr C$ is of type I if $\mathscr C_1=\phi$; of type II if $\mathscr C_2=\phi$ and of type III if $\mathscr C_3=\phi$.

DEFINITION 3 (cf p. 164 [17])

Let T be an algebraic scheme and $\{G_t\}_{t\in T}$ a family of algebras parametrized by T and defined by a locally free \mathcal{O}_T -module G of rank 4. We say that this is a family of specializations of \mathcal{M}_2 if, given $t\in T$, there is a neighbourhood T_1 of t and a morphism

 $f: T_1 \to \mathscr{A}$, such that $\{G_t\}_{t \in T_1}$ is the base change of $\{A_Y\}_{Y \in \mathscr{A}}$ by f, where A_Y is the algebra structure corresponding to $y \in \mathscr{A}$.

Note 2. We shall use this reformulation in the course of this work.

Remark 3

(i) Restrict the canonical family B of specialization of \mathcal{M}_2 parametrized by N to the subvariety N_0 . Call this family B_0 .

(ii) For $y \in \mathcal{A}$, let A_y be the corresponding algebra structure; then $\{A_y\}_{y \in \mathcal{A}}$ gives an obvious family of analytic structure of A_y

obvious family of specializations of \mathcal{M}_2 .

- (iii) Let $T = \operatorname{Spec} R$ and G an R-algebra giving a family of specializations of \mathcal{M}_2 . Then by Remark 2, we get a symmetric element of $J \otimes J = G/\operatorname{Re}_0$. This symmetric element naturally gives rise to a symmetric bilinear form on J^* (the R-dual of J) and therefore a quadratic form on J^* . Now J^* being a projective R-module of rank 3, it defines a vector bundle of rank 3 on T. More generally, if we are given an algebraic scheme T, a family $\{G_t\}_{t\in T}$ of specializations of \mathcal{M}_2 , then we have a canonical vector bundle. V of rank 3 on T together with a \mathcal{O}_T -valued quadratic form $q: V \to \mathcal{O}_T$, and thus a conic bundle on T.
- (iv) The families B_0 on N_0 and $\{A_y\}_{y\in\mathscr{A}}$ on \mathscr{A} give generalized conic bundles on N_0 and \mathscr{A} respectively.

Notation 1. Denote these conic bundles by P on N_0 and Q on \mathcal{A} .

PROPOSITION 2

The conic bundle P on N_0 is locally the base change of Q on $\mathscr A$ by the local morphism $\phi: N_0 \to \mathscr A$ of § 2.

Proof. This is an immediate consequence of the definitions of φ , B_0 and $\{A_y\}_{y\in\mathscr{A}}$.

Remark 4. Following §3, we introduce the canonical subschemes

$$\mathcal{A}_3 \subset \mathcal{A}_2 \subset \mathcal{A}_1 \subset \mathcal{A}$$
 and $N_3 \subset N_2 \subset N_1 \subset N_0$

associated to the degeneracy locus of Q and P respectively. Then, by Prop. 2. φ

locally maps N_0-N_2 into $\mathscr{A}-\mathscr{A}_2$ in such a way that $N_1-N_2\to\mathscr{A}_1-\mathscr{A}_2$, $N_0-N_1\to\mathscr{A}-\mathscr{A}_1$.

Remark 5. By Theorem 1 [17] we know that $\mathscr{A} \simeq \Phi \times \Lambda$, where Λ is the 3-dimensional affine space and Φ the 6-dimensional affine space whose points are identified with the set of quadratic forms on a fixed 3-dimensional vector space (or algebras of the form C_q^+ —the even degree elements of the Clifford algebra associated to the quadratic form q). Therefore we have for i=1,2,3

$$\mathcal{A}_i = \{q \in \Phi | \operatorname{rank} \ q \leq 3 - i\} \times \mathbb{A}^3.$$

Note that

$$\begin{split} \mathscr{A}_0 - \mathscr{A}_1 &= \{q | q \in \Phi, C_q^+ \simeq \mathscr{M}_2\} \times \mathbb{A}^3 \quad \text{or equivalently} \\ \mathscr{A}_0 - \mathscr{A}_1 &= \{y | A_y \simeq \mathscr{M}_2\}. \end{split}$$

Notation 2. We denote the subsets $N_0 - N_2$ and $N_1 - N_2$ of N_0 by Z and Y respectively.

Let $K = M_0 - M_0^s$, be the singular locus of M_0 . The bundles here are of the form $L \oplus L^{-1}$, where L is a line bundle of degree 0. Let K_0 be the 'nodes' of K (i.e. consisting of bundles of the type $L \oplus L$ with L^2 trivial). Then

$$K - K_0 = L \oplus L^{-1}, \quad L \in J - \Gamma,$$

J and Γ as in §2. It may be noted that K is a Kummer variety of dim g (cf [6])

PROPOSITION 3

The subsets Z and Y of N_0 are precisely $N_0 - p^{-1}(K_0)$ and $p^{-1}(K - K_0)$ respectively, where $p: N_0 \to M_0$ is the desingularization morphism. In particular, $Z - Y = p^{-1}(M_0^s)$.

Proof. By Remark 3, it is enough to show that the subsets $p^{-1}(M_0^s)$ and $p^{-1}(K - K_0)$ of N_0 are mapped locally by φ into the subsets $\mathcal{A}_0 - \mathcal{A}_1$ and $\mathcal{A}_1 - \mathcal{A}_2$ of \mathcal{A}_1 respectively. We know that $V \in p^{-1}(M_0^s)$ if and only if End $V \simeq \mathcal{M}_2$, which shows $p^{-1}(M_0^s)$ maps to $\mathcal{A}_0 - \mathcal{A}_1$.

Therefore it is enough to show that, for $E \in p^{-1}(K - K_0)$, End E has the same defining relations as that of the algebra C_q^+ , for a quadratic form q of rank 2 on a 3-dimensional vector space.

By definition of the desingularization, the endomorphism algebras of any two points in a fibre $p^{-1}(L \oplus L^{-1})$ are isomorphic. So we consider a point E in $p^{-1}(L \oplus L^{-1})$ where $E = V \oplus W$, $V \in \operatorname{Ext}(L, L^{-1})W \in \operatorname{Ext}(L^{-1}, L)$, $L \in J - \Gamma$. i.e.

$$0 \to L \to V \to L^{-1} \to 0,$$

$$0 \to L^{-1} \to W \to L \to 0.$$
(1)

It is clear that points of this type are actually in $p^{-1}(K - K_0)$. Using (1), it is easy to see that $\operatorname{End}(V \oplus W)$ has four generators, which in terms of block matrices can

be described as

$$x = \begin{pmatrix} 0 & 0 \\ \gamma_2 & 0 \end{pmatrix} \quad w = \begin{pmatrix} 0 & \gamma_1 \\ 0 & 0 \end{pmatrix} \quad u = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \quad v = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix},$$

where $I = 2 \times 2$ identity matrix, and γ_1, γ_2 coming from identification of the line bundles in the exact sequence (1). The defining relations can be given as

$$u^{2} = u, \quad v^{2} = v, \quad uv = 0, \quad u + v = I,$$

 $w^{2} = x^{2} = wx = 0, \quad uw = w, \quad wu = 0,$
 $ux = 0, \quad xu = x, \quad vw = 0, \quad wv = w$
 $vx = x, \quad xv = 0.$ (2)

If q is a quadratic form of rank 2 on a 3-dimensional vector space over an algebraically closed field k then it is easily seen that C_q^+ = the even degree elements of the Clifford algebra of q is a 4-dimensional k-algebra with

$$C_q^+ = k + k\alpha + k\beta + k\gamma$$
 such that $\alpha^2 = -1$, $\alpha\beta = -\gamma$, $\alpha\gamma = \beta$ $\beta\alpha = \gamma$, $\gamma\alpha = -\beta$.

