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Abstract. Let X be a smooth irreducible projective curve of genus g over the field of
complex numbers. Let M, be the moduli space of semi-stable vector bundles on X of rank
two and trivial determinant. A canonical desingularization N, of M, has been constructed
by Seshadri [17]. In this paper we compute the third and fourth cohomology groups of Nj,.
In particular we give a different proof of the theorem due to Nitsure [12], that the third
cohomology group of Ny is torsion-free.
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1. Introduction

Let X be a smooth irreducible projective curve of genus g over the field of complex
numbers. Non-singular models of the moduli space of semi-stable vector bundles on
X of rank two and degree zero have been constructed by Narasimhan-Ramanan [7]
and Seshadri [17]. In this paper, we propose to compute some of the Betti numbers
of the non-singular model due to Seshadri. In particular we prove the following
theorems.

Theorem (A). The third cohomology group of the non-singular model N, of [17] is
torsion-free, g = 2.

Theorem (B). Let B, denote the Betti numbers of Ny. Then we have:

2
By=12g, B4=<2g>+4, g=4.

Theorem (A) is due to Nitsure [11]. He proved this for the non-singular model of
[7]. By Artin-Mumford [1], the torsion subgroup of the third cohomology group of
a smooth projective variety is a birational invariant. Therefore any non-singular
model has torsion-free third cohomology.

We present here a considerably simpler proof of Theorem (A) using the model of
[17]; in fact, this was the initial motivation for this work. However we should point
out that the general line of attack is as in Nitsure [11]. An extension of the ideas
involved in the proof also yields Theorem (B). For computing B, and Bs we make
use of the results of Kirwan [5].

Nitsure showed independently that By =2g for the model of [7] (cf [12]).
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In Appendix 1 we present a proof of Theorem (A) due to Coliot-Théléne which is
independent of the non-singular model chosen.

Theorems (A) and (B) are of interest in understanding the rationality of these
non-singular models of the moduli space of vector bundles.

The layout of the paper is as follows. Section 2 of this paper gives various properties
of the non-singular model constructed in [17]. In §3 we construct a canonical
generalized conic bundle on the non-singular model N,. In §4 by using a result of
[9], we prove Theorem (A) and show how to compute the Betti numbers of the open
subset Z of N, lying over the stable bundles and the bundles in the non-nodal part
of the Kummer variety. In this section, we also give a description of the Hecke
correspondence in terms of parabolic bundles as mentioned in (*). This facilitates the
computation of the Betti numbers. In § 5 we compute explicitly the codimension of
the complement of Z in N, and thereby compute its Betti numbers.

The author is grateful to Prof C S Seshadri for suggesting this approach and for
many fruitful discussions. He thanks A J Parameshwaran for many an interesting
discussion. He also thanks Prof. J Coliot Théléne for communicating his proof.

2. Preliminaries

In this section we shall recall very briefly the definitions and terminologies of [17].
The proofs of most of the statements made in this section can be found in [17] or

[18]. We state at the outset that for us the ground field of all our varieties is the field
of complex numbers.

{i) X is a smooth irreducible projective curve of genus g = 3.
(ii) Let V be a vector bundle on X. A parabolic structure at a point PeX gives
(@) a quasi-parabolic structure ie. a flag Vp=F'Vp 2 F*V, 22 F Vs

(b) weightsa,,...,o, attached to F* Vp,...,F'Vpsuchthat 0 < oy <o, < -0, < 1.
Callk, = dim F' Vp — dim F? V..., k, = dim F'V,
the multiplicities of a;,%,,...,2,.

The parabolic degree of V is defined by

pardegV =degV +) ko,

and write par u(V)=rpardeg V/rtk V.

If W is a subbundle of V, it acquires, in an obvious way, a quasi-parabolic structure.
To make it a parabolic subbundle, we attach weights as follows:

Given io, F°W c F'V for some; let j, be such that FW < F°V and FooW ¢
Fle*1y; then the weight of F°V =F*W. Define V to be parabolic stable (resp.

semistable) if for every proper subbundle W of V¥, one has par w(W) < par u(V)
(resp. ).

(*) Mehta V and Seshadri C S Math. Ann. 248 (1980) 205-239.
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If V, be the category of semistable vector bundles on X of rank n and degree 0,
then we denote by PV, the category of parabolic semistable vector bundles at a fixed
point PeX and fixed parabolic structure. Recall that, one can choose the weights («)
small enough so as to have the condition ‘parabolic semistable’ equivalent to ‘parabolic
stable!

(iii) N is the set of isomorphism classes of (V, A)e PV, (A a parabolic structure), such
that End V is a ‘specialization’ of .#,—the 2 x 2 matrix algebra.

In fact, if (V,,A,) and (V,,A,) belong to N, they represent the same element of N
(i.e. isomorphic in PV,) if and only if the underlying bundles ¥, and V, are isomorphic
(cf [17]). Hence we often simply write VeN.

(iv) «f is the variety of all algebra structures on a fixed 4-dimensional vector space

' which are specializations of .#, and admit a fixed identity element. We have a
canonical group of automorphisms acting on 7, namely the subgroup of GL(4),
fixing this identity element.

(v) M denotes the normal projective variety of equivalence classes of semistable
vector bundles of rank 2 and degree 0 under the equivalence relation ¥V ~ V’
if and only if gr V=gr V"

(vi) M* will be the open subset of M consisting of the stable bundles.

It is known that M — M*® is precisely the singular locus of M (cf [6]). The main
theorem of [17] is stated below.

Theorem 1. (Seshadri) There is a natural structure of a smooth projective variety on
N and there exists a canonical morphism p:N — M, which is an isomorphism over M>.
More precisely, if VeN, then gr V =D @ D, with tk D =2, D is a direct sum of stable
line bundles of degree 0 and the morphism p:N —M is given by Vi>D. Further
Vep~ Y (M%) ifand only if End V ~ M , or equivalently (which is easily seen) V =W @ W,
where W is stable.

In the course of proving the smoothness of N, Seshadri defined a morphism from
a neighbourhood U of a given point of N into 4 which we shall denote by

oY U—A. ‘

We shall briefly indicate the construction of ¢U: The functor defining the moduli
space N being representable, we have a defining vector bundle E on X x N of rank 4.
Let f:X x N— N be the canonical projection and End E the vector bundle associated
to the shear of endomorphisms of E. Set

B=f,(End E).

