
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 315–322, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Enhanced Answer Type Inference from Questions using Sequential Models

Vijay Krishnan and Sujatha Das and Soumen Chakrabarti∗

Computer Science and Engineering Department, IIT Bombay, India

Abstract

Question classification is an important
step in factual question answering (QA)
and other dialog systems. Several at-
tempts have been made to apply statistical
machine learning approaches, including
Support Vector Machines (SVMs) with
sophisticated features and kernels. Curi-
ously, the payoff beyond a simple bag-of-
words representation has been small. We
show that most questions reveal their class
through a short contiguous token subse-
quence, which we call itsinformer span.
Perfect knowledge of informer spans can
enhance accuracy from 79.4% to 88%
using linear SVMs on standard bench-
marks. In contrast, standard heuristics
based on shallow pattern-matching give
only a 3% improvement, showing that the
notion of an informer is non-trivial. Us-
ing a novel multi-resolution encoding of
the question’s parse tree, we induce a Con-
ditional Random Field (CRF) to identify
informer spans with about 85% accuracy.
Then we build a meta-classifier using a
linear SVM on the CRF output, enhancing
accuracy to 86.2%, which is better than all
published numbers.

1 Introduction

An important step in factual question answering
(QA) and other dialog systems is to classify the
question (e.g., Who painted Olympia?) to the antic-
ipated type of the answer (e.g., person). This step
is called “question classification” or “answer type
identification”.

The answer type is picked from a hand-built tax-
onomy having dozens to hundreds of answer types
(Harabagiu et al., 2000; Hovy et al., 2001; Kwok et
al., 2001; Zheng, 2002; Dumais et al., 2002). QA

∗ soumen@cse.iitb.ac.in

systems can use the answer type to short-list answer
tokens from passages retrieved by an information re-
trieval (IR) subsystem, or use the type together with
other question words to inject IR queries.

Early successful QA systems used manually-
constructed sets of rules to map a question to a
type, exploiting clues such as the wh-word (who,
where, when, how many) and the head of noun
phrases associated with the main verb (what isthe
tallestmountainin . . .).

With the increasing popularity of statistical NLP,
Li and Roth (2002), Hacioglu and Ward (2003) and
Zhang and Lee (2003) used supervised learning for
question classification on a data set from UIUC that
is now standard1. It has 6 coarse and 50 fine answer
types in a two-level taxonomy, together with 5500
training and 500 test questions. Webclopedia (Hovy
et al., 2001) has also published its taxonomy with
over 140 types.

The promise of a machine learning approach is
that the QA system builder can now focus on de-
signing features and providing labeled data, rather
than coding and maintaining complex heuristic rule-
bases. The data sets and learning systems quoted
above have made question classification a well-
defined and non-trivial subtask of QA for which al-
gorithms can be evaluated precisely, isolating more
complex factors at work in a complete QA system.

Prior work: Compared to human performance,
the accuracy of question classifiers is not high. In all
studies, surprisingly slim gains have resulted from
sophisticated design of features and kernels.

Li and Roth (2002) used a Sparse Network of
Winnows (SNoW) (Khardon et al., 1999). Their fea-
tures included tokens, parts of speech (POS), chunks
(non-overlapping phrases) and named entity (NE)
tags. They achieved 78.8% accuracy for 50 classes,
which improved to 84.2% on using an (unpublished,
to our knowledge) hand-built dictionary of “seman-
tically related words”.

1http://l2r.cs.uiuc.edu/˜cogcomp/Data/
QA/QC/

315

Hacioglu and Ward (2003) used linear support
vector machines (SVMs) with question word 2-
grams and error-correcting output codes (ECOC)—
but no NE tagger or related word dictionary—to get
80.2–82% accuracy.

Zhang and Lee (2003) used linear SVMs with
all possible question wordq-grams, and obtained
79.2% accuracy. They went on to design an inge-
nious kernel on question parse trees, which yielded
visible gains for the 6 coarse labels, but only “slight”
gains for the 50 fine classes, because “the syntactic
tree does not normally contain the information re-
quired to distinguish between the various fine cate-
gories within a coarse category”.