Now put $a = \frac{1}{2}(1 + i\alpha)$, $b = \frac{1}{2}(1 - i\alpha)$, $c = i\beta + \gamma$, $d = i\beta - \gamma$, where $i = \sqrt{-1} \in k$. Then a, b, c, d are new generators of C_q^+ with the following defining relations

$$a^{2} = a, \quad b^{2} = b, \quad ab = 0, \quad a + b = 1,$$
 $c^{2} = d^{2} = cd = 0, \quad ac = c, \quad ca = 0,$
 $ad = 0, \quad da = d, \quad bc = 0, \quad cb = c,$
 $bd = d, \quad db = 0.$
(3)

A glance at (2) and (3) proves our claim.

Q.E.D.

COROLLARY 1

 $Y \xrightarrow{p} K - K_0$ is a $\mathbb{P}^{g-2} \times \mathbb{P}^{g-2}$ fibration associated to a vector bundle on $K - K_0$.

Proof. Indeed; we claim that, if $E \in Y = p^{-1}(K - K_0)$ then $E = V \oplus W$, for some $V \in \mathbb{P}$ (Ext (L, L^{-1})), $W \in \mathbb{P}$ (Ext (L^{-1}, L)) $L \in J - \Gamma$.

Let $E \in p^{-1}(K - K_0)$; then, End W has four generators x, w, u, v with defining relations (2) as in Prop. 3. Consider $u \in \text{End } E$, and let $V = \ker u$. Then V is a subbundle of E and we have an exact sequence

$$0 \rightarrow V \rightarrow E \rightarrow W \rightarrow 0$$
.

It is clear then that W is in fact $\ker v, v \in \operatorname{End} E$ and therefore we get a splitting of the exact sequence, implying $E = V \oplus W$.

Now using Prop. 1 of [17], V and W cannot be of the type $L \oplus L$ or $L^{-1} \oplus L^{-1}$. For the same reason, since $E \in PV_4$, we rule out $V = L \oplus L^{-1}$, $W = L^{-1} \oplus L$. Hence we are left with $V \in \mathbb{P}$ (Ext (L, L^{-1})), $W \in \mathbb{P}$ (Ext (L^{-1}, L)) or vice versa.

are left with $V \in \mathbb{P}$ (Ext (L, L^{-1})), $W \in \mathbb{P}$ (Ext (L^{-1}, L)) or vice versa. Note that for $L \in K - K_0$, Ext $(L, L^{-1}) = H^1(X, L^{-2})$ has dimension g - 1 and therefore Y is a $\mathbb{P}^{g-2} \times \mathbb{P}^{g-2}$ fibration over $K - K_0$. The vector bundle to which this is associated has fibre at any $L \in K - K_0$ to be $\operatorname{Ext}(L, L^{-1}) \oplus \operatorname{Ext}(L^{-1}, L)$.

COROLLARY 2

The fibration $Y \xrightarrow{p} K - K_0$ is locally trivial in the Zariski topology.

Proof. This follows from Cor. 1 and Serre (cf [15]).

PROPOSITION 4

Let $P-P_2$ be the restriction of the conic bundle P over points of N_0-N_2 (i.e. Z). Then the total space of $P-P_2$ is smooth.

Proof. By Prop. 2, $P-P_2$ is locally the base change of $Q-Q_2$ (the restriction of Q over points of $\mathscr{A}-\mathscr{A}_2$). Since $\varphi:N_0\to\mathscr{A}$ is a smooth local morphism, the total space of $P-P_2$ is smooth if and only if the total space of $Q-Q_2$ is so.

Consider any point $(a_1, a_2, a_3, a_4, a_5, a_6) \in \mathbb{A}^6$. This defines a quadratic form

$$q = a_1 X^2 + a_2 XY + a_3 Y^2 + a_4 XZ + a_5 YZ + a_6 Z^2.$$

We therefore have a conic bundle C over \mathbb{A}^6 by considering the conics defined by the quadratic forms. By Remark 4 it is clear that the conic bundle Q on \mathscr{A} is 'essentially' the conic bundle C. Thus we would have proved our claim if we show that the total space of $C \to \mathbb{A}^6 - S^1$ is smooth, where S is the degeneracy locus of C and $S' \subset S$ its singular locus. We have in fact more.

Lemma 1. Let $\theta: C \to \mathbb{A}^6$ be the canonical morphism. Then $\theta^{-1}(\mathbb{A}^6 - (0))$ is smooth.

Proof. Let $P \in C$ be any point. Then P can be given by $(a_1, a_2, a_3, a_4, a_5, a_6, X, Y, Z)$ where not all $a_i = 0$ and not all X, Y, Z = 0, P lying on the conic defined by $q = a_1 X^2 + a_2 XY + a_3 Y^2 + a_4 XZ + a_5 YZ + a_6 Z^2$. Taking partial derivatives of q with respect to a_i , $i = 1, \ldots, 6$, we have

$$\partial q/\partial a_i = 0, \quad i = 1, \dots, 6 \Rightarrow X = Y = Z = 0.$$
 Q.E.D.

4. Cohomology computations

4.1 The Gysin map

Let W be a conic bundle of type I (cf Def. 2) on a variety S. This gives rise to a topological Brauer class b_W in $H^3(S, \mathbb{Z})_{tors}$ (i.e. the torsion subgroup of $H^3(S, \mathbb{Z})$).

Let W be a conic bundle of type II (cf Def. 2). Then if W degenerates to a pair of lines over an irreducible divisor $S_1 \subset S$, the restriction W_1 of W over S, gives rise in a natural way to a double cover of S_1 (cf Lemma on p. 29 of [8]) and $W - W_1$ is a conic bundle of type I over $S - S_1$. We shall denote by ' α ' the element in $H^2(S_1, \mathbb{Z})$ coming from this double cover. Consider the part of the Gysin sequence for $S_1 \subset S$ which involves $H^3(S, \mathbb{Z})$, i.e.

$$H^1(S_1, \mathbb{Z}) \to H^3(S, \mathbb{Z}) \to H^3(S - S_1, \mathbb{Z}) \xrightarrow{g} H^2(S_1, \mathbb{Z}).$$

Then we have here the

Theorem 2. (Nitsure [9], [11]) Let W be a conic bundle of type II on S. If the total space of W is smooth, then the image of $b_{W-W_1} \in H^3(S-S_1, \mathbb{Z})_{tors}$ under the Gysin map g, is precisely $\alpha \in H^2(S_1, \mathbb{Z})$. In particular if $\alpha \neq 0$, then $b_{W-W_1} \neq 0$.

PROPOSITION 5

Let W be a conic bundle of type I over S where $H^1(S,\mathbb{Z})=0$ and with $b_W \neq 0$ in $H^3(S,\mathbb{Z})_{tors}$. Suppose that there exists another topological \mathbb{P}^1 – bundle $U \to S$ with the property that $H^3(U,\mathbb{Z})_{tors}=(0)$. Then $b_W=\pm b_U$ and $H^3(S,\mathbb{Z})_{tors}$ is generated by b_W .

Proof. To prove this proposition, we shall appeal to the following well-known (cf [11]).

Lemma 2. Let $U \to S$ be a \mathbb{P}^1 – bundle over a path connected space S with $H^1(S) = 0$. Then the kernel of the induced homomorphism $H^3(S, \mathbb{Z}) \to H^3(U, \mathbb{Z})$ is generated by b_U .