B is the canonical family of specializations of .#,, parametrized by N (see Prop. 5
[17] for details). Consider any given point ue N; then choosing a neighbourhood U
of u, which trivialises B, we get a natural morphism

oV:U>A by VeEndV, Vel.

This morphism exists by the so-called versal property of A. Further,let A, =End V,, V,

u

the vector bundle corresponding to the point ueU, ie. A, = @Y(u). Then, if 4, is the
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mini-versal deformation space of 4,, the morphism
eV:U—A4,
induced by the versality of 4, from ¢V is in fact smooth.

Note 1. By an abuse of notation, in the course of this work, we shall suppress U and
the mini-versal deformation space corresponding to each point, and simply denote
by ¢:N — A the smooth local morphism defined above. In fact, we will be using it only
in this form in this work.

Note further that these @Y are uniquely determined modulo automorphism coming
from the canonical group of automorphisms acting on A.

PROPOSITION 1

The restriction of the local morphism ¢ to the subvariety N, remains smooth.

Proof. Let J denote the Jacobian variety of line bundles of degree zero on X. Then
we have a natural morphism

Y:NgxJ—=N
(E, L)} E®L

(that this map is a morphism follows from the universal property of N and the fact
that E® L gives a family on X parametrized by N, x J).

We claim that y is smooth. In fact,  is étale. For, let I = J be the finite subgroup
of J consisting of the elements of order 2. Then there is a natural diagonal action of
I' on N, x J which is obviously fixed point free. It is not difficult to see that N is
actually the quotient of Ny x J by I" and y: Ny x J = N the quotient morphism (note
that our ground field is C and if A and B are smooth complex manifolds and G a finite
group acting on A such that B is the set theoretic quotient of A by G, then B is A/G).

This I"-action being fixed point free, Y is étale.

For beN, x J, choosing a neighbourhood U of y(b) =u in N, we get the following
diagram ‘

Y U)—— U

where A, is the mini-versal deformation space of the algebra 4, = ¢V (u) in A.

Since @Y,y are smooth, so is ¢Y°y. In other words the local morphism (again by
abuse of notation)

o°Y:NgxJ—A

is smooth. If LeJ, then End (E® J)=End E and hence oy clearly factors through
N, to give the smoothness of the restriction of ¢ from Ny, — 4. Q.E.D.
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Remark 1. Because of Prop. 1, by the same arguments as in [17], we see that Ny is
a smooth-projective variety. We then get an obvious generalization of Theorem 1
namely that p:N,—M, which is a desingularization of Mj, and that it is an
isomorphism over Mj etc.

3. Conic bundles

DEFINITION 1
Let S be a variety. A generalized conic bundle % on S gives

(a) a vector bundle ¥ on § of rank 3 and

(b) a closed subscheme ¥ of P(V) over S, such that, given seS, there exists a
neighbourhood U of s, where € np~ ! (U) is defined by ¢ =0, geI'(p~ Y(U),H*),H
being the tautological line bundle for P(V)-5S; ie. p,(H)~V* and therefore
p(H?)=S§*V*, etc.

By definition, % is an effective Cartier divisor and is therefore defined by a section
of a line bundle 0 on P(V). Now locally over S, # and H? coincide and therefore by
the “see-saw” theorem (cf. Mumford’s Abelian varieties) there exists a line bundle L
on § such that § = H?® p*(L). Since p,(0) = p,(H*) @ L=S*(V*)® L, the condition
(b) above is equivalent to an element g of I'(S*(V*)® L) or that is to say a quadratic form

q:V-L.

The discriminant A of g can be defined as a section of L* @ (A*(V*))* and locally as
the usual discriminant of a quadratic form. The equation A=0 gives locally the
degeneracy locus of €.

We now introduce subschemes on S, namely for i = 1,2,3, set

S, = {seS|q restricted to V;, the fibre at s, has rank <3 —i}.

Then S, =S, =S, =S =S8,. If :¢— S be the projection, let €;=g~(S,), i=1,2,3.
Then we have S, to be the degeneracy locus of %, i.e. given by A=0,and §, =S, is
the singular locus of S;. The space & can be described as follows: € — ¢, consists of
non-degenerate conics; €, — ¥, of pairs of lines intersecting transversally; €, — €
of repeated lines and & of the whole plane. We call S; the canonical subschemes
associated to the degenerate loci of the conic bundle € on S. Accordingly we make
the following.

DEFINITION 2

A generalized conic bundle € is of type 1if €, = ¢; of type I1 if , = ¢ and of type IIL if
%3 = ¢

DEFINITION 3 (cf p. 164 [17])

Let T be an algebraic scheme and {G, },.r a family of algebras parametrized by T
and defined by a locally free Or-module G of rank 4. We say that this is a family of
specializations of # , if, given teT, there is a neighbourhood T, of t and a morphism
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J:Ty >/, such that {G,},., is the base change of {4y},., by f, where A, is the
algebra structure corresponding to yes.

Remark 2. By Remark 3 [17], the above definition has an equivalent formulation as
follows: Let T=SpecR, and G be an R-algebra with identity e, such that the
underlying R-module is free of rank 4. Let J = G/Re,. Consider the canonical Lie
algebra structure on J induced by the associative algebra structure on G. This gives
a canonical skew-symmetric bilinear map J x J—J or equivalently (in our case) an
clement of J®J. Then we say the algebra G gives a family of specializations of M 2
parametrized by T, if this Lie algebra structure is defined by a symmetric element of
J @ J. Further, the algebra G is isomorphic to C", g being the corresponding quadratic
form. This definition generalizes, in an obvious way, when T is any scheme, and G
a vector bundle of rank 4 on T; however, the quadratic form q on J takes values in
a line bundle on T.

Note 2. We shall use this reformulation in the course of this work.

Remark 3

(1) Restrict the canonical family B of specialization of .# , parametrized by N to the
subvariety N. Call this family B,

(i) For yes/, let A, be the corresponding algebra structure; then {Ay}yE » gives an
obvious family of specializations of .#,.

(i) Let T =SpecR and G an R-algebra giving a family of specializations of 4 2
Then by Remark 2, we get a symmetric element of J ® J = G/Re,. This symmetric
element naturally gives rise to a symmetric bilinear form on J* (the R-dual of J)
and therefore a quadratic form on J*. Now J* being a projective R-module of
rank 3, it defines a vector bundle of rank 3 on T. More generally, if we are given
an algebraic scheme T, a family {G,},.; of specializations of . 2 then we have
a canonical vector bundle. ¥ of rank 3 on T together with a ¢ 1.-valued quadratic
form q: ¥V — O, and thus a conic bundle on T.