Algorithm 6-class 50-class
Li and Roth, SNoW (1) 78.8(2)

Hacioglu et al., SVM+ECOC – 80.2–82
Zhang & Lee, LinearSVMq 87.4 79.2
Zhang & Lee, TreeSVM 90 –
SVM, “perfect” informer 94.2 88
SVM, CRF-informer 93.4 86.2

Table 1: Summary of % accuracy for UIUC data.
(1) SNoW accuracy without the related word dictio-
nary was not reported. With the related-word dic-
tionary, it achieved 91%.(2) SNoW with a related-
word dictionary achieved 84.2% but the other algo-
rithms did not use it. Our results are summarized in
the last two rows, see text for details.

Our contributions: We introduce the notion of
theanswer type informer spanof the question (in
§2): a short (typically 1–3 word) subsequence of
question tokens that are adequate clues for question
classification; e.g.: How much does an adult ele-
phantweigh?

We show (in§3.2) that a simple linear SVM us-
ing features derived from human-annotated informer
spans beats all known learning approaches. This
confirms our suspicion that the earlier approaches
suffered from a feature localization problem.

Of course, informers are useful only if we can find
ways to automatically identify informer spans. Sur-
prisingly, syntactic pattern-matching and heuristics
widely used in QA systems are not very good at cap-
turing informer spans (§3.3). Therefore, the notion
of an informer is non-trivial.

Using a parse of the question sentence, we derive
a novel set of multi-resolution features suitable for
training a conditional random field (CRF) (Lafferty
et al., 2001; Sha and Pereira, 2003). Our feature de-
sign paradigm may be of independent interest (§4).
Our informer tagger is about 85–87% accurate.

We use a meta-learning framework (Chan and
Stolfo, 1993) in which a linear SVM predicts the an-
swer type based on features derived from the origi-
nal question as well as the output of the CRF. This
meta-classifier beats all published numbers on stan-
dard question classification benchmarks (§4.4). Ta-
ble 1 (last two rows) summarizes our main results.

2 Informer overview

Our key insight is that a human can classify a ques-
tion based on very few tokens gleaned from skeletal
syntactic information. This is certainly true of the
most trivial classes (Who wrote Hamlet? orHow
manydogs pull a sled at Iditarod?) but is also true of
more subtle clues (How much does a rhinoweigh?).

In fact, informal experiments revealed the surpris-
ing property thatonly onecontiguous span of tokens
is adequate for a human to classify a question. E.g.,
in the above question, a human does not even need
the how muchclue once the wordweigh is avail-
able. In fact, “How much does a rhinocost?” has an
identical syntax but a completely different answer
type, not revealed byhow muchalone. The only
exceptions to the single-span hypothesis are multi-
function questions like “What is thenameandage
of . . .”, which should be assigned to multiple answer
types. In this paper we consider questions where one
type suffices.

Consider another question with multiple clues:
Whois theCEOof IBM? In isolation, the cluewho
merely tells us that the answer might be a person or
country or organization, whileCEOis perfectly pre-
cise, renderingwho unnecessary. All of the above
appliesa forteriori to what andwhichclues, which
are essentially uninformative on their own, as in
“What is thedistancebetween Pisa and Rome?”

Conventional QA systems use mild analysis on
the wh-clues, and need much more sophistication on
the rest of the question (e.g. inferringauthor from
wrote, and even verb subcategorization). We submit
that a single, minimal, suitably-chosen contiguous

316

span of question token/s, defined as theinformer
spanof the question, is adequate for question clas-
sification.

The informer span is very sensitive to the struc-
ture of clauses, phrases and possessives in the ques-
tion, as is clear from these examples (informers ital-
icized): “What is Bill Clinton’s wife’sprofession”,
and “Whatcountry’s president was shot at Ford’s
Theater”. The choice of informer spans also de-
pends on the target classification system. Initially
we wished to handle definition questions separately,
and marked no informer tokens in “What is digi-
talis”. However,what is is an excellent informer
for the UIUC classDESC:def (description, defi-
nition).

3 The meta-learning approach

We propose a meta-learning approach (§3.1) in
which the SVM can use features from the original
question as well as its informer span. We show
(§3.2) that human-annotated informer spans lead to
large improvements in accuracy. However, we show
(§3.3) that simple heuristic extraction rules com-
monly used in QA systems (e.g. head of noun phrase
following wh-word) cannot provide informers that
are nearly as useful. This naturally leads us to de-
signing an informer tagger in§4.

Figure 1 shows our meta-learning (Chan and
Stolfo, 1993) framework. The combiner is a linear
multi-class one-vs-one SVM2, as in the Zhang and
Lee (2003) baseline. We did not use ECOC (Ha-
cioglu and Ward, 2003) because the reported gain is
less than 1%.