We now apply the lemma to $U \to S$. Since we have $H^3(U, \mathbb{Z})_{tors} = (0)$, we get $H^3(S, \mathbb{Z})_{tors}$ to be generated by b_U , which is a 2-torsion element. Also b_W lies in $H^3(S, \mathbb{Z})_{tors}$, and $b_W \neq 0$ which implies $b_W = \pm b_U$. This proves Prop. 5. The next step is to construct explicitly a \mathbb{P}^1 – bundle on the subspace Z - Y which

The next step is to construct explicitly a \mathbb{P}^1 – bundle on the subspace Z-Y which satisfies the property of Prop. 5. For this purpose, we elaborate in some detail, what is called the 'Hecke correspondence' of [7], in terms of parabolic bundles as remarked in (*).

Let V be a vector bundle on X of rank 2 and degree 0. Suppose we are given a parabolic structure at a point $x \in X$, defined by a 1-dimensional subspace

$$F^2 V_x \subset F^1 V_x = V_x$$
 and weights (α_1, α_2) such that

- (i) parabolic stable = parabolic semi-stable,
- (ii) parabolic stable ⇒ underlying bundle is semi-stable, and
- (iii) underlying bundle stable ⇒ any parabolic structure is stable.

Let T be the torsion \mathcal{O}_r -module given by

$$T_x = V_x/F^2 V_x$$
, $T_y = 0$, $x \neq y$.

^(*) Mehta V and Seshadri C S, Moduli of vector bundles on curves with parabolic structures. *Math. Ann.* 248 (1980) 205-239.

Then we have a homomorphism of V onto T (as \mathcal{O}_X -modules). If W is the kernel of this map, we have $0 \to W \to V \to T \to 0$ and W is locally free of rank 2 and degree -1. Let \tilde{M} be the moduli space of parabolic stable bundles of rank 2, degree 0 on X and M_{-1} the moduli space of stable bundles of rank 2, degree -1, $f: \tilde{M} \to M$, the

canonical morphism; and $\widetilde{M}_0 = f^{-1}(M_0)$.

PROPOSITION 6

If $V \in \widetilde{M}$ then W defined above, is in M_{-1} and the map $\psi : \widetilde{M} \to M_{-1}$, $V \mapsto W$ is a \mathbb{P}^1 -bundle, locally trivial in the Zariski topology. In fact it is the dual projective Poincaré bundle on M_{-1} .

Proof. We first claim that if V is parabolic stable then W is stable. To see this, let $F \subset W$ be a line subbundle. We need to show that $\deg F < 0$. Suppose this is not the case i.e. $\deg F \ge 0$.

Let G be the line subbundle of V generated by the image of F in V. Then $\deg F \leqslant \deg G$. Since the underlying bundle of V is certainly semi-stable, we have $\deg G \leqslant 0$. By our assumption $\deg F \geqslant 0$ and hence we have $\deg F = \deg G = 0$. This implies that the canonical homomorphism $F \to G$ is an isomorphism. We also see that by the definition of T

$$G_x \subset F^2 V_x$$

but V being parabolic stable with weights $0 < \alpha_1 < \alpha_2$ we get

par deg
$$G = \alpha_2 < \frac{1}{2}(\alpha_1 + \alpha_2) = \text{par deg } V/\text{rk } V$$

which leads to a contradiction. Hence W is stable. Conversely, we claim that \widetilde{M} is isomorphic to the dual projective Poincaré bundle of M_{-1} restricted to M_{-1} . To see this, we start with a $W \in M_{-1}$. Then, given a point in $\mathbb{P}(W_x^*)$, $x \in X$, one can easily obtain a vector bundle V of rank 2 and degree 0 and an injection $W \to V$ as \mathcal{O}_x -modules. The cokernel then gives a 1-dimensional subspace F^2V_x of V_x and therefore a 'quasi-parabolic structure'. The stability of W together with an argument as above, makes V parabolic stable. That this map is an isomorphism is a consequence of the universal property of the moduli space of parabolic stable bundles.

That $\widetilde{M} \to M_{-1}$ is locally trivial in the Zariski topology, now follows from Serre [15]. Q.E.D.

PROPOSITION 7

Consider the canonical morphism $f: \widetilde{M}_0 \to M_0$. Then f is a \mathbb{P}^1 -fibration over M_0^s and $f^{-1}(K)$ has codimension g-1 in \widetilde{M}_0 .

Proof. That f is a \mathbb{P}^1 -fibration over M_0^s is immediate by the property (3) mentioned before Prop. 6. Let $L \oplus L^{-1} \in K - K_0$. Then the points of \widetilde{M}_0 lying over $L \oplus L^{-1}$ are of the following form:

Case 1. V is a non-trivial extension of L^{-1} by L (or L by L^{-1})

We claim that a parabolic structure on V which is equivalent to giving a subspace F^2V_P of V_P of dimension one, is stable if and only if $L_P \neq F^2V_P$. This is necessary to

ensure parabolic stability, for otherwise if $L_P \neq F^2 V_P$, then per deg $L = \deg L + \alpha_2 = \alpha_2$ and $\alpha_2 \neq \operatorname{par} \operatorname{deg} V/\operatorname{rk} V = \frac{1}{2}(\alpha_1 + \alpha_2)$, since $\alpha_1 < \alpha_2$.

Case 2.
$$V = L \oplus L^{-1}$$

We claim that a parabolic structure F^2V_P such that $F^2V_P \neq L_P$ or L_P^{-1} is stable. This is easily checked as above. In fact we see by an argument as in Prop. 1 of [17] all the parabolic structures of Case 2 are isomorphic and hence give one point of M. Hence the total dimension of the fibre at $L \oplus L^{-1} = \dim \operatorname{Ext}(L, L^{-1}) + 1 = g - 1$. Therefore, $\dim f^{-1}(K - K_0) = 2g - 1$.

In fact, it is not difficult to see that for $x \in K - K_0$, $f^{-1}(x)$ is the union of two projective spaces of dimension g-1 meeting at a point.

Finally, let $V \in M_0$ be such that gr $V = L \oplus L$. (L of order two). Then the following can easily be checked.

- (i) V has a parabolic stable structure if and only if V is a non-trivial extension of L by L.
- (ii) A parabolic structure given by $F^2 V_P$ is stable iff $F^2 V_P \neq L_P$ (where L is the unique line subbundle of V).

Once again by an argument as in Prop. 1 [17] we see that all the parabolic structures on a non-trivial extension V of L by L are isomorphic. Hence the fibre of f over $L \oplus L$ is isomorphic to $\mathbb{P}(H^1(X, \mathcal{O}_x))$ which has dimension g-1, implying $\operatorname{codim}(f^{-1}(K), \tilde{M}_0) = g-1$.

Remark 6. Thus we have the following diagram

which gives a correspondence between M_{-1} and M.

PROPOSITION 8

The fibration $Y \xrightarrow{p} K - K_0$ with fibre $F = \mathbb{P}^{g-2} \times \mathbb{P}^{g-2}$ satisfies the conditions of the Leray–Hirsch theorem and consequently we have

$$H^*(Y,\mathbb{R}) \simeq H^*(K - K_0, \mathbb{R}) \otimes H^*(F,\mathbb{R}).$$

Proof. The following form of the Leray-Hirsch theorem will suit our purposes.

Leray-Hirsch. Let E be a fibre bundle over B and compact fibre F. Suppose B has a finite good cover. If there are global cohomology classes e_1, \ldots, e_r on E which, when restricted to each fibre freely, generate the cohomology of the fibre, then $H^*(E, \mathbb{R})$ is a free-module over $H^*(B, \mathbb{R})$ with basis e_1, \ldots, e_r ; or more precisely, if the canonical map $j: H^*(E, \mathbb{R}) \to H^*(F, \mathbb{R})$, is surjective, then for any subspace W of $H^*(E, \mathbb{R})$ such that $j \mid W: W \to H^*(F, \mathbb{R})$ is an isomorphism, one has

$$H^*(E,\mathbb{R}) = H^*(B,\mathbb{R}) \otimes W$$
.