(iv) The families B, on N, and {4,} _, on . give generalized conic bundles on Ny
and & respectively.

Notation 1. Denote these conic bundles by P on N, and Q on 7.

PROPOSITION 2

The conic bundle P on N is locally the base change of Q on « by the local morphism
@:No— s of §2.

Proof. This is an immediate consequence of the definitions of @, By and {4} .

Remark 4. Following § 3, we introduce the canonical subschemes

HicH,cof, cef and
N;cN,cN;cN,

associated to the degeneracy locus of Q and P respectively. Then, by Prop. 2. ¢
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locally maps N, — N, into o/ — o, in such a way that N,—=N,— s, — 5,
No—N,—»o — ;.

Remark 5. By Theorem 1 [17] we know that o/ ~ ® x A, where A is the 3-dimensional
affine space and ® the 6-dimensional affine space whose points are identified with the
set of quadratic forms on a fixed 3-dimensional vector space (or algebras of the form
C;j—the even degree elements of the Clifford algebra associated to the quadratic form
q). Therefore we have for i = 1,2,3

o ;={qe®|rank ¢ <3 —i} x A3,

Note that
oAy — ;szfl ={g|qe®,C} ~.#,} x A* or equivalently
Ao sty = (Y| Ay~ M}

Notation 2. We denote the subsets No—N, and Ny —N, of No by Z and Y
respectively.

Let K = M, — M, be the singular locus of M,. The bundles here are of the form
L@ L1, where Lis aline bundle of degree 0. Let K, be the ‘nodes’ of K (i.e. consisting of
bundles of the type L@ L with L? trivial). Then

K—K,=L®L, LeJ-T,

J and T as in §2. It may be noted that K is a Kummer variety of dimg (cf [6])

PROPOSITION 3

The subsets Z and Y of N, are precisely No — p~1(K,) and p~* (K — K,) respectively,
where p:N,—M, is the desingularization morphism. In particular, Z =Y = p~H(M3).

Proof. By Remark 3, it is enough to show that the subsets p~* (M%) and p~ YK —Kyp)
of N, are mapped locally by ¢ into the subsets o/, —/, and & — o, of &,
respectively. We know that Ve p~1(M3) if and only if End V ~ M ,, which shows
p~1(M$) maps to Ao — ;.

Therefore it is enough to show that, for Eep~}(K — K,), End E has the same
defining relations as that of the algebra C;, for a quadratic form q of rank 2 on a
3-dimensional vector space.

By definition of the desingularization, the endomorphism algebras of any two points
in a fibre p~1(L@® L™*) are isomorphic. So we consider a point E in p™*(L@&L™")
where E = V@ W, VeExt (L, L") WeExt(L™", L), LeJ = I". ie.

0->L->V—>L1-0,

0-»L 1>W-L-0. M

It is clear that points of this type are actually in p~*(K — K,). Using (1), it is easy
to see that End (V @ W) has four generators, which in terms of block matrices can
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be described as

0 0 0 7y y I 0 ) 0 0
= w — = = »
=\, 0 00 00 0 I
where I =2 x 2 identity matrix, and Y1,7, coming from identification of the line
bundles in the exact sequence (1). The defining relations can be given as

wW=u, vi=v, w=0, ut+v=I,

w=x=wx=0, uw=w, wu=0, ()]
ux=0, xu=x, vww=0, wo=w
vx=x, xv=0.

If g is a quadratic form of rank 2 on a 3-dimensional vector space over an algebraically

closed field k then it is easily seen that C,; = the even degree elements of the Clifford
algebra of g is a 4-dimensional k-algebra with

C; =k+ko+kB+ky such that
a2=_1, aﬁ=—y, ay:ﬁ
BOC:% ’y‘x:_ﬁ

Now put a=3(1 +ia), b=4(1 —ia), c=if +y, d=if —v, where i =,/ — 1ek. Then
a,b,c,d are new generators of C; with the following defining relations

a*=a, b>=b, ab=0, a+b=1,

>=d*=cd=0, ac=c¢, ca=0, (3)
ad=0, da=d, bc=0, ch=c,
bd=d, db=0.

A glance at (2) and (3) proves our claim.
Q.E.D.
COROLLARY 1

YBK—KyisaPo2x po-2 fibration associated to a vector bundle on K — K,.

Proof. Indeed; we claim that, if EeY =p (K —K,) then E=V@®W, for some
VeP (Ext(L, L™1)), WeP (Ext (L™Y, L)) LeJ —T.
Let Eep™!(K —K,); then, End W has four generators x, w,u,v with defining

relations (2) as in Prop. 3. Consider ueEnd E, and let V = ker u. Then V is a subbundle
of E and we have an exact sequence

0-V-E->W-0.

It is clear then that W is in fact ker v, veEnd E and therefore we get a splitting of the
exact sequence, implying E= V@ W,
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Now using Prop. 1 of [17], V and W cannot be of the type L& L or L' @ L.
For the same reason, since EePV,, weruleout V=L@ L™ !, W= L '@ L. Hence we
are left with VeP (Bxt(L,L™!)), WeP (Ext(L™%, L)) or vice versa.

Note that for LeK —K,, Ext(L,L™!)=HX,L ?) has dimension g—1 and
therefore Y is a P9~ 2 x P9~ 2 fibration over K — K. The vector bundle to which this
is associated has fibre at any LeK — K, to be Ext(L,L™*)@® Ext(L™ %, L).

COROLLARY 2

The fibration Y 25 K — K, is locally trivial in the Zariski topology.

Proof. This follows from Cor. 1 and Serre (cf [15]).

PROPOSITION 4

Let P — P, be the restriction of the conic bundle P over points of Ny — N, (i.e. Z). Then
the total space of P — P, is smooth.

Proof. By Prop. 2, P —P, is locally the base change of Q —Q, (the restriction of Q
over points of &/ — &/,). Since ¢:Ny—  is a smooth local morphism, the total space
of P — P, is smooth if and only if the total space of Q — Q, is so.

Consider any point (a;,a,,as,ds,as,as)eAS. This defines a quadratic form

g=a,X>+a,XY+a;Y*+a,XZ +asYZ +agZ*

We therefore have a conic bundle C over A® by considering the conics defined by
the quadratic forms. By Remark 4 it is clear that the conic bundle Q on </ is ‘essentially’
the conic bundle C. Thus we would have proved our claim if we show that the total
space of C—A® — S! is smooth, where S is the degeneracy locus of C and §' = § its
singular locus. We have in fact more.