The word feature extractor selects unigrams and
q-grams from the question. In our experience,q =
1 or q = 2 were best; if unspecified, all possible
qgrams were used. Through tuning, we also found
that the SVM “C” parameter (used to trade between
training data fit and model complexity) must be set
to 300 to achieve their published baseline numbers.

3.1 Adding informer features

We propose two very simple ways to derive features
from informers for use with SVMs. Initially, assume
that perfect informers are known for all questions;

2http://www.csie.ntu.edu.tw/˜cjlin/
libsvm/

question CRF Informer
span tagger

Word and qgram
feature extractor

Informer
feature extractor

Combined feature vector

class

S
V

M

M
et

a
Le

ar
ne

r

Figure 1: The meta-learning approach.

later (§4) we study how to predict informers.

Informer q-grams: This comprises of all wordq-
grams within the informer span, for all possibleq.
E.g., such features enable effective exploitation of
informers like length or height to classify to the
NUMBER:distance class in the UIUC data.

Informer q-gram hypernyms: For each word or
compound within the informer span that is a Word-
Net noun, we add all hypernyms of all senses. The
intuition is that the informer (e.g.author, crick-
eter, CEO) is often narrower than a broad ques-
tion class (HUMAN:individual). Following hy-
pernym links up topersonvia WordNet produces a
more reliably correlated feature.

Given informers, other question words might
seem useless to the classifier. However, retaining
regular features from other question words is an ex-
cellent idea for the following reasons.

First, we kept word sense disambiguation (WSD)
outside the scope of this work because WSD en-
tails computation costs, and is unlikely to be reliable
on short single-sentence questions. Questions like
How long . . . or Which bank. . . can thus become
ambiguous and corrupt the informer hypernym fea-
tures. Additional question words can often help nail
the correct class despite the feature corruption.

Second, while our CRF-based approach to in-
former span tagging is better than obvious alterna-
tives, it still has a 15% error rate. For the questions
where the CRF prediction is wrong, features from
non-informer words give the SVM an opportunity to
still pick the correct question class.

Word features: Based on the above discussion,
one boolean SVM feature is created for every word
q-gram over all question tokens. In experiments, we
found bigrams (q = 2) to be most effective, closely
followed by unigrams (q = 1). As with informers,
we can also use hypernyms of regular words as SVM

317

features (marked “Question bigrams + hypernyms”
in Table 2).

3.2 Benefits from “perfect” informers

We first wished to test the hypothesis that identi-
fying informer spans to an SVM learner can im-
prove classification accuracy. Over and above the
class labels, we had two volunteers tag the 6000
UIUC questions with informer spans (which we call
“perfect”—agreement was near-perfect).

Features Coarse Fine
Question trigrams 91.2 77.6
All questionqgrams 87.2 71.8
All question unigrams 88.4 78.2
Question bigrams 91.6 79.4
+informer q-grams 94.0 82.4
+informer hypernyms 94.2 88.0
Question unigrams + all informer93.4 88.0
Only informer 92.2 85.0
Question bigrams + hypernyms 91.6 79.4

Table 2: Percent accuracy with linear SVMs, “per-
fect” informer spans, and various feature encodings.

Observe in Table 2 that the unigram baseline is
already quite competitive with the best prior num-
bers, and exploiting perfect informer spans beats all
known numbers. It is clear that bothinformer q-
grams and informer hypernymsare very valuable
features for question classification. The fact that no
improvement was obtained with overQuestion bi-
gramsusingQuestion hypernymshighlights the im-
portance of choosing a few relevant tokens as in-
formers and designing suitable features on them.

Table 3 (columns b and e) shows the benefits from
perfect informers broken down into broad question
types. Questions withwhat as the trigger are the
biggest beneficiaries, and they also form by far the
most frequent category.

The remaining question, one that we address in
the rest of the paper, is whether we can effectively
and accurately automate the process of providing in-
former spans to the question classifier.

3.3 Informers provided by heuristics

In §4 we will propose a non-trivial solution to the
informer-tagging problem. Before that, we must jus-

tify that such machinery is indeed required.
Some leading QA systems extract words very

similar in function to informers from the parse tree
of the question. Some (Singhal et al., 2000) pick
the head of the first noun phrase detected by a shal-
low parser, while others use the head of the noun
phrase adjoining the main verb (Ramakrishnan et al.,
2004). Yet others (Harabagiu et al., 2000; Hovy
et al., 2001) use hundreds of (unpublished to our
knowledge) hand-built pattern-matching rules on the
output of a full-scale parser.