Since F in our case is $\mathbb{P}^{g-2} \times \mathbb{P}^{g-2}$, $H^*(F, \mathbb{R})$ is generated by line bundles on F. Therefore it is enough to check that any line bundle on F can be extended to a line

By Cor. 2, $Y \rightarrow K - K_0$ is locally trivial in the Zariski topology. Let L be a line bundle on F, and $U \subset K - K_0$ be the trivializing Zariski open subset. Then L can be obviously extended to a line bundle on $U \times F$, which we continue to denote by L. Since Y is smooth, the bundle L on the open subset $U \times F$ of Y can be extended to a line bundle on Y.

Q.E.D.

PROPOSITION 9

The element $\alpha \in H^2(Y, \mathbb{Z})$, associated to the double cover on Y arising from the conic bundle P is non-zero.

Proof. We claim that this double cover on Y is in fact the pull-back of the covering

$$J-\Gamma \to K-K_0.$$

J being the Jacobian of line bundles of deg 0 on X [for notations cf. §2].

Since this covering is non-split, it follows from Prop. 3, that the double cover on Y is non-split and the covering element in $H^1(Y, \mathbb{Z}/(2))$ is non-zero.

By Prop. 8 and Spanier [19], $H^1(Y,\mathbb{Z}) = 0$. Hence if we consider the cohomology exact sequence for

$$0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/(2) \to 0$$

we get

$$H^1(Y, \mathbb{Z}/(2)) \subset H^2(Y, \mathbb{Z}).$$

Since $\alpha \in H^2(Y, \mathbb{Z})$ is the image of the covering element in $H^1(Y, \mathbb{Z}/(2))$, it is non-zero. Thus to complete the proof of Prop. 9, it is enough to prove the claim.

Fix $t_0 \in X$. Then if $E \in N_0$, one can easily see that E_{t_0} can be identified with right regular representation of A = End E (see for e.g. Prop. 5 [17]).

Let $E = V \oplus W$ be an element of Y as in Prop. 3. It is easy to see that the scalars in A do not meet V_{t_0} and W_{t_0} under the above identification. So if we consider the projective space $\mathbb{P}(A')$, A' = A/(scalars), then V_{t_0} and W_{t_0} give a pair of lines in $\mathbb{P}(A')$. By Prop. 3, identifying the algebra A with a C_q^+ corresponding to a quadratic form q in Φ , it is clear that this pair of lines is indeed the ones in the conic bundle over Y.

Then the one-dimensional subspaces L_{t_0} and $L_{t_0}^{-1}$ give a pair of points \overline{L}_{t_0} and \overline{L}_{t_0} in $\mathbb{P}(A')$. Then the correspondence

$$E \mapsto (\overline{L}_{t_0}, \overline{L}_{t_0}^{-1})$$

gives a double covering on Y since we have a defining family of vector bundles $E_y = \{V_y \oplus W_y\}_{y \in Y}$. Obviously, this is the canonical double cover associated to the conic bundle on Y.

Note that $\{L_y \oplus L_y^{-1}\}_{y \in Y}$ gives a family on Y which is clearly the pull-back

 $p^*\{L_u \oplus L_u^{-1}\}_{u \in K - K_0}$, under $p: Y \to K - K_0$. The double cover of Y given above is therefore the pull-back of the double cover of $K - K_0$ given by $J - \Gamma \rightarrow K - K_0$.

Q.E.D.

PROPOSITION 10

(a) Let Z and Y be as in §3. Then there exists a topological \mathbb{P}^1 – bundle D on Z-Y with $H^*(D,\mathbb{Z})$ torsion free. In fact $D=f^{-1}(M_0^s)$.

(b) The topological Brauer class $b_D \neq 0$.

Proof. (a) By Prop. 7, $f^{-1}(K)$ has codimension g-1 in \tilde{M}_0 and $D=\tilde{M}_0-f^{-1}(K)$. Consider $\psi:\tilde{M}_0\to M_{-1,x},M_{-1,x}$ being bundles in M_{-1} with determinant L_x . Since the \mathbb{P}^1 fibration ψ is locally trivial in the Zariski topology, a line bundle L on the fibre \mathbb{P}^1 can be extended obviously to $\mathbb{P}^1\times U$, where U is a Zariski open subset of $M_{-1,x}$. Since \tilde{M}_0 is smooth, the closure of L in \tilde{M}_0 gives a line bundle on \tilde{M}_0 . Now, the cohomology of \mathbb{P}^1 is generated by line bundles and therefore we can apply Leray-Hirsch theorem to conclude that the cohomology groups of \tilde{M}_0 are those of $\mathbb{P}^1\times M_{-1,x}$.

By Atiyah-Bott [2], all the cohomology groups of $M_{-1,x}$ are torsion-free and therefore all the cohomology groups of \tilde{M}_0 are also torsion-free.

Since $g \ge 3$, the complex codimension of $f^{-1}(k)$ in $\tilde{M}_0 = g - 1 \ge 2$. This implies $\operatorname{Codim}_{\mathbb{R}} f^{-1}(K)$ in $\tilde{M}_0 \ge 4 = g - 1 \ge 2$.

Consider the homology sequence of the pair (\tilde{M}_0, D)

$$H_k(\tilde{M}_0, D, \mathbb{Z}) \to H_{k-1}(D, \mathbb{Z}) \to H_{k-1}(\tilde{M}_0, \mathbb{Z}) \to H_{k-1}(\tilde{M}_0, D, \mathbb{Z})$$

 \tilde{M}_0 is a compact complex manifold and so we can apply Alexander duality to the pair (\tilde{M}_0, D) to get

$$\begin{split} H_k(\widetilde{M}_0,D,\mathbb{Z}) &\simeq H^{n-k}(\widetilde{M}_0-D;\mathbb{Z}) \\ &= H^{n-k}(f^{-1}(K),\mathbb{Z}) \\ n &= \dim_{\mathbb{R}} \widetilde{M}_0. \end{split}$$

Since $\dim_{\mathbb{R}} f^{-1}(K) \leq n-4$, we therefore get

$$H_2(\widetilde{M}_0, D; \mathbb{Z}) = H^{n-2}(f^{-1}(K), \mathbb{Z}) = 0$$

and similarly $H_3(\tilde{M}_0, D, \mathbb{Z}) = 0$.

$$H_2(D, \mathbb{Z}) = H_2(\tilde{M}_0, \mathbb{Z}).$$

By the 'universal coefficient theorem' one has torsion subgroup of $H_k(T,\mathbb{Z})$ to be that of $H^{k+1}(T,\mathbb{Z})$, T any topological space, and therefore we conclude that

$$H^3(D, \mathbb{Z})_{\text{tors}} = H^3(\tilde{M}_0, \mathbb{Z})_{\text{tors}} = (0).$$

Note that $Z - Y = M_0^s$ and this completes the proof.

Q.E.D.

The claim (b) is due to Ramanan (p. 52 [18])

Theorem 3. $H^3(Z, \mathbb{Z})$ is torsion free.

Proof. Consider the Gysin sequence for (Z, Z - Y),

$$H^1(Y, \mathbb{Z}) \to H^3(Z, \mathbb{Z}) \to H^3(Z - Y, \mathbb{Z}) \xrightarrow{g} H^2(Y, \mathbb{Z})$$

Now by Cor. 2, Y is a $\mathbb{P}^{g-2} \times \mathbb{P}^{g-2}$ fibration over $K - K_0$ and by ([19] p. 159) $H^1(K - K_0, \mathbb{Z}) = 0$ implying by standard arguments $H^1(Y, \mathbb{Z}) = 0$ (note that $H^1(Y, \mathbb{Z})$ is torsion-free by the universal coefficient theorem).