Lemma 1. Let 8:C — A® be the canonical morphism. Then 6~ '(AS —(0)) is smooth.

Proof. Let PeC be any point. Then P can be given by (a;,a5,a3,44,45,d6, X, Y,Z)
where not all ¢,=0 and not all X,Y,Z=0, P lying on the conic defined by
g=a,X*+a,XY+a3Y*+a,XZ +a;YZ + asZ*. Taking partial derivatives of ¢
with respect to a;, i=1,...,6, we have

09/0a,=0, i=1,....,6=X=Y=Z=0.
QED.

4. Cohomology computations

4.1 The Gysin map

Let W be a conic bundle of type I (cf Def 2) on a variety S. This gives
rise to a topological Brauer ‘class by in H3(S,2),,s (i.e. the torsion subgroup
of H3(S, 2)).
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Let W be a conic bundle of type Il (cf Def. 2). Then if W degenerates
to a pair of lines over an irreducible divisor §; < §, the restriction W, of W over §,
gives rise in a natural way to a double cover of §, (cf Lemma on p.29 of [8]) and
W — W, is a conic bundle of type I over S —S;. We shall denote by ‘@’ the element
in H%(S,, Z) coming from this double cover. Consider the part of the Gysin sequence
for S, =S which involves H*(S, Z), i.e.

HY(S,,Z)—H3(S,2)— H*(S - S,,2) - H*(S,, Z).
Then we have here the

Theorem 2. (Nitsure [9],[11]) Let W be a conic bundle of type II on S. If the total
space of W is smooth, then the image of by —w,€H3(S — S, Z)ys under the Gysin
map g, is precisely ae HX(S,, Z). In particular if « %0, then by, _y, #0.

PROPOSITION 5

Let W be a conic bundle of type I over S where H'(S,Z) =0 and with by #0 in
H3(S,Z),o.. Suppose that there exists another topological P' — bundle U — S with the
property that H*(U, 7). = (0). Then by, = + by and H3(S, Z),,,s is generated by by

Proof. Toprove this proposition, we shall appeal to the following well-known (cf[11]).

Lemma 2. Let U —S be a P! - bundle over a path connected space S with H(S) =0.
Then the kernel of the induced homomorphism H*(S,Z)— H3(U, Z) is generated by by,.

We now apply the lemma to U—S. Since we have H*(U,Z),,=(0), we get
H3(S,2Z),,, to be generated by by, which is a 2-torsion element. Also by lies in
H3(S, 7)., and by # 0 which implies by = + by. This proves Prop. §.

The next step is to construct explicitly a P* — bundle on the subspace Z — Y which
satisfies the property of Prop. 5. For this purpose, we elaborate in some detail, what
is called the ‘Hecke correspondence’ of [7], in terms of parabolic bundles as remarked
in (*).

Let V be a vector bundle on X of rank 2 and degree 0. Suppose we are given a
parabolic structure at a point xeX, defined by a 1-dimensional subspace

F?V,cF'V,=V, and weights (x,,a,) such that

(i) parabolic stable = parabolic semi-stable,
(ii) parabolic stable =-underlying bundle is semi-stable, and
(iii) underlying bundle stable=-any parabolic structure is stable.

Let T be the torsion ¢ .-module given by

T.=V,/F*V,, T,=0, x#y.

(*) Mehta V and Seshadri C S, Moduli of vector bundles on curves with parabolic struct
50y poe p uctures. Math. Ann. 248
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Then we have a homomorphism of V onto T (as Ux-modules). If W is the kernel of
this map, we have 0> W—V —T—0and Wis locally free of rank 2 and degree — 1.

Let M be the moduli space of parabolic stable bundles of rank 2, degree O on X
and M _, the moduli space of stable bundles of rank 2, degree —1, f :M — M, the
canonical morphism; and Mo =f"1(M,)

PROPOSITION 6

If VeM then W defined above, is in M _, and the map v:M-M_,VWisa Pl
bundle, locally trivial in the Zariski topology. In fact it is the dual projective Poincaré
bundle on M _,.

Proof. We first claim that if V' is parabolic stable then W is stable. To see this, let
F < W be a line subbundle. We need to show that deg F < 0. Suppose this is not the
case i.e. deg F 2 0. '

Let G be the line subbundle of V generated by the image of F in V. Then
deg F < deg G. Since the underlying bundle of V is certainly semi-stable, we have
deg G < 0. By our assumption deg F > 0 and hence we have deg F = deg G =0. This
implies that the canonical homomorphism F — G is an isomorphism. We also see
that by the definition of T

G,c F%V,,
but V being parabolic stable with weights 0 <a; <a, we get
pardeg G = o, < ¥, +a,) =pardeg V/tk V

which leads to a contradiction. Hence W is stable. Conversely, we claim that M is
isomorphic to the dual projective Poincaré bundle of M _, restricted to M_,. To see
this, we start with a WeM _;. Then, given a point in P(W*), xeX, one can easily
obtain a vector bundle V of rank 2 and degree 0 and an injection W —V as 0,.-modules.
The cokernel then gives a 1-dimensional subspace F 2y_ of V, and therefore a
‘quasi-parabolic structure’. The stability of W together with an argument as above,
makes V parabolic stable. That this map is an isomorphism is a consequence of the

universal property of the moduli space of parabolic stable bundles.
That ¥ — M _ is locally trivial in the Zariski topology, now follows from Serre [15].
Q.ED.

PROPOSITION 7
Consider the canonical morphism f~]\71 o= M. Then f is a P*-fibration over MY and
f~Y(K) has codimension g — 1 in M.

Proof. That f is a P*-fibration over M is immediate by the property (3) mentioned
before Prop. 6. Let L®L™'eK — K. Then the points of M, lying over L@ L™ are
of the following form:

Case 1. V is a non-trivial extension of L™! by L (or L by LY

We claim that a parabolic structure on ¥ which is equivalent to giving a subspace
F2V, of V; of dimension one, is stable if and only if Lp ¢ F2V,. This is necessary to
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ensure parabolic stability, for otherwise if Lp ¢ F>V,, then perdeg L=deg L + o, = a,
and o, <« pardeg V/rk V =$(a; + a5), since a; <o,.