A natural baseline is to use these extracted words,
which we call “heuristic informers”, with an SVM
just like we used “perfect” informers. All that re-
mains is to make the heuristics precise.

How: For questions starting withhow, we use the
bigram starting withhowunless the next word
is a verb.

Wh: If the wh-word is nothow, whator which, use
the wh-word in the question as a separate fea-
ture.

WhNP: For questions havingwhat andwhich, use
the WHNP if it encloses a noun. WHNP is the
Noun Phrase corresponding to the Wh-word,
given by a sentence parser (see§4.2).

NP1: Otherwise, forwhatandwhichquestions, the
first (leftmost) noun phrase is added to yet an-
other feature subspace.

Table 3 (columns c and f) shows that these
already-messy heuristic informers do not capture the
same signal quality as “perfect” informers. Our find-
ings corroborate Li and Roth (2002), who report lit-
tle benefit from adding head chunk features for the
fine classification task.

Moreover, observe that using heuristic informer
featureswithout any word features leads to rather
poor performance (column c), unlike using perfect
informers (column b) or even CRF-predicted in-
former (column d, see§4). These clearly establish
that the notion of an informer is nontrivial.

4 Using CRFs to label informers

Given informers are useful but nontrivial to recog-
nize, the next natural question is, how can we learn
to identify them automatically? From earlier sec-
tions, it is clear (and we give evidence later, see Ta-
ble 5) that sequence and syntax information will be

318

6 coarse classes
B Only Informers B+ B+ B+

Type #Quest. (Bigrams) Perf.Inf H.Inf CRF.Inf Perf.Inf H.Inf CRF.Inf
what 349 88.8 89.4 69.6 79.3 91.7 87.4 91.4
which 11 72.7 100.0 45.4 81.8 100.0 63.6 81.8
when 28 100.0 100.0 100.0 100.0 100.0 100.0 100.0
where 27 100.0 96.3 100.0 96.3 100.0 100.0 100.0
who 47 100.0 100.0 100.0 100.0 100.0 100.0 100.0
how * 32 100.0 96.9 100.0 100.0 100.0 100.0 100.0
rest 6 100.0 100.0 100.0 66.7 100.0 66.7 66.7
Total 500 91.6 92.2 77.2 84.6 94.2 90.0 93.4

50 fine classes
what 349 73.6 82.2 61.9 78.0 85.1 79.1 83.1
which 11 81.8 90.9 45.4 73.1 90.9 54.5 81.8
when 28 100.0 100.0 100.0 100.0 100.0 100.0 100.0
where 27 92.6 85.2 92.6 88.9 88.9 92.5 88.9
who 47 97.9 93.6 93.6 93.6 100.0 100.0 97.9
how * 32 87.5 84.3 81.2 78.1 87.5 90.6 90.6
rest 6 66.7 66.7 66.7 66.7 100.0 66.7 66.7
Total 500 79.4 85.0 69.6 78.0 88.0 82.6 86.2

a b c d e f g

Table 3: Summary of % accuracy broken down by question type (referred from§3.2, §3.3 and§4.4). a:
question bigrams, b: perfect informers only, c: heuristic informers only, d: CRF informers only, e–g:
bigrams plus perfect, heuristic and CRF informers.

important.
We will model informer span identification as a

sequence tagging problem. An automaton makes
probabilistic transitions between hidden statesy,
one of which is an “informer generating state”, and
emits tokensx. We observe the tokens and have to
guess which were produced from the “informer gen-
erating state”.

Hidden Markov models are extremely popular for
such applications, but recent work has shown that
conditional random fields (CRFs) (Lafferty et al.,
2001; Sha and Pereira, 2003) have a consistent ad-
vantage over traditional HMMs in the face of many
redundant features. We refer the reader to the above
references for a detailed treatment of CRFs. Here
we will regard a CRF as largely a black box3.

To train a CRF, we need a set of state nodes, a
transition graph on these nodes, and tokenized text
where each token is assigned a state. Once the CRF
is trained, it can be applied to a token sequence, pro-

3We usedhttp://crf.sourceforge.net/

ducing a predicted state sequence.