Thus we have from the Gysin sequence an injection

$$H^3(Z,\mathbb{Z}) \subset H^3(Z-Y,\mathbb{Z}).$$
 (*)

Now note that $H^1(Z-Y,\mathbb{Z})=0$. (This follows for example from the Gysin sequence. For, note that $H^1(Z-Y,\mathbb{Z})\simeq H^1(Z,\mathbb{Z}.)$ Also we will be seeing in §5 that the codimension of N_0-Z in N_0 is actually 6. But N_0 is unirational and is therefore simply connected, being smooth projective (cf. Serre [16]). Hence $H^1(N_0,\mathbb{Z})=0$ implying $H^1(Z,\mathbb{Z})=0=H^1(Z-Y,\mathbb{Z})$.

Thus we can now apply Prop. 5 and Prop. 10 to see that $H^3(Z-Y,\mathbb{Z})_{\text{tors}}$ is generated by b_{P-P_1} , the Brauer element coming from the conic bundle $P-P_1$ over $N_0-N_1=Z-Y$. By Prop. 4 the total space of $P-P_2$ is smooth and hence the theorem due to Nitsure mentioned in §4.1 is applicable. Thus we have

$$g(b_{P-P_1}) = \alpha \neq 0 \quad (\alpha \neq 0 \text{ by Prop. 9}).$$

This together with (*) and the exactness of the Gysin sequence gives $H^3(Z, \mathbb{Z})_{tors} = (0)$ Q.E.D.

Lemma 3. Pic Z is generated by Pic(Z - Y) and the element [Y] coming from the irreducible divisor $Y \subset Z$.

Proof. This follows from the following general fact:

If X is a smooth variety, $U \subset X$ open with Y = X - U an irreducible divisor, then

$$Pic X \rightarrow Pic U$$

is a surjection and the kernel of this homomorphism is generated by [Y].

Lemma 4. Let $N_1 \subset N_0$ be as in §3. Then $\operatorname{Pic} N_0$ is generated by $\operatorname{Pic} M_0$ and $[N_1]$ over $\mathbb{Q}(*)$.

Proof. Firstly, we remark that N_1 is precisely \overline{Y} in N_0 . Actually, we will be showing in §5 that $Y \subset N_1$ is precisely the set of non-singular points of N_1 . Let us assume this. Suppose N_1 is not irreducible and let A, B be subvarieties such that $N_1 = A \cup B$. Then $A \cap B \subset N_1 - Y$ and hence $A \cap Y$ and $B \cap Y$ will disconnect Y which

^(*) In fact, over Z (see Remark in Appendix 2).

is false since Y is connected. Thus N_1 is irreducible. Also since Y is irreducible it follows that $\overline{Y} = N_1$.

An application of Lemma 4 and the result of Appendix 2 yields our result.

Remark 7. Thus by the above lemma, any $L \in \text{Pic } N_0$ can be expressed as $L = aL_1 + bL_2$, $L_1 = [N_1]$ and $L_2 \in \text{Pic } M_0$, $a, b \in \mathbb{Q}$.

In particular, let L be chosen ample. Then if F is the fibre of $Y \to K - K_0$, L when restricted to F is $(aL_1 + bL_2)|F$. But since $L_2 \in \operatorname{Pic} M_0$, which is trivial on F, we have

$$L|F = (aL_1)|F$$

F is $\mathbb{P}^{g-2} \times \mathbb{P}^{g-2}$ and L is ample, therefore we have the restriction of L_1 to each \mathbb{P}^{g-2} to be either ample or negatively ample.

Let $e \in H^2(Y, \mathbb{R})$ be the Euler class of the irreducible divisor Y in Z. Then by the 'adjunction formula', we have

$$e = [Y]|_{\gamma}$$

where [Y] is the class of $Y \subset Z$. Now $L_1 = [N_1]$ and $N_1 = \overline{Y}$, hence it follows from the above reasoning that the Euler class e when restricted to the factors of F is ample or negatively ample.

PROPOSITION 11

Let E be the normal bundle of Y in Z and E_0 be the compliment of the zero section. Consider the Gysin sequence for the 2-plane bundle (E, E_0)

$$H^k(Y,\mathbb{R}) \to H^{k+2}(Y,\mathbb{R}) \to H^{k+2}(E_0,\mathbb{R}) \to H^{k+1}(Y,\mathbb{R}) \to H^{k+3}(Y,\mathbb{R}).$$

Then the Gysin homomorphism

$$h: H^k(Y, \mathbb{R}) \to H^{k+2}(Y, \mathbb{R}),$$

given by 'wedging' with the Euler class $e \in H^2(Y, \mathbb{R})$ is an injection for $k \le \dim_{\mathbb{R}} \mathbb{P}^{g-2} - 2 = 2g - 6$.

Proof. By Prop. 8 we have

$$H^k(Y) \simeq \sum_{l+m=k} H^l(K-K_0) \otimes H^m(F)$$

or using the subspace W of $H^*(Y)$ as in Prop. 3.8, we have, any $u \in H^k(Y)$ $u \neq 0$ and $k \leq \dim_{\mathbb{R}} F$, to be expressible as

$$v = \sum_{i} u_i \otimes w_i$$
, $u_i \in H^*(K - K_0)$, $w_i \in W$,

where not all $w_i = 0$ (this is so since $k \le \dim_R F$). Without loss of generality, the u_i 's can be chosen linearly independent.

Now consider $u \otimes e$, e the Euler class in $H^2(Y, \mathbb{R})$

$$u \otimes e = \sum_{i} u_i \otimes (w_i \otimes e).$$

Consider the class $w_i \otimes e$. This when restricted to the fibre F is non-zero, since by Remark 7, the class e restricted to the factors of F is ample or negatively ample and w_i by definition lies in W and so $w_i \wedge e$ is non-zero on F for $w_i \in H^k(F, \mathbb{R})$, $k \leq \dim_{\mathbb{R}} \mathbb{P}^{g-2} - 2$. Hence by the linear independence of the u_i 's we get

$$u \otimes e = \sum_{i} u_{i} \otimes (w_{i} \otimes e) \neq 0$$

 $\Rightarrow h: H^k(Y, \mathbb{R}) \to H^{k+2}(Y, \mathbb{R})$ is an injection for $k \leq \dim_{\mathbb{R}} \mathbb{P}^{g-2} - 2 = 2g - 6$.

COROLLARY 3

The Gysin map considered in Theorem 3 i.e.

$$h^1: H^k(Y, \mathbb{R}) \to H^{k+2}(Z, \mathbb{R})$$

is also an injection for $k \le 2g - 6$.

Proof. In fact, the Gysin sequences for (E, E_0) and (Z, Z - Y) are related as follows.

and therefore, since h is an injection by Prop. 11, so is h^1 ...

COROLLARY 4

$$H^k(Z,\mathbb{R}) = H^{k-2}(Y,\mathbb{R}) \oplus H^k(Z-Y,\mathbb{R}) \ k \leq 2g-4.$$

Proof. Consider the Gysin sequence for (Z, Z - Y).

$$\rightarrow H^{k-2}(Y,\mathbb{R}) \rightarrow H^k(Z,\mathbb{R}) \rightarrow H^k(Z-Y,\mathbb{R}) \rightarrow H^{k-1}(Y,\mathbb{R}) \rightarrow H^{k+1}(Z,\mathbb{R}) \rightarrow H^{k+1}(Z,\mathbb{R}$$

Since h' is an injection for $k \le 2g - 6$, we get

$$0 \to H^{k-2}(Y, \mathbb{R}) \to H^k(Z, \mathbb{R}) \to H^k(Z-Y, \mathbb{R}) \to 0$$

for $k \le 2g - 4$ and this proves the corollary.