Case 2. V=L@L!

We claim that a parabolic structure F?V; such that F2Vp # Lp or Ly ! is stable. This
is easily checked as above. In fact we see by an argument as in Prop. 1 of [17] all
the parabolic structures of Case 2 are isomorphic and hence give one point of M.
Hence the total dimension of the fibre at L@ L ' =dimExt(L,L™ ')+ 1=¢g—1.
Therefore, dim f ~1(K — K,) =29 — 1.

In fact, it is not difficult to see that for xeK — K, f ~*(x) is the union of two
projective spaces of dimension g — 1 meeting at a point.

Finally, let VeM, be such that gr V = L@ L. (L of order two). Then the following
can easily be checked.

(i) V hasa parabolic stable structure if and only if V is a non-trivial extension of L by L.
(ii) A parabolic structure given by F2V, is stable iff F?Vp # Lp (where L is the unique
line subbundle of V).

Once again by an argument as in Prop. 1 [17] we see‘that all the parabolic structures
on a non-trivial extension ¥V of L by L are isomorphic. Hence the fibre of
f over L@ L is isomorphic to P(H(X, 0,)) which has dimension g — 1, implying
codim (f ~}(K),M,) =g — 1.

Remark 6. Thus we have the following diagram

M_, M

which gives a correspondence between M _; and M.

PROPOSITION 8

The fibration Y %> K — K, with fibre F = P72 x P92 satisfies the conditions of the
Leray—Hirsch theorem and consequently we have

H*(Y,R)~H*(K — K,, R)® H*(F,R).
Proof. The following form of the Leray—Hirsch theorem will suit our purposes.

Leray—Hirsch. Let E be a fibre bundle over B and compact fibre F. Suppose B has
a finite good cover. If there are global cohomology classes e, ,...,e, on E which, when
restricted to each fibre freely, generate the cohomology of the fibre, then H*(E, R) is
a free-module over H*(B, R) with basis ey,...,e,; or more precisely, if the canonical
map j:H*(E,R)—~ H*(F,R), is surjective, then for any subspace W of H*(E, R) such
that j|W:W— H*(F,R) is an isomorphism, one has

H*(E,R) = H*(B,R)® W.
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Since F in our case is P¢~2 x P¢~2 H*(F,R) is generated by line bundles on F.
Therefore it is enough to check that any line bundle on F can be extended to a line
bundle on Y.

By Cor. 2, YK — K, is locally trivial in the Zariski topology. Let L be a line
bundle on F, and U = K — K, be the trivializing Zariski open subset. Then L can be
obviously extended to a line bundle on U x F, which we continue to denote by L.
Since Y is smooth, the bundle L on the open subset U x F of Y can be extended to

a line bundle on Y.
Q.E.D.

PROPOSITION 9

The element a.e H2(Y,Z), associated to the double cover on Y arising from the conic
bundle P is non-zero.

Proof. We claim that this double cover on Y is in fact the pull-back of the covering
J - F - K - Ko.

J being the Jacobian of line bundles of deg0 on X [for notations cf. §2].

Since this covering is non-split, it follows from Prop. 3, that the double cover on
Y is non-split and the covering element in H'(Y,Z/(2)) is non-zero.

By Prop. 8 and Spanier [19], H 1(Y,Z) = 0. Hence if we consider the cohomology
exact sequence for

0-Z—>Z—-Z/2)—0
we get
H'(Y,Z/(2)) = H*(Y, Z).

Since ae H2(Y, Z) is the image of the covering element in H'(Y, Z/(2)), it is non-zero.

Thus to complete the proof of Prop. 9, it is enough to prove the claim.

Fix t,eX. Then if E€N,, one can easily see that E,, can be identified with right
regular representation of 4 = End E (see for e.g. Prop. 5 [17]).

Let E= V@ W be an element of Y as in Prop. 3. It is easy to see that the scalars
in A do not meet V, and W, under the above identification. So if we consider the
projective space P(4), 4" = A/(scalars), then V,, and W, give a pair of lines in P(4’).
By Prop. 3, identifying the algebra A with a C; corresponding to a quadratic form
g in @, it is clear that this pair of lines is indeed the ones in the conic bundle over Y.

Then the one-dimensional subspaces L,, and L * give a pair of points L, and L,
in P(A'). Then the correspondence

E- (L, LigY)

gives a double covering on Y since we have a defining family of vector bundles
E, = {V,® W,},ey. Obviously, this is the canonical double cover associated to the
conic bundle on Y.

Note that {L,@® L, "},y gives a family on Y which is clearly the pull-back
p*{L.®L; ! }uex - ko> under p:Y - K — Ko.

The double cover of Y given above is therefore the pull-back of the double cover
of K — K, given by J —I'=> K — K.

Q.ED.
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PROPOSITION 10

(a) Let Z and Y be as in §3. Then there exists a topological P! - bundle D on
Z — Y with H*(D, Z) torsion free. In fact D = f ~1(M3).
(b) The topological Brauer class by # 0.

Proof. (a) By Prop. 7, f ~*(K) has codimension g — 1 in M, and D = M, — f~Y(K).

Consider y:My—M_, .,M_, , being bundles in M _, with determinant L. Since
the P! fibration ¥ is locally trivial in the Zariski topology, a line bundle L on the
fibre P! can be extended obviously to P! x U, where U is a Zariski open subset of
M_, .. Since M, is smooth, the closure of L in M, gives a line bundle on M o- Now,
the cohomology of P! is generated by line bundles and therefore we can apply
Leray-Hirsch theorem to conclude that the cohomology groups of M, are those of
P'xM_, ..

By Atiyah-Bott [2], all the cohomology groups of M_, , are torsion-free and
therefore all the cohomology groups of M, are also torsion-free.

Since g =3, the complex codimension of f (k) in My =g — 13> 2. This implies
Codimg f~H(K)in Mo =>4=g—1>2.

Consider the homology sequence of the pair (M 0,D)

Hk(Mo,D,Z)“’Hkﬂ(D, Z)“’Hk—1(M0aZ)—*Hk—1(M07D,Z)

M, is a compact complex manifold and so we can apply Alexander duality to the
pair (M,, D) to get '

H,(M,,D,7Z)~ H* *(M, — D;Z)
=H""Yf"1(K),2)
n=dimg, M,.
Since dimg f ~'(K) < n—4, we therefore get
H,y(Mo,D;Z)=H""2(f"1(K),Z) = 0
and similarly H(M,,D,Z)=0.
H,(D,2) = H,(M,, Z).