4.1 State transition models

We started with the common 2-state “in/out” model
used in information extraction, shown in the left half
of Figure 2. State “1” is the informer-generating
state. Either state can be initial and final (double
circle) states.

0 1 0 1 2

What kind of an animal is Winnie the Pooh

What, kind,
of, an, is,

Winnie, the,
Pooh

animal

What, kind,
of, an

is, Winnie,
the, Pooh

animal

start start

Figure 2: 2- and 3-state transition models.

The 2-state model can be myopic. Consider the
question pair

319

A: What country is the largest producer of wheat?
B: Name the largest producer of wheat

Thei±1 context ofproduceris identical in A and
B. In B, for want of a better informer, we would want
producerto be flagged as the informer, although it
might refer to a country, person, animal, company,
etc. But in A,countryis far more precise.

Any 2-state model that depends on positionsi±1
to define features will fail to distinguish between A
and B, and might select bothcountryandproducer
in A. As we have seen with heuristic informers, pol-
luting the informer pool can significantly hurt SVM
accuracy.

Therefore we also use the 3-state “begin/in/out”
(BIO) model. The initial state cannot be “2” in the
3-state model; all states can be final. The 3-state
model allows at most one informer span. Once the
3-state model choosescountryas the informer, it is
unlikely to stretch state 1 up toproducer.

There is no natural significance to using four or
more states. Besides, longer range syntax dependen-
cies are already largely captured by the parser.

What is the capital city of Japan

WP VBZ DT NN NN IN NNP

NP NP

PP

NP

VP

SQ

SBARQ

WHNP

0

1

2

3

4

5

6

�Level

Figure 3: Stanford Parser output example.

4.2 Features from a parse of the question

Sentences with similar parse trees are likely to have
the informer in similar positions. This was the in-
tuition behind Zhang et al.’s tree kernel, and is also
our starting point. We used the Stanford Lexicalized
Parser (Klein and Manning, 2003) to parse the ques-
tion. (We assume familiarity with parse tree notation
for lack of space.) Figure 3 shows a sample parse
tree organized in levels. Our first step was to trans-

i 1 2 3 4 5 6 7
yi 0 0 0 1 1 2 2
xi What is the capital city of Japan
` ↓ Features forxis
1 WP,1 VBZ,1 DT,1 NN,1 NN,1 IN,1 NNP,1
2 WHNP,1 VP,1 NP,1 NP,1 NP,1 Null,1 NP,2
3 Null,1 Null,1 Null,1 Null,1 Null,1 PP,1 PP,1
4 Null,1 Null,1 NP,1 NP,1 NP,1 NP,1 NP,1
5 Null,1 SQ,1 SQ,1 SQ,1 SQ,1 SQ,1 SQ,1
6 SBARQSBARQSBARQSBARQSBARQSBARQSBARQ

Table 4: A multi-resolution tabular view of the ques-
tion parse showingtag andnumattributes.capital
city is the informer span withy = 1.

late the parse tree into an equivalent multi-resolution
tabular format shown in Table 4.

Cells and attributes: A labeled question com-
prises the token sequencexi; i = 1, . . . and the label
sequenceyi, i = 1, . . . Eachxi leads to a column
vector of observations. Therefore we use matrix no-
tation to write downx: A table cell is addressed as
x[i, `] wherei is the token position (column index)
and` is the level or row index, 1–6 in this example.
(Although the parse tree can be arbitrarily deep, we
found that using features from up to level` = 2 was
adequate.)

Intuitively, much of the information required for
spotting an informer can be obtained from the part
of speech of the tokens and phrase/clause attachment
information. Conversely, specific word information
is generally sparse and misleading; the same word
may or may not be an informer depending on its po-
sition. E.g., “What birds eat snakes?” and “What
snakes eat birds?” have the same words but different
informers. Accordingly, we observe two properties
at each cell:

tag : The syntactic class assigned to the cell by
the parser, e.g.x[4, 2].tag = NP. It is well-known
that POS and chunk information are major clues to
informer-tagging, specifically, informers are often
nouns or noun phrases.

num: Many heuristics exploit the fact that the first
NP is known to have a higher chance of containing
informers than subsequent NPs. To capture this po-
sitional information, we definenumof a cell at[i, `]
as one plus the number of distinct contiguous chunks
to the left of[i, `] with tag s equal tox[4, 2].tag .
E.g., at level 2 in the table above,the capital city

320

forms the first NP, whileJapanforms the second NP.
Thereforex[7, 2].num = 2.