Remark 8. By Kirwan [5], the Betti numbers of M_0^s are known if genus $g \ge 4$, for i < 2g - 3. This together with Prop. 8, Cor. 4 and Spanier [19], yields the Betti numbers of Z for i < 2g - 3.

Remark 9. Let us assume $g \ge 4$ and recall from Prop. 10, we had a topological \mathbb{P}^1 -bundle D on Z-Y. By the proof of Prop. 10 we see that if $g \ge 4$, then $\operatorname{codim}_{\mathbb{R}} f^{-1}(K)$ in $M_0 \ge 6$ and hence

$$H_k(D, \mathbb{Z}) = H_k(\widetilde{M}_0, \mathbb{Z})$$
 for $k \leq 4$.

The homology groups of \widetilde{M}_0 are known by [10] or by using Atiyah-Bott [2] for $M_{-1,x}$. In particular, rank of $H_3(\widetilde{M}_0,\mathbb{Z})$ is 2g and hence rank of $H_3(D,\mathbb{Z})$ is 2g.

We have already seen that $H^1(Z-Y,\mathbb{R})=0$. Now D is a \mathbb{P}^1 -fibration over Z-Y and $H^1(\mathbb{P}^1,\mathbb{R})=0$, $H^1(Z-Y,\mathbb{R})=0$. Therefore by the Serre sequence of this fibration (see for example Spanier Algebraic topology pp. 519) we get an exact sequence

$$H_3(\mathbb{P}^1,\mathbb{R}) \to H_3(D,\mathbb{R}) \to H_3(Z-Y,\mathbb{R}) \to H_2(\mathbb{P}^1,\mathbb{R}) \to H_2(D,\mathbb{R}) \to H_2(Z-Y,\mathbb{R}) \to H_1(\mathbb{P}^1,\mathbb{R}).$$

Now, $H_3(\mathbb{P}^1,\mathbb{R})=H_1(\mathbb{P}^1,\mathbb{R})=0, H_2(\mathbb{P}^1,\mathbb{R})\simeq \mathbb{R}.$ Thus we have

$$0 \to H_3(D, \mathbb{R}) \to H_3(Z - Y, \mathbb{R}) \to H_2(\mathbb{P}^1, \mathbb{R}) \to H_2(D, \mathbb{R})$$

 $H_2(Z-Y,\mathbb{R})\to 0$. By the Picard group computations it follows that, $H_2(D,\mathbb{R})=\mathbb{R}^2$ and $H_2(Z-Y,\mathbb{R})=\mathbb{R}$, and therefore we have

rank of
$$H_3(Z - Y, \mathbb{R}) = \operatorname{rank} H_3(D, \mathbb{R}) = 2g$$
.

Thus the rank of $H_3(Z-Y,\mathbb{R})=2g$ and hence the rank of $H^3(Z-Y,\mathbb{R})$ is 2g.

Theorem 4. $H^3(Z, \mathbb{Z}) = \mathbb{Z}^{2g}$, when $g \ge 4$.

Proof. By Theorem 3 $H^3(Z,\mathbb{Z})$ is torsion-free. By Cor. 4

$$H^3(Z,\mathbb{R}) = H^1(Y,\mathbb{R}) \oplus H^3(Z-Y,\mathbb{R})$$

Since $H^1(Y, \mathbb{R}) = 0$, using Remark 9 we conclude that $H^3(Z, \mathbb{Z}) = \mathbb{Z}^{2g}$.

5. The main theorem

Consider the stratification of N_0 in terms of the degeneracy locus as in § 3, $N_3 \subset N_2 \subset N_1 \subset N_0$.

PROPOSITION 12

The subvariety N_2 has codimension 3 in N_0 .

Proof. Consider the local morphism

$$\varphi: N_0 \to \mathscr{A}$$

of §2. We have already seen that $\varphi: N_1 \to \mathscr{A}_1$ and $\varphi: N_2 \to \mathscr{A}_2$. Moreover, φ being a smooth local morphism, its fibres are equidimensional. Hence the codimension of N_2 in N_0 equals the codimension of \mathscr{A}_2 in \mathscr{A} . We have also seen that $\mathscr{A}_1 \subset \mathscr{A}$ is a hypersurface given by $\Delta = 0$ and $\mathscr{A}_2 \subset \mathscr{A}_1$ is precisely the singular locus of \mathscr{A}_1 . So we would like to show that

codim of
$$\mathcal{A}_2$$
 in $\mathcal{A}_1 = 2$.

Consider the natural conic bundle C on \mathbb{A}^6 as in Lemma 1. Let S be the hypersurface of \mathbb{A}^6 given by $\Delta=0$ and let $S^1\subset S$ be its singular locus. Then by Remark 5, it is

enough to show that

codim of S^1 in S=2.

By definition, if

$$q = aX^{2} + bY^{2} + cZ^{2} + fYZ + gXZ + hXY,$$

then Δ is given by

$$\Delta = \left| \begin{array}{ccc} a & h & g \\ h & b & f \\ g & f & c \end{array} \right|.$$

Thus, if Sym (. \mathcal{U}_3) is all (3 × 3)-symmetric matrices

$$S = \{ A \in \text{Sym}(\mathcal{M}_3) | \text{rank } A \leq 2 \}.$$

The conditions $\partial \Delta/\partial a = \partial \Delta/\partial b = \partial \Delta/\partial c = \partial \Delta/\partial f = \partial \Delta/\partial g = \partial \Delta/\partial h = 0$, gives

$$bc = f^2$$
, $ac = g^2$, $ab = h^2$, $af = hg$, $fh = bg$, $ch = fg$.
 $a/h = h/b = g/f$ and $a/g = h/f = g/c$

i.e. $S^{1} = \{A \in \operatorname{Sym}(\mathcal{M}_{3}) | \operatorname{rank} A \leq 1\}.$

From which we obtain the codim of S^1 in S.

Q.E.D.

COROLLARY 5

 $H_k(N_0, \mathbb{Z}) = H_k(\mathbb{Z}, \mathbb{Z}), k \leq 4.$

Proof. Consider the homology sequence of the pair (N_0, Z)

$$H_{k+1}(N_0,Z;\mathbb{Z}) \to H_k(Z,\mathbb{Z}) \to H_k(N_0,\mathbb{Z}) \to H_k(N_0,Z;\mathbb{Z}).$$

Since N_0 is a compact complex manifold, the Alexander duality as in Theorem 3, gives

$$\begin{split} H_k(N_0,Z,\mathbb{Z}) &\simeq H^{n-k}(N_0-Z,\mathbb{Z}) = H^{n-k}(N_2,\mathbb{Z}). \\ n &= \dim_{\mathbb{R}} N_0. \end{split}$$

By Prop. 12, $\dim_{\mathbb{R}} N_2 = n-6$ since $\operatorname{codim}_{\mathbb{C}}(N_2, N_0) = 3$. Hence $H^{n-k}(N_2, \mathbb{Z}) = 0$ for k < 6.

$$\Rightarrow \quad H_k(N_0,Z,\mathbb{Z}) = 0 \quad k < 6$$

$$\Rightarrow \quad H_k(N_0,\mathbb{Z}) = H_k(Z,\mathbb{Z}), \quad k \leq 4.$$

Theorem 5. $H^3(N_0, \mathbb{Z}) = \mathbb{Z}^{2g}$.