By the ‘universal coefficient theorem’ one has torsion subgroup of H,(T, Z) to be that
of H**Y(T, Z), T any topological space, and therefore we conclude that

H3 (D3 Z)tors = H3 (MO ’ Z)tors = (0)

Note that Z — Y = M3 and this completes the proof.
Q.E.D.
The claim (b) is due to Ramanan (p.52 [18])

Theorem 3. H>(Z,Z) is torsion free.
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Proof. Consider the Gysin sequence for (Z,Z — Y),
HY\(Y,Z)-» H*(Z,2)»H*(Z - Y,Z) > H*(Y,Z)

Now by Cor. 2,Y is a P9~2 x P97 2 fibration over K—K, and by ([19] p.159)
H'(K — K, Z)=0 implying by standard arguments H'(Y,Z)=0 (note that H(Y,2)
is torsion-frec by the universal coefficient theorem).

Thus we have from the Gysin sequence an injection

H*(Z,7Z) <> H3*(Z - Y, 2). (%)

Now note that H!(Z — Y, Z) = 0. (This follows for example {rom the Gysin sequence.
For, note that HY(Z — Y,Z)~H(Z,Z.) Also we will be seeing in §5 that the
codimension of Ny — Z in N, is actually 6. But N, is unirational and is therefore
simply connected, being smooth projective (cf. Serre [16]). Hence H'(N,,Z)=0
implying HY(Z,Z)=0=H"Z - Y, Z). '

Thus we can now apply Prop. 5 and Prop. 10 to see that H 3(Z = Y, 7). 1s generated
by bp_p,, the Brauer element coming from the conic bundle P — P over No — N, =
Z — Y. By Prop. 4 the total space of P— P, is smooth and hence the theorem due to
Nitsure mentioned in §4-1 is applicable. Thus we have

glbp_p,) =050 (x#0 by Prop.9).

This together with (*) and the exactness of the Gysin sequence gives H*(Z,Z) s = (0)
Q.ED.

Lemma 3. PicZ is generated by Pic(Z—Y) and the element [Y] coming from the
irreducible divisor Y < Z.

Proof. This follows from the following general fact:
If X is a smooth variety, U = X open with Y = X — U an irreducible divisor, then

Pic X - PicU

is a surjection and the kernel of this homomorphism is generated by [Y].

Lemma 4. Let N, = N be as in §3. Then Pic N is generated by PicM, and [N ]
over Q(*).

Proof. Firstly, we remark that N, is precisely Y in N,. Actually, we will be showing
in §5 that Y = N, is precisely the set of non-singular points of N;. Let us assume
this. Suppose N, is not irreducible and let 4, B be subvarieties such that N, =
AUB. Then AnB< N, —Y and hence AnY and BnY will disconnect Y which

(*) In fact, over Z (see Remark in Appendix 2).
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is false since Y is connected. Thus N ; 1s irreducible. Also since Y is irreducible it
follows that Y=N,.
An application of Lemma 4 and the result of Appendix 2 yields our result.

Remark 7. Thus by the above lemma, any LePic N, can be expressed as L=aL, +
bL,, Ly =[N,] and L,ePic M, a, beQ.

In particular, let L be chosen ample. Then if F is the fibre of Y - K — K5, L when
restricted to F is (aL; + bL,)|F. But since L,ePic M, which is trivial on F, we have

L|F =(aL,)|F

Fis P?~2 x P9~ 2 and Lis ample, therefore we have the restriction of L, to each P92
to be either ample or negatively ample.

Let eeH*(Y, R) be the Buler class of the irreducible divisor Y in Z. Then by the
‘adjunction formula’, we have

e=[Y]l,,

where [Y] is the class of Y« Z. Now L, =[N,] and N, = Y, hence it follows from
the above reasoning that the Euler class e when restricted to the factors of F is ample
or negatively ample.

PROPOSITION 11

Let E be the normal bundle of Y in Z and E, be the compliment of the zero section.
Consider the Gysin sequence for the 2-plane bundle (E, E,)

HY(Y,R)— H** 2 (Y, R) > H**2(Eq, R) > H** (Y, R) » H**3(Y, R).
Then the Gysin homomorphism
h:H (Y, R) - H*"2(Y, R),

given by ‘wedging’ with the Euler class eeH*(Y,R)isan injection for k < dimp P?~2 —2 =
29 —6.

Proof. By Prop. 8 we have

HYY)~ Y H'(K —K,)® H™(F)

l+m=k

or using the subspace W of H*(Y) as in Prop. 3.8, we.have, any ue H*(Y) u # 0 and
k < dimgF, to be expressible as

v=)u;®w, weH*K—K,), weW,

where not all w; =0 (this is so since k < dimg F). Without loss of generality, the u;’s
can be chosen linearly independent.

Now consider u®e, e the Euler class in H(Y, R)

u®e =Zui®(wi®e).



Cohomology of certain moduli spaces of vector bundles 17

Consider the class w;® e. This when restricted to the fibre F is non-zero, since by
Remark 7, the class e restricted to the factors of F is ample or negatively ample and
w; by definition lies in W and so w;Ae is non-zero on F for w,eH*(F,R),
k < dim,P?~2 — 2. Hence by the linear independence of the u;’s we get

ue=) u;®w;®e)#0

= h:H*(Y,R)— H***(Y,R) is an injection for k < dim P?"2 —2 =2g — 6.
COROLLARY 3
The Gysin map considered in Theorem 3 i.e.

h':H*(Y,R)—> H**?(Z,R)

is also an injection for k <2g — 6.

Proof. In fact, the Gysin sequences for (E, Ey) and (Z,Z — Y) are related as follows.

H (Y, R) —=

Hk+2(Y, R)

Hk+2(Z, R)

and therefore, since h is an injection by Prop. 11, so is h'..

COROLLARY 4
H4Z,R)=H*"*(Y,R)@ HY(Z — Y,R) k<29 — 4.
Proof. Consider the Gysin sequence for (Z,Z — Y).
—H*"2(Y,R) > H*(Z,R)» H*(Z — Y,R) > H* *(Y,R)» H*" }(Z,R) »
Since k' is an injection for k < 2g — 6, we get
0—H*"%(Y,R)—>H*Z,R)—»HXZ — Y,R) -0
for k <2g — 4 and this proves the corollary.