In conditional models, it is notationally conve-
nient to express features as functions on(xi, yi). To
one unfamiliar with CRFs, it may seem strange that
yi is passed as an argument to features. At training
time, yi is indeed known, and at testing time, the
CRF algorithm efficiently finds the most probable
sequence ofyis using a Viterbi search. True labels
are not revealed to the CRF at testing time.

Cell features IsTag and IsNum : E.g., the ob-
servation “y4 = 1 andx[4, 2].tag = NP” is cap-
tured by the statement that “position 4 fires the fea-
ture IsTag 1,NP,2” (which has a boolean value).
There is anIsTag y,t,` feature for each(y, t, `)
triplet. Similarly, for every possible statey, ev-
ery possiblenum value n (up to some maximum
horizon), and every level̀, we define boolean fea-
turesIsNumy,n,`. E.g., position 7 fires the feature
IsNum2,2,2 in the 3-state model, capturing the state-
ment “x[7, 2].num = 2 andy7 = 2”.

Adjacent cell features IsPrevTag and
IsNextTag : Context can be exploited by a
CRF by coupling the state at positioni with
observations at positions adjacent to positioni
(extending to larger windows did not help). To
capture this, we use more boolean features: posi-
tion 4 fires the featureIsPrevTag 1,DT,1 because
x[3, 1].tag = DTandy4 = 1. Position 4 also fires
IsPrevTag 1,NP,2 becausex[3, 2].tag = NPand
y4 = 1. Similarly we define aIsNextTag y,t,`

feature for each possible(y, t, `) triple.

State transition features IsEdge : Position i
fires featureIsEdge u,v if yi−1 = u andyi = v.
There is one such feature for each state-pair(u, v)
allowed by the transition graph. In addition we have
sentinel featuresIsBegin u and IsEnd u marking
the beginning and end of the token sequence.

4.3 Informer-tagging accuracy

We study the accuracy of our CRF-based informer
tagger wrt human informer annotations. In the next
section we will see the effect of CRF tagging on
question classification.

There are at least two useful measures of
informer-tagging accuracy. Each question has a

known setIk of informer tokens, and gets a set
of tokensIc flagged as informers by the CRF. For
each question, we can grant ourself a reward of 1 if
Ic = Ik, and 0 otherwise. In§3.1, informers were
regarded as a separate (high-value) bag of words.
Therefore, overlap betweenIc and Ik would be a
reasonable predictor of question classification accu-
racy. We use the Jaccard similarity|Ik∩Ic|/|Ik∪Ic|.
Table 5 shows the effect of using diverse feature sets.

Fraction Jaccard
Features used Ic = Ik overlap
IsTag 0.368 0.396
+IsNum 0.474 0.542
+IsPrevTag+IsNextTag 0.692 0.751
+IsEdge+IsBegin+IsEnd 0.848 0.867

Table 5: Effect of feature choices.

• IsTag features are not adequate.
• IsNum features improve accuracy 10–20%.
• IsPrevTag and IsNextTag (“+Prev

+Next”) add over 20% of accuracy.
• IsEdge transition features help exploit

Markovian dependencies and adds another
10–15% accuracy, showing that sequential
models are indeed required.

Type #Quest. Heuristic 2-state 3-state
Informers CRF CRF

what 349 57.3 68.2 83.4
which 11 77.3 83.3 77.2
when 28 75.0 98.8 100.0
where 27 84.3 100.0 96.3
who 47 55.0 47.2 96.8
how * 32 90.6 88.5 93.8
rest 6 66.7 66.7 77.8
Total 500 62.4 71.2 86.7

Table 6: Effect of number of CRF states, and com-
parison with the heuristic baseline (Jaccard accuracy
expressed as %).

Table 6 shows that the 3-state CRF performs
much better than the 2-state CRF, especially on diffi-
cult questions withwhatandwhich. It also compares
the Jaccard accuracy of informers found by the CRF
vs. informers found by the heuristics described in
§3.3. Again we see a clear superiority of the CRF

321

approach.
Unlike the heuristic approach, the CRF approach

is relatively robust to the parser emitting a somewhat
incorrect parse tree, which is not uncommon. The
heuristic approach picks the “easy” informer,who,
over the better one,CEO, in “Who is the CEO of
IBM”. Its bias toward the NP-head can also be a
problem, as in “What country’spresident. . .”.