Proof. Firstly, $H^3(N_0, \mathbb{Z})$ is torsion-free. For, by Cor. 5, $H_2(N_0, \mathbb{Z}) = H_2(Z, \mathbb{Z})$ and

therefore by the universal coefficient theorem, since

$$H^3(N_0,\mathbb{Z})_{\text{tors}} = H_2(N_0,\mathbb{Z})_{\text{tors}},$$

we have

$$H^3(N_0, \mathbb{Z})_{\text{tors}} = H^3(Z, \mathbb{Z})_{\text{tors}} = (0)$$
 by Theorem 3.6.

Now using Theorem 4 and for Cor. 5 we get

$$H^3(N_0, \mathbb{Z}) = \mathbb{Z}^{2g}.$$
 Q.E.D.

Theorem 6. The Betti number B_4 of N_0 is $B_4(N_0) = {2g \choose 2} + 4$.

Proof. To see this, we use Prop. 5.9 and Remark 5.11 of Kirwan [5] to get the Betti numbers of M_0^s as $B_0=1$, $B_1=0$, $B_2=1$, $B_3=2g$, $B_4=2$, etc. By Cor. 4,

$$B_4(Z) = B_2(Y) + B_4(Z - Y).$$

Now, by Prop. 8, $B_2(Y) = B_2(K - K_0) + B_2(\mathbb{P}^{g-2} \times \mathbb{P}^{g-2})$. Hence, by Spanier [19]

$$B_2(Y) = \binom{2g}{2} + 2.$$

Also, $B_3(Y) = 0$, since the odd Betti numbers of $K - K_0$ and $\mathbb{P}^{g-2} \times \mathbb{P}^{g-2}$ are zero (cf. [19] again). Combining this with (*), we get

$$B_4(Z) = \binom{2g}{2} + 4.$$

Hence by Cor. 5 we get

$$B_4(N_0) = \binom{2g}{2} + 4.$$

Q.E.D.

Appendix 1

We present here a proof due to Coliot-Thélène of Theorem (A) mentioned in the introduction. We shall make a few remarks before going into the proof.

Let X be a smooth variety over \mathbb{C} . For the notations and properties of most of the facts mentioned below (cf. Grothendieck [4] and Saltman [13], [14]).

Define Br(X) to be the Brauer group of Azumaya algebras on X. Let Br'(X) be the 'cohomological Brauer group' of X defined to be $H^2_{et}(X, \mathbb{G}_m)_{tor}$. Then the following facts are well known:

- (i) Br X is contained in Br' (X).
- (ii) If X is a unirational smooth proper variety, then $Br'(X) = H^3(X(\mathbb{C}), \mathbb{Z})_{tor}$.
- (iii) Define $\operatorname{Br}_{nr}(X)$, the unramified Brauer group of X to be $\operatorname{Br}_{nr}(X) = \operatorname{Br}'(\overline{X})$, \overline{X} any

smooth compactification of X. Then it is know that $\operatorname{Br}_{nr}(X)$ is independent of the choice of \overline{X} since we are in characteristic 0.

(iv) Another way of defining $\operatorname{Br}_{nr}(X)$ is as follows: Let $\mathbb{C}(X)$ be the function field of X. Then for every discrete valuation ring A, with $\mathbb{C} \subset A \subset \mathbb{C}(X)$, and quotient field of $A = \mathbb{C}(X)$, there exists a natural homomorphism

$$\partial_A$$
: Br $\mathbb{C}(X) \to H^1(\mathbb{K}_A, \mathbb{Q}/\mathbb{Z})$.

 \mathbb{K}_A -the residue class field of A. Define

$$\operatorname{Br}_{nr}\mathbb{C}(X) = \bigcap_{\text{all such } A} (\operatorname{Ker} \partial_A) \text{ and } \operatorname{Br}_{nr} X = \operatorname{Br}_{nr}\mathbb{C}(X).$$

(v) Let k be a field and C a conic over k, i.e. a conic bundle coming from a quaternion algebra over k. Then there is a canonical homomorphism

$$Br'(k) \rightarrow Br'(C)$$

and the kernel of this homomorphism is the 2-torsion element coming from the quaternion algebra over k associated to C.

Note that for a field k, Br'(k) = Br(k).

PROPOSITION 13

Let C be a conic bundle on X with $\operatorname{Br}'(C)=0$, and let η be the generic point of X. Let C_{η} be the restriction of C over $\mathbb{C}(\eta)$. To C_{η} we associate an element $\alpha_{\eta} \in \operatorname{Br} \mathbb{C}(\eta)$. Suppose that for the conic bundle C on X, there exists a discrete valuation ring A, with quotient field of $A=\mathbb{C}(X)$, $\mathbb{C}\subset A\subset \mathbb{C}(X)$, such that $\partial_A(\alpha_{\eta})\neq 0$. Then $\operatorname{Br}_{nr}(X)=0$.

Proof. Suppose that $\mathrm{Br}_{nr}(X) \neq 0$ and let $\alpha \in \mathrm{Br}_{nr}(X) = \mathrm{Br}_{nr}(\mathbb{C}(X))$ be a non-zero element. Consider the following commutative diagram

$$Br_{nr} X \longrightarrow Br_{nr} C$$

$$\downarrow \qquad \qquad \downarrow$$

$$Br' \mathbb{C}(\eta) \longrightarrow Br' C_{\eta}$$

where the map $\operatorname{Br}_{nr}(X) \to \operatorname{Br}_{nr}(C)$ is the canonical map induced from $C \to X$ and the vertical maps are

$$\operatorname{Br}_{nr} C \subset \operatorname{Br} C \subset \operatorname{Br}' C \to \operatorname{Br}' C \to N \operatorname{Br}' C_{\eta}$$

 $\operatorname{Br}_{nr} X \subset \operatorname{Br} \mathbb{C}(X) = \operatorname{Br} \mathbb{C}(\eta) = \operatorname{Br}' \mathbb{C}(\eta).$

Consider the image of α in Br' $\mathbb{C}(\eta)$, call it α_{η} . Then since Br' C=0, the above diagram gives

$$\alpha_{\eta} \in \operatorname{Ker} \left[\operatorname{Br}' \mathbb{C}(\eta) \to \operatorname{Br}' C_{\eta} \right]$$

and therefore by Remark (v), α_{η} is the element in Br $\mathbb{C}(\eta)$ associated to the conic C_{η} . Now by the hypothesis of the proposition, there exists a discrete valuation ring

 $A, \mathbb{C} \subset A \subset \mathbb{C}(X)$ with quotient field of $A = \mathbb{C}(X)$, such that

$$\hat{\sigma}_A(\alpha_\eta) \neq 0.$$
 (*)

But $\alpha \in \operatorname{Br}_{nr} \mathbb{C}(X)$ and $\operatorname{Br}_{nr} \mathbb{C}(X)$ is by definition equal to

 $\bigcap_{\text{all such } A} (\operatorname{Ker} \partial_A),$

implying

 $\partial_A(\alpha_n) = 0$

which contradicts (*). Hence the proposition.

Q.E.D.

Now let us consider the variety M_0^s , the moduli space of stable vector bundles of rank 2 and trivial determinant. Then by Prop. 3, there is a conic bundle D on M_0^s with $H^3(D, \mathbb{Z})_{tors} = (0)$ and therefore Br'(D) = 0.

The existence of an A with the requisite properties of the Prop. 13 is precisely the theorem due to Nitsure [9]. Indeed, in the notation of §4, the irreducible divisor $Y \subset Z$ provides us with the discrete valuation ring A.