Remark 8. By Kirwan [5], the Betti numbers of Mj are known if genus g =4, for
i <2g—3. This together with Prop. 8, Cor. 4 and Spanier [19], yields the Betti
numbers of Z for i <2g — 3.

Remark 9. Let us assume g >4 and recall from Prop. 10, we had a topological
P!—bundle D on Z—Y. By the proof of Prop. 10 we see that if g>4, then
codimg f ~!(K) in M, > 6 and hence

H,(D,Z)=H,(M,,Z) for k<4.



18 V' Balaji

The homology groups of M, are known by [10] or by using Atiyah-Bott [2] for
M _, .. In particular, rank of H 3(]\7[ 0,Z) is 2g and hence rank of H3(D, Z) is 2g.

We have already seen that H'(Z — Y,R)=0. Now D is a P!-fibration over Z— Y
and H' (P!, R) =0, H*(Z — Y, R) = 0. Therefore by the Serre sequence of this fibration
(see for example Spanier Algebraic topology pp. 519) we get an exact sequence

H,(PL,R)— Hy(D,R)~ Hy(Z — Y, R)— H,(PL,R)>H,(D,R)» Hy(Z ~ Y,R)~ H,(P', R).
Now, Hy (P!, R) = H, (P!, R) =0, H,(P*,R) = R. Thus we have
0— H,;(D,R) > H3(Z — Y,R)—» H,(P',R)~ H,(D, R)

H,(Z — Y,R)—0. By the Picard group computations it follows that, H,(D, R) = R?
and H,(Z — Y,R)=R, and therefore we have

rank of H3(Z — Y,R) =rank H;3(D,R) = 2g.
Thus the rank of H;(Z — Y,R) = 2g and hence the rank of H 3Z-Y,R)is 2g.

Theorem 4. H3(Z,Z) =739, when g > 4.

Proof. By Theorem 3 H*(Z,Z) is torsion-free. By Cor. 4
HNZ,R=H' (,R@H*(Z-V,R)

Since H!(Y, R) =0, using Remark 9 we conclude that H*(Z, Z) = z%.

8. The main theorem

Consider the stratification of N, in terms of the degeneracy locus as in §3,
Nye Ny N, cN,.

PROPOSITION 12

The subvariety N, has codimension 3 in N,.

Proof. Consider the local morphism
@:Ny—

of §2. We have already seen that ¢:N, — 2/, and ¢:N,—«/,. Moreover, ¢ being a
smooth local morphism, its fibres are equidimensional. Hence the codimension of N,
in N, equals the codimension of &/, in /. We have also seen that &/, ./ is a
hypersurface given by A=0 and &/, = &, is precisely the singular locus of &/, . So

we would like to show that
codim of &7, in &, =2.

Consider the natural conic bundle C on A® asin Lemma 1. Let S be the hypersurface
of A® given by A =0 and let S* = § be its singular locus. Then by Remark 5, it is
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enough to show that

codim of §' in § = 2.
By definition, if

g=aX?+bY*+ 2P+ [YZ +yXZ +hXY,

then A is given by

a h g
A=|h b f].
g I c

Thus, if Sym (. /) is all (3 x 3)-symmetric matrices
S={AeSym(.#,)|rank 4 <2}.

The conditions ¢A/¢a = 8A/Ch = dA/dc = IA)O f = 0A[0g = dA/oh =0, gives
be=f2 uac=g* ab=h* af=hy, fh=hg, ch=fg.
ah=h/b=yg/f and alg=h/f=g/c

ie. St=!AeSym(.#;)|rank A < 1}.

From which we obtain the codim of S in §.

Q.ED.

COROLLARY 5
H\(Ng,Z)= H(Z,2),k < 4.
Proof. Consider the homology sequence of the pair (N, Z)
Hyy (No, Z:2) > H(Z,2)~ H (N, Z) > H (N o, Z; Z).
Since N is a compact complex manifold, the Alexander duality as in Theorem 3, gives

H(Ny,Z,Z)y~H""*(Ny—2,2)= H""*(N,, Z).

n=dimRNo.

By Prop. 12, dim, N, =n— 6 since codim¢ (N, No) = 3. Hence H" %(N,,Z)=0 for
k<6.

= Hk(No’Z)=Hk(ZaZ)a k<4

Theorem 5. H3(N,,Z) = Z*.

Proof. Firstly, H3(No, Z) is torsion-free. For, by Cor. 5, Hy(Ny,Z)=H,(Z,Z) and
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therefore by the universal coefficient theorem, since

HS(NO’ Z)tors = HZ(NO: Z)tors7
we have

HS (Noa Z)mrs = H3(25 Z)tors = (O) by Theorem 36
Now using Theorem 4 and for Cor. 5 we get

H3(N,y,Z)=Z%. Q.ED.

2
Theorem 6. The Beiti number B, of N is B4(N) =<2g> 14

Proof. To see this, we use Prop. 5.9 and Remark 5.11 of Kirwan [5] to get the Betti
numbers of M§ as Bo=1, B, =0, B, =1, By =2g, B, =2, etc.
By Cor. 4,

B.(Z)=B,(Y)+ B4(Z - 7).

Now, by Prop. 8, B,(Y) = B,(K — Ky) + B,(P?~% x P9~ 2). Hence, by Spanier [19]

Bﬂm=<?)+z

Also, B4(Y)=0, since the odd Betti numbers of K — K, and P¢~% x P9~ are zero
(cf. [19] again). Combining this with (*), we get

BA@=(?>+4

Hence by Cor. 5 we get

2
BAN&=(f)+4

L

Q.ED.

Appendix 1

We present here a proof due to Coliot—Théléne of Theorem (A) mentioned in the
introduction. We shall make a few remarks before going into the proof.

Let X be a smooth variety over C. For the notations and properties of most of
the facts mentioned below (cf. Grothendieck [4] and Saltman [13],[14]).

Define Br(X) to be the Brauer group of Azumaya algebras on X. Let Br'(X) be
the ‘cohomological Brauer group’ of X defined to be H%(X, G,,),.,. Then the following

facts are well known:
(i) BrX is contained in Br' (X).
(i) If X is a unirational smooth proper variety, then Br' (X) = H*(X(C), Z),,.
(iii) Define Br,, (X), the unramified Brauer group of X to be Br,, (X) = Br (X), X any
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P

smooth compa_ctiﬁcation of X. Then it is know that Br,, (X) is independent of
the choice of X since we are in characteristic 0.