4.4 Question classification accuracy

We have already seen in§3.2 that perfect knowledge
of informers can be a big help. Because the CRF
can make mistakes, the margin may decrease. In this
section we study this issue.

We used questions with human-tagged informers
(§3.2) to train a CRF. The CRF was applied back
on the training questions to get informer predictions,
which were used to train the 1-vs-1 SVM meta-
learner (§3). Using CRF-tagged and not human-
tagged informers may seem odd, but this lets the
SVM learn and work around systematic errors in
CRF outputs.

Results are shown in columns d and g of Table 3.
Despite the CRF tagger having about 15% error, we
obtained 86.2% SVM accuracy which is rather close
to the the SVM accuracy of 88% with perfect in-
formers.

The CRF-generated tags, being on the training
data, might be more accurate that would be for un-
seen test cases, potentially misleading the SVM.
This turns out not to be a problem: clearly we are
very close to the upper bound of 88%. In fact, anec-
dotal evidence suggests that using CRF-assigned
tags actually helped the SVM.

5 Conclusion

We presented a new approach to inferring the type
of the answer sought by a well-formed natural lan-
guage question. We introduced the notion of a span
of informer tokensand extract it using a sequential
graphical model with a novel feature representation
derived from the parse tree of the question. Our ap-
proach beats the accuracy of recent algorithms, even
ones that used max-margin methods with sophisti-
cated kernels defined on parse trees.

An intriguing feature of our approach is that
when an informer (actor) is narrower than the ques-

tion class (person), we can exploit direct hyper-
nymy connections likeactor to Tom Hanks, if avail-
able. Existing knowledge bases like WordNet and
Wikipedia, combined with intense recent work (Et-
zioni et al., 2004) on bootstrapping is-a hierarchies,
can thus lead to potentially large benefits.

Acknowledgments: Thanks to Sunita Sarawagi
for help with CRFs, and the reviewers for improv-
ing the presentation.

References
P. K Chan and S. J Stolfo. 1993. Experiments in mul-

tistrategy learning by meta-learning. InCIKM, pages
314–323, Washington, DC.

S Dumais, M Banko, E Brill, J Lin, and A Ng. 2002.
Web question answering: Is more always better? In
SIGIR, pages 291–298.

O Etzioni, M Cafarella, et al. 2004. Web-scale informa-
tion extraction in KnowItAll. InWWW Conference,
New York. ACM.

K Hacioglu and W Ward. 2003. Question classifica-
tion with support vector machines and error correcting
codes. InHLT, pages 28–30.

S Harabagiu, D Moldovan, M Pasca, R Mihalcea, M Sur-
deanu, R Bunescu, R Girju, V Rus, and P Morarescu.
2000. FALCON: Boosting knowledge for answer en-
gines. InTREC 9, pages 479–488. NIST.

E Hovy, L Gerber, U Hermjakob, M Junk, and C.-Y
Lin. 2001. Question answering in Webclopedia. In
TREC 9. NIST.

R Khardon, D Roth, and L. G Valiant. 1999. Relational
learning for NLP using linear threshold elements. In
IJCAI.

D Klein and C. D Manning. 2003. Accurate unlexical-
ized parsing. InACL, volume 41, pages 423–430.

C Kwok, O Etzioni, and D. S Weld. 2001. Scaling ques-
tion answering to the Web. InWWW Conference, vol-
ume 10, pages 150–161, Hong Kong.

J Lafferty, A McCallum, and F Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. InICML.

X Li and D Roth. 2002. Learning question classifiers. In
COLING, pages 556–562.

G Ramakrishnan, S Chakrabarti, D. A Paranjpe, and
P Bhattacharyya. 2004. Is question answering an ac-
quired skill? InWWW Conference, pages 111–120,
New York.

F Sha and F Pereira. 2003. Shallow parsing with condi-
tional random fields. InHLT-NAACL, pages 134–141.

A Singhal, S Abney, M Bacchiani, M Collins, D Hindle,
and F Pereira. 2000. AT&T at TREC-8. InTREC 8,
pages 317–330. NIST.

D Zhang and W Lee. 2003. Question classification using
support vector machines. InSIGIR, pages 26–32.

Z Zheng. 2002. AnswerBus question answering system.
In HLT.

322