Hence by Prop. 13, $Br_{nr}M_0^s = 0$. This implies by Remark (3), that $Br'(N_0) = 0$, since N_0 is a smooth compactification of M_0^s . Now N_0 is unirational, smooth-projective and therefore by Remark (ii), $Br'(N_0) = H^3(N_0, \mathbb{Z})_{tor} = (0)$.

Appendix 2

Theorem (C S Seshadri). Let M be the moduli space of semi-stable vector bundles of rank 2^n and degree d. Then

Pic M^s (as well as Pic M) $\simeq \mathbb{Z}$.

Proof. For simplicity we present the proof only for rank 2 and degree zero. Choose m such that for all stable bundles V of rank two and degree zero, V(m) is generated by the global sections. Then if E denotes the trivial vector bundle of rank $r = \dim H^0(V(m)), V(m)$ is canonically a quotient of E and V(m) represents a point of Q = Q(E/P), the Quot scheme of quotients of E with Hilbert polynomial equal to P.

We then have an open subscheme Q^s of Q representing quotient vector bundles Wof E such that W is stable and the canonical homomorphism $H^0(E) \to H^0(W)$, is an isomorphism. Thus we have a canonical morphism

$$p: Q^s \to M_1^s$$

where M_1^s is the moduli space of stable vector bundles of rank 2 and $\det = \mathcal{O}_X(2m)$ and p is a G-principal fibre space with $G = PGL(H^0(E))$. Note that $M_1^s \approx M_0^s$ of § 2.

Let $q: B \to M_1^s$ be the fibre space associated to p with fibre the projective space of dimension (r-1). Hence if $W \in M_1^s$, the fibre $q^{-1}(W)$ can be canonically identified with $\mathbb{P}(H^0(W))$.

Let A denote the projective space $\mathbb{P}(\operatorname{Ext}(L, I))$, the 'Atiyah family' on the vector

space of all extensions of the form

$$0 \rightarrow I \rightarrow W \rightarrow L \rightarrow 0$$
,

where I is the trivial vector bundle of rank one and L the line bundle $\mathcal{O}_X(2m)$. Let A^s denote the subset of A defined by

$$A^s = \{0 \rightarrow I \rightarrow W \rightarrow L \rightarrow 0 | W \text{ is stable}\}.$$

Then As is open and we have a canonical surjective morphism

$$\lambda: A^s \to M_1^s$$

which associates to an extension as above the vector bundle W. Observe that giving an extension as above is equivalent to giving a section $s \in H^0(W)$ which is non-vanishing at every point $x \in X$. From this observation we deduce easily that A^s can be identified canonically as an open subset of the projective bundle B over M_1^s ; in fact we have a commutative diagram

Note that $p^{-1}(W) - \lambda^{-1}(W)$ is irreducible in $\mathbb{P}(H^0(W))$ for $p^{-1}(W) - \lambda^{-1}(W)$ is the canonical image in $\mathbb{P}(H^0(W))$ of the set $S = \{s | s \in H^0(W), s \text{ vanishes at least at one point of } X\}$ i.e.

$$S = \bigcup_{x \in X} \operatorname{Ker} (H^{0}(W) \to W_{x}).$$

Since $\lambda^{-1}(W)$ is the complement of an irreducible closed subset in a projective space, nonvanishing regular functions on $\lambda^{-1}(W)$ reduce to constants. From this, we easily conclude that, if U is an open subset in M_1^s and f a regular nonvanishing function on $\lambda^{-1}(U)$, then f is a pull-back of a regular nonvanishing function on U. From these properties, it follows easily that the canonical homomorphism

$$\lambda^*$$
: Pic $M_1^s \to \text{Pic } A^s$

is injective. To see this, let $L \in \ker \lambda^*$. Then if L is given by transition functions $\{\theta_{ij}\}$ on $V_i \cap V_j$, we have nonvanishing regular functions φ_i on $\lambda^*(V_i)$ such that $\lambda^*(\theta_{ij}) = \varphi_i \varphi_j^{-1}$.

Now the φ_i are pull-backs of functions θ_i on V_i and the required assertion follows. Now A^s is an open subset of $\mathbb{P}(\operatorname{Ext}(L,I))$ and therefore $\operatorname{Pic} A^s$ is either \mathbb{Z} or $\mathbb{Z}/(m)$, $m \neq 0$. Consider the normal projective variety M_1 . The ample line bundle on M_1 restricted to M_1^s shows that $\operatorname{Pic} M_1^s$ is not torsion. But $\lambda^* : \operatorname{Pic} M_1^s \to \operatorname{Pic} A^s$ is injective implying, $\operatorname{Pic} A^s = \mathbb{Z}$ and also $\operatorname{Pic} M_1^s = \mathbb{Z}$. Since M_1 is normal, it follows that $\operatorname{Pic} M_1 \subset \operatorname{Pic} M_1^s$ and hence $\operatorname{Pic} M_1 = \mathbb{Z}$.

Remark. A priori, $\operatorname{Pic} M_1$ is just a proper subgroup of $\operatorname{Pic} M_1^s$. But if M_1 is locally

factorial then $\operatorname{cl} M_1 = \operatorname{Pic} M_1$ and we would have $\operatorname{Pic} M_1 = \operatorname{Pic} M_1^s$. In fact, this is so and has been recently proved by J M Drezet and M S Narasimhan.

References

- [1] Artin M and Mumford D, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. 25 (1972) 75-95
- [2] Atiyah M F and Bott R, The Yang-Mills equations on a Riemann surface, Philos. Trans. R. Soc. London A308 (1982) 523-621
- [3] Gabber O, Some theorems on Azumaya algebras, Lecture Note in Mathematics (Springer Verlag) Vol. 844 (1980)
- [4] Grothendieck A, Le groupe de Brauer I, II, III (dix exposes sur la cohomologie des schemes) (Amsterdam: North Holland) (1968)
- [5] Kirwan F, On the homology of the compactifications of moduli spaces of vector bundles over a Riemann surface, *Proc. London Math. Soc.* 53 (1986) 237-267
- [6] Narasimhan M S and Ramanan S, Moduli of vector bundles on a compact Riemann surface, Ann. Math. 89 (1969) 14-51
- [7] Narasimhan M S and Ramanan S, Geometry of Hecke cycles—I, CP Ramanujan—A tribute (Bombay: TIFR) (1978)
- [8] Newstead P E, Comparison theorem for conic bundles, Math. Proc. Cambridge Philos. Soc. (1981) 9-21
- [9] Nitsure N, Topology of conic bundles, J. London Math. Soc. 35 (1987) 18-28
- [10] Nitsure N, Cohomology of the moduli of parabolic vector bundles, Proc. Indian Acad. Sci. (Math. Sci.) 95 (1986) 61-77
- [11] Nitsure N, Thesis, Study of vector bundles on varieties TIFR, Bombay (1986)
- [12] Nitsure N, Cohomology of desingularization of moduli space of vector bundles (to appear)
- [13] Saltman D J, The Brauer group and the center of generic matrices, J. Algebra 97 (1985) 53-67
- [14] Saltman D J, Noether's problem over an algebraically closed field, Invent. Math. 77 (1984) 71-84
- [15] Serre J P, Espaces fibré's algébriques (Séminaire Chevalley) (1958)
- [16] Serre J P, On the fundamental group of a unirational variety, J. London Math. Soc. 34 (1959) 481-484
- [17] Seshadri C S, Desingularization of moduli varieties of vector bundles on curves, *Int. Symp. on Algebraic Geometry* (1977) (ed.) M Nagata (Kyoto) pp. 155–184
- [18] Seshadri C S, Fibré's vectoriets sur les courbes algébriques (Astérisque 96 (1982))
- [19] Spanier E H, The homology of Kummer manifolds, Proc. Am. Math. Soc. 7 (1956) 155-160