(iv) Another way of defining Br,, (X) is as follows: Let C(X) be the function field of
X. Then for every discrete valuation ring A4, with C = 4 < C(X), and quotient
field of A = C(X), there exists a natural homomorphism

8 . Br C(X) > H(K ,, Q/Z).

K ~the residue class field of A.
Define

Br,C(X)= () (Kerd,) and Br, X =Br,C(X).

all such A

(v) Let k be a field and C a conic over £, i.e. conic bundle coming from a quaternion
algebra over k. Then there is a canonical homomorphism

Br' (k) —» Br' (C)

and the kernel of this homomorphism is the 2-torsion element coming from the
quaternion algebra over k associated to C.

Note that for a field k, Br’ (k) = Br (k).

PROPOSITION 13

Let C be a conic bundle on X with Br'(C) =0, and let n be the generic point of X. Let
C, be the restriction of C over C(n). To C, we associate an element o, €Br C(n). Suppose
that for the conic bundle C on X, there exists a discrete valuation ring A, with quotient
field of A=C(X), Cc A=C(X), such that 8 4(e,) # 0. Then Br,, (X)=0.

Proof. Suppose that Br,, (X)#0 and let «eBr,, (X) = Br,, (C(X)) be a non-zero
element. Consider the following commutative diagram

Br, X —Br, C

! 1
Br' C(n) Br' C,

where the map Br,, (X)— Br,, (C) is the canonical map induced from C— X and the
vertical maps are

Br, C > BrC = BrC—»NBr'cC,
Br,, X = BrC(X)=Br C(n) = Br' C(n).

Consider the image of « in Br' C(n), call it a.,. Then since Br’ C = 0, the above diagram
gives
a,eKer [Br' C()—BrcC,]

and therefore by Remark (v), a, is the element in Br C(n) associated to the c_onic C,,.
Now by the hypothesis of the proposition, there exists a discrete valuation ring
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ACcAc C(X) with quotient field of 4 = C(X), such that
0 4x,) #0. ()
But ae Bf,,,C(X) and Br,, C(X) is by definition equal to
(Kera,),

all such 4
implying
O4(o)=0

which contradicts (*). Hence the proposition.
Q.E.D.

Now let us consider the variety M$, the moduli space of stable vector bundles of
rank 2 and trivial determinant. Then by Prop. 3, there is a conic bundle D on Mj
with H3*(D, Z),,,, = (0) and therefore Br’' (D) = 0. .

The existence of an A with the requisite properties of the Prop. 13 is precisely
the theorem due to Nitsure [9]. Indeed, in the notation of §4, the irreducible
divisor Y < Z provides us with the discrete valuation ring 4. '

Hence by Prop. 13, Br,, M§ =0. This implies by Remark (3), that Br' (N 0)_ = 0 since
N, is a smooth compactification of M. Now N, is unirational, smooth-projective and
therefore by Remark (i), Br'(No) = H3(N g, Z),,, =(0).

Appendix 2

Theorem (C S Seshadri). Let M be the moduli space of semi-stable vector bundles of
rank 2" and degree d. Then

Pic M* (as well as Pic M) ~ Z.

Proof. For simplicity we present the proof only for rank 2 and degree zero. Choose
m such that for all stable bundles V' of rank two and degree zero, V(m) is generated
by the global sections. Then if E denotes the trivial vector bundle of rank
r=dim H(V(m)), V(m) is canonically a quotient of E and V(m) represents a point of
Q = Q(E/P), the Quot scheme of quotients of E with Hilbert polynomial equal to P.

We then have an open subscheme Q* of Q representing quotient vector bundles W

of E such that W is stable and the canonical homomorphism H°(E)— H°(W), is an
isomorphism. Thus we have a canonical morphism

p:Q*—Mj,

where M is the moduli space of stable vector bundles of rank 2 and det = Ox(2m)
and p is a G-principal fibre space with G = PGL(H°(E)). Note that M ~ M} of §2.
Let g:B— M be the fibre space associated to p with fibre the projective space of

dimension (r — 1). Hence if WeM?, the fibre g~ (W) can be canonically identified
with P(H®(W)).

Let A4 denote the projective space P(Ext (L, I)), the ‘Atiyah family’ on the vector
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space of all extensions of the form

01— W= L0,

where I is the trivial vector bundle of rank one and L the line bundle Ox(2m). Let A*
denote the subsct of A defined by

A=0->]->W->L->0|Wis stable}.
Then A4° is open and we have a canonical surjective morphism
;.:143 - M;

which associates to an extension as above the vector bundle W. Observe that giving
an extension as above is equivalent to giving a section se H O(W) which is non-vanishing
at every point xe X. From this observation we deduce easily that A° can be identified
canonically as an open subset of the projective bundle B over M3 ; in fact we have a
commutative diagram

A, B

N/

M3

Note that p~ H(W)— A~} (W) is irreducible in P(H(W)) for p~(W)— A~Y(W) is the
canonical image in P(H(W)) of the set §= {s|se H°(W),s vanishes at least at one
point of X} i.e.

$ = Ker (H(W)—W,).

xeX

Since A~!(W) is the complement of an irreducible closed subset in a projective
space, nonvanishing regular functions on A~ (W) reduce to constants. From this, we
easily conclude that, if U is an open subset in M} and f a regular nonvanishing

function on 4~ '(U), then fis a pull-back of a regular nonvanishing function on U.
From these properties, it follows easily that the canonical homomorphism

A*:Pic M5 — Pic 4°

is injective. To see this, let Leker A*. Then if L is given by transition functions {6;;}

on V;nV,, we have nonvanishing regular functions ¢; on A*(V;) such that PR CES
@ip; "

‘Njow the ¢, are pull-backs of functions 6; on V; and the required assertion follows.

Now A* is an open subset of P(Ext (L, 1)) and therefore Pic A® is either Z or Z/(m),
m # 0. Consider the normal projective variety M,. The ample line bundle on M,
restricted to M$ shows that Pic M, is not torsion. But A*:Pic M5, —» Pic A° is injective
implying, PicA’=Z and also Pic M$=Z. Since M, is normal, it follows that
Pic M, < Pic M and hence PicM,=2.

Remark. A priori, Pic M, is just a proper subgroup of Pic Mj. But if M, is locally
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factorial then cl M, = Pic M, and we would have Pic M, = Pic M5.
In fact, this is so and has been recently proved by J M Drezet and M S Narasimhan,
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